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Abstract

Background: A type III error arises from a two-sided test, when one side is erroneously favoured although the true
effect actually resides on the other side. The relevance of this grave error in decision-making is studied for
epidemiological maps.

Results: Theoretical considerations confirm that a type III error may be large for regions with small numbers of
expected cases even when no spatial smoothing has been performed. A simulation study based on infant mortality
data in Austria reveals that spatial smoothing may additionally increase the risk of type III errors.

Conclusions: The occurrence of a type III error should be taken into account when interpreting results presented
in epidemiological maps, particularly with regard to sparsely populated regions and spatial smoothing.

Keywords: Directional test decision, Statistical power, Infant mortality, Standardised mortality ratio (SMR), Crude
SMR estimator, Unstructured random effect, Structured random effect, BYM model
Background
Epidemiological maps, also known as spatial maps or
choropleth maps, are widely used, especially since the ad-
vent of powerful and user-friendly geographic information
system (GIS) software tools. Among other aspects, public
health indicators and health care performance measures are
shown in graphic form on the basis of these maps. By way
of an example, Figure 1 shows standardised mortality ratios
(SMRs) of infant mortality across 121 Austrian districts.
SMR is a common epidemiological indicator for present-

ing and studying mortality in a spatial context. Three
approaches to estimate the SMR will be considered in the
following: crude, unstructured, and Besag-York-Mollié
(BYM) [1].
The crude SMR is obtained by simply dividing the num-

ber of observed cases of a spatial unit by its corresponding
number of expected cases. For the purpose of generalisabil-
ity, it would be meaningful to consider crude SMR as being
based on a simple Poisson model. Thus, the unstructured
SMR may be considered to be based on a Poisson model,
including a spatially unstructured random effect. BYM
SMR is based on a Poisson model, including a spatially
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unstructured and a spatially structured random effect [1].
However, a Poisson model with a spatially structured ran-
dom effect alone (i.e. a structured SMR approach), such as
the conditionally autoregressive (CAR) model, is not con-
sidered in the present report.
In the simplest form the expected cases are derived by

multiplying the overall nation-wide mortality rate with
the number of population years of the spatial unit of
interest. More refined approaches utilise the available
covariate information as well.
The variability of the crude SMR estimator strongly

depends on the size of the population of the respective
spatial unit. This may yield extreme estimates, especially
for sparsely populated spatial units. Nowadays the crude
SMR is rarely used in spatial epidemiology. However, as
it is the origin of all types of SMR estimators, it will be
studied here for the purpose of comparison.
The incorporation of spatially unstructured and/or

spatially structured random effects into SMR estimation
is also known as spatial smoothing. The concept under-
lying spatial smoothing is "borrowing strength" from
neighbouring spatial units in order to avoid extreme
SMR estimates by flattening out random noise fluctua-
tions. In practice, the computational implementation of
spatial smoothing is usually performed in the context of
a Bayesian statistical approach.
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Figure 1 Austrian infant mortality from 1984 to 2008 at the level of 121 administrative districts. SMRs have been estimated by the
empirical Bayes procedure and have been grouped into quartiles. The expression "true SMR" refers to the use of these results as calibration
reference points for type III error calculations in the example. Kernel estimates of the distributions of SMRs and expected cases are also shown.
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The question now arises as to whether and to what ex-
tent bias is introduced by spatial smoothing. A specific and
particularly severe form of bias would be effect reversing: a
spatial unit with a truly hazardous health effect for its inha-
bitants would yield an advantageous result in the epidemio-
logical map, and vice versa. A statistically significant effect
reversing is known as an error of the third kind or a type
III error in statistical terms [2]. If a true health effect is
present, the so-called q-value will be the conditional prob-
ability for a type III error, provided a statistically significant
result has been obtained [3].
The present report addresses the practical relevance of

a type III error in unsmoothed and spatially smoothed
epidemiological maps by theoretical considerations and
a simulation study, which is based on the actual data
concerning infant mortality in Austria. The paper is
organised as follows: Numerical and simulation results
of a type III error are presented in the results section.
These results and further aspects of the issue are dis-
cussed in the discussion section. Major findings are
summarised and presented in the overall context in the
conclusions section. The methods section addresses the
infant mortality situation in Austria, the employed epi-
demiological models, the type III error, and the simula-
tion study.
Note that the term type III error has another meaning

as well. It is sometimes used to describe a mishap during
statistical consulting when the right answer is given to
the wrong problem [4]. Throughout the present report,
however, the term type III error will always refer to sta-
tistically significant effect reversing.

Results
The type III error will first be exemplified for the crude
SMR estimator. The problem will then be studied in the
context of epidemiological maps by applying different
SMR estimators to Austrian infant mortality data in the
framework of a simulation study.

Exact results for crude SMR estimator
Assuming a Poisson distribution for the number of
observed cases permits exact calculation of directional
power, type III error, and the q-value for the crude SMR
estimator.
The null hypothesis to be tested is whether the true

SMR equals a value of one. The level of significance was
set to α ¼ 0:05.
In Figure 2a the directional power is plotted against

the true SMR value for various numbers of expected
cases. As anticipated, the directional power depends on
the true SMR as well as the number of expected cases.
The closer the true SMR is to a value of one, the smaller
is the directional power. Ideally, the directional power
should converge to half the significance level here. How-
ever, due to the discreteness of the exact Poisson test,
directional power values considerably smaller than
α=2 ¼ 0:025 are observed especially for small numbers
of expected cases. Larger numbers of expected cases are
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Figure 2 Directional power (2a), type III error (2b) and q-value (2c) of the crude SMR estimator are plotted against the true SMR value
for various numbers of expected cases. The level of significance was set to α ¼ 0:05.
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commonly associated with larger power values. Exceptions
may occur for true SMR values close to one. These excep-
tions are again due to the discreteness of the exact test.
Notably, if the number of expected cases is one the direc-
tional power is zero for true SMR values smaller than one.
In other words, if the number of expected cases is one, the
exact Poisson test can never result in a statistically signifi-
cant crude SMR estimate smaller than one.
Figure 2b shows type III errors. For large numbers of

expected cases the type III error is small. It is practically
non-existent for true SMR values not too close to one.
Discreteness effects are also observed.
Figure 2c shows q-values, i.e. the probability of a type

III error when a statistically significant result is obtained.
The q-value of one for a number of expected cases of
one and true SMR values smaller than one is most im-
pressive. In other words, whenever a statistically signifi-
cant result is obtained for this scenario, it is always due
to effect reversing.
Results for Austrian infant mortality data
For calculation of statistical power, type III error and the
q-value, the true underlying SMR must either be known
or a reasonable value must be assumed. The latter par-
ticularly applies to sample size calculation [3].
In the following, infant mortality data across 121

Austrian districts are used to exemplify the type III
error. Naturally, the true spatial distribution of Austrian in-
fant mortality rates is unknown. Therefore, substitutes for
true SMR values are used; these are empirical Bayes esti-
mates based on infant mortality data from 1984 to 2008
(Figure 1).
Crude SMR estimator results for infant mortality data
Analogous to the results presented in Figure 2a-2c,
directional power, type III error and the q-value of the crude
SMR estimator can be exactly calculated for Austrian infant
mortality as well. Figure 3 shows a plot of the resulting
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Figure 3 Austrian infant mortality example: The q-values of the
crude SMR estimator. The level of significance was set to α ¼ 0:05.
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q-values against the (assumed) true SMR values. The level
of significance was set to α ¼ 0:05.
For the sake of clarity, the ordinate has been stretched

for the lower values and squeezed for the larger ones.
Horizontal light blue lines indicate selected q-values of
one per mil and one per cent. The neutral true SMR
value of one is shown as a vertical grey solid line. Verti-
cal grey dashed lines at 0.8, 0.9, 1.111, and 1.25 are used
to mark true SMR values with minor, average, and con-
siderable deviation from one, respectively.
Despite different scalings of the ordinates, it is evident

that the results in Figure 3 are in accordance with those in
Figure 2c. The further afar the true SMR value is from one,
the smaller is the q-value. Smaller q-values may also be
expected for larger numbers of expected cases.
The dark red dot for a true SMR around 1.01 and a

q-value of zero refers to a small district with a number of
expected cases of around 2.3 (Figure 3). Here, a type III
error cannot occur for the crude SMR estimator when the
significance level is set to five per cent.

Results of random effect models for infant mortality data
Directional power, type III error and the q-value cannot
be analytically calculated for SMR estimates of random
effect models in general. SMR estimates for the i� th
unit depend on the SMR estimates of its neighbouring
units. As the neighbours themselves have neighbours,
the random effect estimates are mutually interwoven.
Therefore, directional power, type III error and the
q-value of random effect models have been computed
by computer simulations using the statistical software
package R [5] in the context of a Bayesian statistical
approach.
In order to compute "significantly" increased or decreased

areas from the posterior distribution, common reference
thresholds Δ01 ¼ Δ02 ¼ 1 for the SMRs were used [6]. The
cut-off probabilities ω 1 and ω 2 were set to values of either
0.8 or 0.975, i.e. either ω 1 ¼ ω 2 ¼ 0:8 or ω 1 ¼ ω 2 ¼ 0:975.
For the unstructured model and a cut-off probability

of 0.8 the q-values are plotted against the (assumed) true
SMR values in Figure 4a. Apart from a general inclin-
ation in favour of higher q-values, there is hardly any ap-
preciable difference compared to the results for the
crude SMR estimator (Figure 3). Increasing the cut-off
probability to 0.975 decreases q-values in the main
(Figure 4b). Some districts with small numbers of
expected cases constitute exceptions. This is due to the
definition of the q-value, which relates "significant" effect
reversing to all "significant" results. When the cut-off
probability is increased, the proportion of "significant"
results in any direction will generally decrease and the
proportion of "significantly" effect-reversed results is
expected to decrease even further. The latter is not al-
ways the case for some districts with small numbers of
expected cases.
Figure 5a and 5b show q-values of the BYM model. Local

smoothing obviously has an effect on the type III error.
Interestingly, this effect is concentrated in districts with
true SMR values that only marginally deviate from one.
A district with a rather small true SMR value of around

0.82 and q-values of 49% and 24%, as shown in Figure 5a
and 5b, is worthy of mention. It is the Viennese district of
Hietzing with 68 expected cases (Figure 6). The small true
SMR value for Hietzing is an exception when compared to
the SMR values of the surrounding districts. Obviously, the
local shrinkage component of the BYM model is now re-
sponsible for considerable effect reversing. Without local
shrinkage, effect reversing is of no relevance for Hietzing
(Figures 3, 4a, 4b).
The q-value is calculated from the type III error and

non-directional power. It is interesting to consider these
values for the BYM results of Hietzing. For a cut-off
probability of 0.8 (Figure 5a), the type III error and the
non-directional power are 13% and 26%, respectively.
These values decrease markedly when the cut-off prob-
ability increases to 0.975 (Figure 5b). Now the type III
error and the non-directional power are 0.18% and
0.73%, respectively.
Discussion
A type III error is due to random fluctuations in the first
place. Translating structural assumptions in regard of
the spatial dependency of data into a statistical model
can create bias which, among other aspects, will increase
the type III error problem. This has been demonstrated
for epidemiological maps by comparing a spatially un-
structured model (Figure 4a and 4b) with the BYM
model (Figure 5a and 5b), where a spatially structured
component was added to the latter.
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Figure 4 Austrian infant mortality example: The q-values of the unstructured model. Two different Bayes decision rules based on different
cut-off probabilities [80% (4a) and 97.5% (4b)] are used.
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For a given model, the type III error depends on the
unknown true SMR as well as the number of expected
cases (Figures 2, 3, 4, 5).
A true SMR close to one is generally associated with a

rather large type III error, but with minor relevance. The
further away the true SMR is from one, the more rele-
vant though less likely will be the occurrence of a type
III error. The dividing line between relevance and minor
relevance is hard to define, and the appraisal of a rele-
vant SMR deviation from one may vary from case to
case. Note that a similar issue arises in the field of
equivalence testing, where an equivalence range of (0.8,
1.25) was suggested for SMRs with reference to a trad-
itional choice in bioequivalence trials [7].
In general, the type III error will become smaller as the

number of expected cases increase. However, the relation-
ship between expected cases and a type III error can be-
come complex for the exact test of the crude SMR. For
true SMR values larger than one, there may be no type III
error for small numbers of expected cases due to the sheer
numerical impossibility of obtaining a statistically signifi-
cant result, and the functional dependence of a type III
error on the expected cases can be sawtooth-shaped, as is
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Figure 5 Austrian infant mortality example: The q-values of the BYM
probabilities [80% (5a) and 97.5% (5b)] are used.
frequently observed for power functions of exact tests in
general (e.g. see Figure 4 in [3]).
The spatially smoothed results of districts with small

numbers of expected cases are naturally susceptible to
domination by neighbours with larger numbers of expected
cases. This may even lead to reversal of the sign and, subse-
quently, to a bias-induced increase in type III error for the
respective district.
Although a type III error is usually small in size, it

should always be related to the probability of a signifi-
cant result, i.e. the non-directional power [3]. This so-
called q-value quantifies the risk for a type III error
when a significant result has been obtained. This risk
may be unacceptably high, especially for small numbers
of expected cases.
It is obvious that both the reference thresholds Δ01 and

Δ02, und the cut-off probabilities ω 1 and ω 2, may consider-
ably influence the results of the Bayes approaches [6]. For
the sake of simplicity Δ01 and Δ02 were set to one and ω 1

and ω 2 were varied together. As expected, a more liberal
decision rule with ω 1 ¼ ω 2 ¼ 0:8 leads to larger type III
errors and q-values than a more conservative one with
ω 1 ¼ ω 2 ¼ 0:975.
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Figure 6 Magnified segment of Figure 1, showing empirical Bayes-estimated infant mortality SMRs in the Austrian capital of Vienna
and its neighbouring districts. The Viennese district with a markedly low infant mortality in the lower left quadrant is Hietzing. The SMR and
the number of expected cases (in parentheses below) were numerically recorded for Hietzing and its neighbours.
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Bayesian approaches could be rendered even more flex-
ible by explicitly defining a loss function to address the vari-
ous consequences of the various types of error. This does
not only signify explicit weighting of the trade-off between
type I, type II, and type III error; it could also include
weighting of a type III error depending on its direction, be-
cause obtaining a favourable result for a spatial unit with a
truly hazardous health effect could be considered a more
serious issue than vice versa.

Conclusions
Summarising spatially structured public health data in epi-
demiological maps is common practice nowadays. Studying
and interpreting such maps is considered a fascinating endeav-
our by physicians, public health researchers, policymakers,
health authorities, journalists, and interested members of the
general public. All parties concerned should be aware of the
fact that type III errors can become a serious problem in epi-
demiological maps, especially for sparsely populated regions
and when spatial smoothing has been applied.
Methods
Infant mortality in Austria
Infant mortality refers to the survival status of live births
after the first year of the infant's life. In the present report
infant mortality is based on individual birth certificates,
which are linked with mortality records. This information
is routinely collected by the statistical office of Austria [8]
and is provided in an anonymized form for scientific re-
search, i.e. no formal vote of an ethics committee is
required. The statistical office of Austria [8] is an independ-
ent non-profit federal institution under public law, respon-
sible for data collection and scientific support within the
scope of federal statistics.
To calculate the infant mortality rate for a given calendar

year, the number of live births that die in the first year of
their lives in the respective calendar year is divided by num-
ber of live births in that calendar year. In Austria infant
mortality dropped sharply from about 25.9 % in 1970 to
11.2 % in 1985 and 3.9 % in 2010 [9,10]. Apart from the
temporal trend, a clear non-random spatial distribution was
observed from 1984 to 2002 [11]. In a regression model
based on individual data, infant mortality in the south-
eastern province of Styria was markedly lower than that in
the rest of Austria even after adjusting for strong predictors
like gestational age and sex. A further study based on a
shared component model and stratification of mortality by
cause of death confirmed these results [12].
Figure 1 illustrates the non-random spatial distribution

by showing globally shrunk sex-adjusted infant mortality
SMRs grouped into quartiles for the years 1984–2008 in
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the 121 administrative districts of Austria. Technically
speaking these are empirical Bayes estimates [13] which
have been computed using the Rapid Inquiry Facility (RIF,
version 3.1 [14]) and depicted with ArcMap [15]. Figure 1
also shows kernel estimates of the distributions of the
SMRs and expected cases of the 121 Austrian districts. The
label "true SMR" is derived from the use of these values as
known "true" values in the simulation study.

Epidemiological models
It is assumed that the study region of interest (here Austria)
can be partitioned into k spatial units (here k ¼ 121 dis-
tricts). The true but unknown SMR for the ith spatial unit
is denoted by θi , and the observed and expected cases are
denoted by Oi and Ei , respectively. The expected cases
E1 . . . Ek are considered constants, and are computed from
reference mortality rates for sociodemographic strata (here
overall Austrian male and female infant mortality rates
from 1984 to 2008) multiplied by the corresponding strata-
specific population sizes in the respective spatial units (here
district-wise numbers of male and female live births for
1984–2008).
A spatial modelling approach for the observed cases is

commonly based on a Poisson model [6]:

Oi � Poisson Eiθið Þ; i ¼ 1 . . . k:

Depending on the parameterisation of θ1 . . . θk and the
statistical approach in use (Frequentist, Bayesian), the
crude, BYM and unstructured approach can be distin-
guished among others. Note that the correct underlying
distribution is, strictly speaking, a binomial distribution
for which the Poisson distribution provides a reasonable
approximation as long as the event of interest is rare [6].

Crude SMR
In the crude case no spatial relationship is assumed, and
the SMRs of spatial units are independently modelled.
According to the classical Frequentist concept, SMRs
are regarded as unknown population parameters that
can be simply estimated by dividing observed cases by
expected ones. Common Frequentist tools for statistical
inference, such as p-values und confidence intervals can
be applied.
Specifically, the null hypothesis θi ¼ 1 is tested as fol-

lows: the actually observed number of cases in the ith

spatial unit is used to compute an exact Poisson ð1� αÞ
confidence interval for the mean event rate Eiθi [16,17].
Dividing the resulting lower and upper confidence limit
by Ei yields a ð1� αÞ confidence interval for θi . Note
that Ei is considered as a constant. The null hypothesis
θi ¼ 1 will be rejected now at the significance level α if
the ð1� αÞ confidence interval for θi does not cover the
null hypothesis value of one.
SMR based on the BYM model
The BYM model is a seminal Bayesian model for spatial
maps in health care [1,6]. The SMRs θ1 . . . θk are consid-
ered random variables with specific probability distribu-
tions. A spatial relationship can now be specified [6]:

log θið Þ ¼ δi þ νi; i ¼ 1 . . . k:

The BYM model is composed of the spatially unstruc-
tured random effect δi and the spatially structured random
effect νi . The unstructured component δi shrinks the esti-
mated SMRs to the global mean, independent of the spatial
configuration. By contrast, the neighbours of spatial unit i
influence mean and variance of the structured component
νi . Therefore νi accounts for spatial dependency and
shrinks the estimated SMRs to the local mean. In other
words, spatial smoothing of the BYM model is due to glo-
bal as well as local shrinkage.
The BYM model is estimated with the R-package

INLA (version 0.1) [5,18,19]. INLA stands for Integrated
Nested Laplace Approximation, and permits time-
efficient Bayesian inference in latent Gaussian models
with non-Gaussian response variables [18]. Default
INLA values for prior distributions of model hyperpara-
meters are used, which leads to rather non-informative
and flat prior distributions. The outcome of this
Bayesian approach is a bunch of posterior distributions,
i.e. one for each SMR of the spatial units involved.

SMR based on the unstructured model
Spatial smoothing of the unstructured model is due to
global shrinkage alone. Based on the specification of the
BYM model above, the unstructured model may be
defined as follows:

log θið Þ ¼ δi; i ¼ 1 . . . k:

The unstructured model is estimated using the R-
package INLA (version 0.1) with default values for prior
distribution of model hyperparameters as well.

The type III error
Let Δ denote a true but unknown population parameter.
It could be a mean, proportion, rate, difference of two
means, odds ratio, SMR, or the like.

Classical approach
A statistical test can be used to test the null hypothesis
H0 : Δ ¼ Δ0 at a prespecified significance level α . The
corresponding non-directional two-sided alternative
hypothesis is denoted by HA : Δ 6¼ Δ0.
It is difficult to imagine a practical research question

for the sole existence, but not the direction of an effect.
It stands to reason that the one-sided directional alterna-
tives HA1 : Δ > Δ0 and HA2 : Δ < Δ0 are clearly preferred
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to the non-directional alternative HA . Accordingly, the
null hypothesis H0 : Δ ¼ Δ0 has to be replaced by the
one-sided null hypotheses H01 : Δ≤Δ0 and H02 : Δ≥Δ0 ,
respectively [3,20,21].
Carrying out a two-sided test requires the computation

of a realisation t of a test statistic T , and its comparison
with the lower and upper critical values clow and cupp ,
respectively. These critical values depend on the selected
significance level α . If t=2 clow; cupp

� �
, then H0 will be

rejected for the non-directional hypothesis testing
approach; if t > cupp or t < clow, then H01 or H02 will be
rejected for the directional approach, respectively. Note
that, alternatively, a 1� αð Þ confidence interval for Δ
can be computed with lower and upper confidence
limits ℓlow and ℓupp , respectively. Now if Δ0=2½ℓlow; ℓupp� ,
then H0 will be rejected for the non-directional hypoth-
esis testing approach; if ℓlow > Δ0 or ℓupp < Δ0 then H01

or H02 will be rejected for the directional approach.
Statistical power definitions for a non-directional and a

directional test approach differ in respect of a minor but
crucial detail [3]. If the population value Δ ¼ Δ1 is consid-
ered, without loss of generality Δ1 > Δ0 , then the type II
error for the non-directional approach will be defined as
βu ¼ PrΔ1ðclow≤T≤cuppÞ and the non-directional power is
Mu ¼ PrΔ1ðT=2½clow; cupp�Þ ¼ 1� βu . The directional type II
error equals the non-directional one, βd ¼ PrΔ1ðclow
≤T≤cuppÞ ¼ βu . However, the directional power is Md ¼
PrΔ1ðT > cuppÞ. The residual part of Mu is the so-called type
III error, γd ¼ PrΔ1 T < clowð Þ ¼ 1� βd �Md ¼ Mu �Md .
If the population effect is Δ1 > Δ0 and a statistically sig-

nificant result is obtained, the probability for a type III error
is the so-called q -value, q ¼ PrΔ1ðT < clowjT=2
½clow; cupp�Þ ¼ Mu�Md

Mu
¼ γd

Mu
, which is the type III error pro-

portion of the non-directional power [3]. In the case of
Δ1 < Δ0 the definitions have to be appropriately adapted
and q ¼ PrΔ1ðT > cuppjT=2½clow; cupp�Þ . The q-value should
be small, e.g. q≤0:01, or better still q≤0:001 [3].

Bayesian approach
The type III error has been considered so far in the frame-
work of the classical (Frequentist) approach to statistics. A
Bayesian approach would yield a posterior distribution
f ðΔjdataÞ for the unknown parameter Δ. The posterior dis-
tribution may be used for decision-making by computing
ProbðΔ > Δ01Þ from it [6]. Here Δ01 is known as the refer-
ence threshold and is not necessarily equal to the null hy-
pothesis value Δ0 from above. Now choose a cut-off
probability ω 1 , e.g. ω 1 ¼ 0:8 or ω 1 ¼ 0:975, and classify Δ
as "significantly" increased if ProbðΔ > Δ01Þ > ω 1 . A two-
sided decision approach requires the corresponding definition
of a "significant" decrease, that is, ProbðΔ < Δ02Þ > ω2 .
Note that ProbðΔ > Δ01Þ > ω 1 and ProbðΔ < Δ02Þ > ω2

are known as decision rules.
Computation of the directional and non-directional
power, the type III error and the q-value is now straightfor-
ward. Here the meaning is obvious from the context. How-
ever, the term "significant" is not common in Bayesian
statistics. Therefore, for the sake of clarity "significant" is
mentioned in quotation marks in connection with a Bayes-
ian result throughout the present report.

Simulation study
Directional power, type III error and the q-value of the
two random effect models were numerically approxi-
mated by computer simulations using the R-package
INLA (version 0.1) [5,18,19]. Austrian infant mortality
data from 1984 to 2008 were used for exemplification.
The empirical Bayes estimates [13] of the SMR values
shown in Figure 1 were assumed to be the known true
population values θi , i ¼ 1 . . . 121 ("true SMRs"). It
should be noted that none of the θi's equals one.
Expected cases Ei for each of the 121 districts were

calculated as the sum of expected male and female cases.
The expected male cases were obtained by multiplying
the number of male live births in the ith district for the
years 1984–2008 by the overall Austrian male infant
mortality rate for 1984–2008. The expected female cases
were obtained by analogy.
Based on the expected cases Ei and the "true SMR"

values θi , realisations of the observed cases Oi , i ¼
1 . . . 121, were derived from a multinomial distribution,
as described by Richardson et al. in appendix A of their
report [6]. This procedure ensured that, for each of the
100,000 iterations of the simulation study, the sum of
the generated observed cases remained at the same value
of 13,294, which is the total number of deceased infants
in Austria from 1984 to 2008. Richardson et al. [6] note
that this procedure changes the "true SMRs" by a con-
stant which is 1.00026 in this instance. The issue was
ignored in the following as the effect is very small and,
in particular, the situation θi < 1 but 1:00026� θi≥1
never occurred for i ¼ 1 . . . 121.
The expected cases and the simulated realisations of

the observed cases were used to estimate the unstruc-
tured and the structured random effect model. Each of
these Bayesian models yielded posterior distributions for
the 121 district-wise SMR values. The type III error for
a district was obtained by determining how often a
“significant” result on the opposite side of the districts'
true SMR value was observed for each of the 100,000
iterations of the simulation study. Dividing the type III
error by the number of overall “significant” results (i.e.
the non-directional power) for the district yielded the
districts' q-value.
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