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Abstract

Background: Socioeconomic factors are increasingly recognised as related to health inequalities in Germany and
are also identified as important contributing factors for an increased risk of acquiring infections. The aim of the
present study was to describe in an ecological analysis the impact of different social factors on the risk of acquiring
infectious diseases in an urban setting. The specific outcome of interest was the distribution of Rotavirus infections,
which are a leading cause of acute gastroenteritis among infants and also a burden in the elderly in Germany. The
results may help to generate more specific hypothesis for infectious disease transmission.

Methods: We analysed the spatial distribution of hospitalized patients with Rotavirus infections in Berlin, Germany.
The association between the small area incidence and different socio-demographic and economic variables was
investigated in order to identify spatial relations and risk factors. Our spatial analysis included 447 neighbourhood
areas of similar population size in the city of Berlin. We included all laboratory-confirmed cases of patients
hospitalized due to Rotavirus infections and notified between 01/01/2007 and 31/12/2009. We excluded
travel-associated and nosocomial infections. A spatial Bayesian Poisson regression model was used for the statistical
analysis of incidences at neighbourhood level in relation to socio-demographic variables.

Results: Altogether, 2,370 patients fulfilled the case definition. The disease mapping indicates a number of urban
quarters to be highly affected by the disease. In the multivariable spatial regression model, two risk factors were
identified for infants (<4 year olds): Rotavirus incidence increased by 4.95% for each additional percent of
unemployed inhabitants in the neighbourhood (95% credibility interval (CI): 3.10%-6.74%) and by 0.53% for each
additional percent of children attending day care in the neighbourhood (95% CI: 0.00%-1.06%). We found no
evidence for an association with the proportion of foreign residents, population density, the residential quality of
accommodations and resident changes in the neighbourhood.

Conclusions: Neighbourhoods with a high unemployment rate and high day care attendance rate appear to be
particularly affected by Rotavirus in the population of Berlin. Public health promotion programs should be
developed for the affected areas. Due to the ecological study-design, risk pathways on an individual patient level
remain to be elucidated.
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Background
Rotavirus epidemiology
Rotavirus infections can be repeatedly acquired in per-
sons from birth to old age, although infants in their first
years are mostly affected [1]. The virus is highly infec-
tious, and it can be assumed that after one year about 2/
3 of the children have experienced at least one Rotavirus
infection and 1/3 a second Rotavirus infection. After two
years almost all children have undergone a Rotavirus in-
fection, 2/3 a second and 1/3 a third Rotavirus infection
[2]. The appearance of most of these infections is either
asymptomatic or an episode of mild enteric symptoms,
which an infected person may not notice. Despite this, a
large number of infections lead to severe disease courses
with diarrhoea, need for hospitalization and, in rare
cases death [3]. There are considerable differences, how-
ever, in disease severity between primary and subsequent
infections [2].
On a population-level Rotavirus infections are the

leading cause of acute gastroenteritis among infants and
young children in Germany [4], in Europe [5] and world-
wide [6]. The global disease burden of Rotavirus infec-
tions for the health care systems can be regarded as high
in developing countries, as well as in countries with
more advanced economies. The overall worldwide an-
nual mortality of Rotavirus infection is estimated ap-
proximately 440,000 deaths, mostly in infants. Rotavirus
associated deaths occur almost exclusively in developing
countries [7].
Family structures and social facilities such as day care

centres for infants as well as nursing homes for the eld-
erly can facilitate the transmission of the virus, and re-
peatedly lead to Rotavirus outbreaks. The community
spread also seems to be influenced by the climate, lead-
ing to a characteristic seasonality with peaks in spring-
time [8,9]. In addition, nosocomial Rotavirus infections
are also frequent [10].
In 2006, two Rotavirus vaccines (Rotarix and RotaTeq)

were licensed and introduced in Germany [11,12].
Although currently under consideration by the German
Standing Committee on Vaccination, the vaccines are
not yet integrated in the routine childhood immunization
schedule in Germany. Given the potential for a change in
community spread due to expected differences in vaccine
coverage in the population, there may thus be a preva-
lence of groups at special risk that are not currently in
focus, but should be. Further understanding of risk fac-
tors for Rotavirus distribution on a population level is
therefore needed in order to guide future decisions.

Social environments and health outcomes
The importance of links between the social environment
and infectious diseases has long been of focus in the
developing world, since these regions are burdened with
issues that increase the burden of infectious diseases,
such as poverty and suboptimal living conditions. Al-
though less pronounced, issues like income inequality
are important and relevant in Europe as well as in other
advanced economic regions [13]. A part of these groups
contain individuals from a marginalized and segregated
subpopulation that may not be fully integrated into the
general population. In Germany, where poverty and poor
housing conditions are also important issues, health in-
equalities are on the rise due to changes in, e.g., econ-
omy and migration [14,15]. Recent position papers have
urged the importance of identifying vulnerable groups
on an ecological level [16] complementing strictly
individual-based epidemiology on risk factors with
population-based approaches, where socioeconomic fac-
tors are linked to health outcomes on a spatial aggregate
level becomes important [17,18].
Due to its eventful history Berlin is a city with highly

diverse communities in distinctive neighbourhoods,
which makes it an ideal prototype to study these influ-
ences on a spatial level. In the future these neighbour-
hoods could form a new level of surveillance, mitigation
and containment of infectious diseases in Berlin and
elsewhere.
While people often seek out their place of residence

based on their social and financial (socioeconomic) sta-
tus, the social characteristics in those places of residence
might reflexively influence people’s social status [19].
These two forces – seeking out and being influenced by
– socioeconomic status might contribute to the forma-
tion of distinct living environments, which reflect the so-
cial diversity of societies especially in metropolitan areas.
This can have an impact on the transmission of infec-
tious diseases, which was shown for North American cit-
ies and which might also be true for European cities
[20].

Spatial regression analysis of surveillance data
There has been some recent work in the literature that
uses mathematical modeling to describe the dynamics of
rotavirus at the population level [21]. Models are cali-
brated using time series data at the national or state
level. Since the effect of socio-demographic variables is
expected to happen at a much more detailed spatial
scale, a more spatial oriented analysis approach is
needed for such investigation. However, a good spatial
resolution of health data is often in conflict with data
privacy issues and small scale spatial analysis of infec-
tious disease data is accordingly underdeveloped in prac-
tice. Another hindrance is that advanced statistical
methodology is needed in order to properly take the
spatial nature of such data into account: if one falsely
relies on the common statistical assumption of observa-
tions being independent and identically distributed, one
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is overrating the value of information in the data and
might obtain wrong conclusions in statistical significance
tests. Thus, statistical methodology and corresponding
software implementations should go beyond the inde-
pendence assumption for such data. Spatial Bayesian re-
gression models are the most common analysis tool in
such situations [22]. These models have been success-
fully applied, e.g. for cancer incidence data [23], mortal-
ity data [24], but also for worldwide malaria incidence
[25], nationwide surveillance data on Shiga toxin-
producing Escherichia coli in Germany [26] and tubercu-
losis in urban setting in Brazil [27]. Recently, the inte-
grated nested Laplace approximation (INLA) approach
together with its implementation has provided a new
and efficient method to perform statistical inference for
spatial regression models including Gaussian random
effects [28]. For example, the method has already been
successfully applied for infectious disease surveillance
data in veterinary medicine in Switzerland [29,30]. We
employ this technique for the analysis of Rotavirus inci-
dence – see methods section for details. Thus, our ana-
lysis covers all aspects of small area infectious disease
epidemiology while simultaneously employing advanced
statistical methods for the analysis.
Objective
The objective of this study was to describe the small-
area spatial distribution of the incidence of hospitalized
Rotavirus cases in Berlin. A further aim was to explain
parts of the spatial distribution pattern using socio-
economic and socio-demographic variables.
Results
Descriptive analysis
More than one third (36.9%) of the analysed hospitalized
Rotavirus cases were in the age group <1 year with an
average yearly incidence of 969 in 100,000 population.
There was a decreasing trend of incidence with
increased age until adulthood with 2 cases in 100,000
(Table 1). This trend was reversed in the elderly
(≥60 years) with an incidence of 14 cases in 100,000.
The age group of ≥60 years shows the longest median
duration of hospitalization. However, the size of the
Interquartile range (IQR) as well as application of a
Kruskal–Wallis rank test (p = 0.07) indicates that there is
only weak evidence for differences between the lengths
of hospitalization between the age groups. Overall, the
sex distribution of cases was almost even. Furthermore,
15.3% of the hospitalized cases were reported as part of
a larger outbreak, although there were large differences
between age groups. Altogether, one fatal outcome in an
infant less than one year old was reported.
Disease mapping
Visually, the age standardized absolute excess of hospita-
lized Rotavirus cases in Berlin were spatially unevenly
distributed and show some degree of spatial association
(Figure 1). There was a concentration of neighbourhoods
with high values in the southeast and most parts of the
central east and northeast. Here, most spatial units were
in the two upper quintiles. Some neighbourhoods in the
northwest and southwest also show high disease burden
as well as a much more heterogeneous distribution.
Most neighbourhoods in the central parts of Berlin were
in the lowest quintile.

Regression analyses
Regression analysis were performed separately for infant
(<4 years) and elderly (≥60 years) as these are the two
age groups particularly at risk. The results of the univari-
able spatial regression analyses of the infant model
(<4 years) showed that, as expected, the age category-
variable exhibits the by far lowest excess risk ratios
(Table 2). Ecological variables where the credibility inter-
vals for the relative risk did not contain the one were:
unemployment and day care attendance rate. Low influ-
ence was detected for the variables migration volume,
population density, residential quality and foreign resi-
dents. This multivariable model identified two risks for
the occurrence of hospitalized Rotavirus cases: incidence
increased by 4.95% for each percent increase in un-
employed inhabitants in the neighbourhood (95% cred-
ibility interval (CI): 3.10%-6.74%). Furthermore,
incidence increased by 0.53% for each percent increase
of children attending day care (95% CI: 0.00%-1.06%).
The other variables in the multivariable model had
effects where the credibility intervals for the relative risk
contained the one, i.e. given the available data the influ-
ence of these variables cannot be distinguished from
chance effects when adjusting for all other variables.
The results for the univariable and multivariable re-

gression in elderly (≥60 years) are shown in Table 3. The
only confirmed risk factor was population density of the
neighbourhoods. In contrast the proportion of infants
(<4 years) in the population of the neighbourhoods was
not a risk factor for hospitalized Rotavirus infections in
the elderly. However, it has to be noted that for the eld-
erly, 64% of the neighbourhoods have zero cases, 21%
have one case and the remaining have up to a maximum
of 19 cases. As a consequence, results are more variable
than in the infant model.

Analysis of spatial effects
The plotting of the spatial effects of the neighbourhoods
reveals residual variation in the relative risk after
accounting for measured covariates. Figure 2 shows the
combination of structured and unstructured spatial



Table 1 Age distribution of hospitalized Rotavirus cases in Berlin 2007-2009

Age group Number of cases
(percent of all cases)

Average yearly incidence
[95% CIa] (in 100,000)

Median length of
hospitalization [IQRb] (days)

Male gender (%) Part of an
outbreak (%)

<1 year 872 (36.9) 969 [862–1,087] 4 [2–5] 53.7 13.1

1 - <2 years 639 (27.0) 668 [582–763] 3 [2–4] 55.6 15.2

2 - <3 years 204 (8.6) 219 [170–278] 3 [2–4] 56.9 20.6

3 - <4 years 72 (3.0) 82 [53–122] 3 [2–4] 44.6 19.4

4 - <6 years 73 (3.0) 42 [27–63] 3 [2–4] 50.6 21.9

6 - < 20 years 64 (2.7) 6 [3–9] 3 [2–5] 54.7 9.4

20 - < 60 years 98 (4.1) 2 [1–2] 4 [2–5] 50.0 6.1

≥60 years 348 (14.7) 14 [12–17] 5 [4–7] 33.9 18.7

total 2,370 (100) 23 [22–25] 4 [2–5] 51.1 15.3
a = confidence interval; b = Interquartile range.
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effects on a relative risk scale, i.e. exp(ψi+ υi). Neighbour-
hoods with negative residual values are in central and
western parts of Berlin. The areas with negative residual
values cover a crescent-shaped area around the city
centre to the north, east and south. These could be
caused by missing explanatory variables, which exhibit
their own spatial structure, i.e. mean education level in
the neighbourhood or can be caused by endogenous
effects on the incidence of hospitalized Rotavirus cases
within the city of Berlin, e.g. due to different diagnostic
procedures in hospitals. Alternatively this reflects
regional differences in disease prevalence (i.e.: small
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Figure 1 Spatial distribution of hospitalized cases of Rotavirus infecti
disease excess in quintiles.
pockets of exceptional higher and lower vaccination
coverage, respectively). A plot of the unstructured spatial
heterogeneity due to the 12 health districts, i.e. exp(αj(i)),
in the infant model is shown in Figure 3. The results can
be explained by health-district specific reporting arte-
facts or different regional awareness.

Discussion
Key findings
We identified associations between socioeconomic fac-
tors as risk factors and the incidence of severe Rotavirus
infections leading to hospitalization in an urban setting
Disease excess:

[−18.79,−2.42)
[−2.42,−1.02)
[−1.02,0.01)
[0.01,1.90)
[1.90,22.80]
Unpopulated areas

ons in 447 neighbourhoods in Berlin. Age- standardized absolute



Table 2 Estimation results of univariable and multivariable analysis (age group from <1 to <4 years)

Explanatory variable Univariable analysis Multivariable analysis

Excess risk ratio (95% CI) DIC (rank) Excess risk ratio (95% CI) DIC

Unemploymenta 3.94 (2.37, 5.49) 3623.9 (1) 4.95 (3.10, 6.74) 3627.4

Migration volumea 0.56 (−0.30, 1.42) 3637.2 (4) −0.04 (−1.01, 0.93)

Foreign residentsa 0.62 (−0.31, 1.56) 3635.8 (2) −0.25 (−1.36, 0.88)

Population densitya 0.04 (−0.04, 0.12) 3636.4 (3) −0.00 (−0.09, 0.08)

Basic residential qualitya −0.02 (−0.20, 0.15) 3638.7 (7) −0.14 (−0.32, 0.04)

Day care attendanceb 0.25 (0.26, 0.77) 3637.6 (6) 0.53 (0.00, 1.06)

<1 yeara referencec 3637.3 (5) referenced

1 - <2 yearsa −30.89 (−37.72, -23.60) −43.74 (−56.04, -29.19)

2 - <3 yearsa −77.34 (−80.64, -73.74) −84.10 (−89.65, -76.66)

3 - <4 yearsa −91.60 (−93.49, -89.46) −94.50 (−96.84, -91.12)

Fixed-effect of explanatory variables on hospitalized Rotavirus infections (infant model) in Berlin. Excess risk ratio = (Relative risk-1)�100%; 95% CI: 95% Bayesian
credibility interval, a = in percent, bin percent stratified for the four age groups cTo assess the relevance of the excess risk ratios: the baseline three-year-incidence
in the model with just age group as covariate is estimated to be 266/10,000 inhabitants (i.e. posterior mean of the age group of <1 year olds), dPosterior mean
three-year-incidence of the age group of <1 year olds is 189/10,0000 inhabitants.
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in Germany. In addition, it is the first time that socio-
demographic and socio-economic factors are analysed to
explain variations of infectious diseases in Berlin at such
a detailed spatial scale. This study suggests that socioe-
conomic risk factors may affect the distribution of infec-
tious diseases in Berlin, and that spatially detailed
information about infectious disease cases can provide
more specific information about these effects.
Both the occurrence and perhaps the severity of dis-

ease could also be explained by spatial variations in
vaccination coverage. WHO recommends that a surveil-
lance system for severe Rotavirus infections should be
in place to monitor the effect of universal childhood
rotavirus vaccination once implemented [31]. The Ger-
man surveillance system is recognized as being able to
monitor the impact of the vaccines [4]. The expected
changes in burden of disease could be monitored more
specifically if information on socioeconomic determi-
nants for specific areas and subgroups would be assig-
nable and accessible for analysis. Unfortunately, data on
vaccination coverage with the required spatial precision
as in our study is not available. In our study,
Table 3 Estimation results of univariable and multivariable an

Explanatory variable Univariable analysis

Excess risk ratio (95% CI)

Infantsa 0.87 (−15.15, 18.70)

Unemploymenta 2.00 (−2.65, 6.78)

Migration volumea 1.12 (−1.13, 3.29)

Foreign residentsa −0.95 (−3.45, -1.57)

Population densitya −0.25 (−0.49, -0.01)

Basic residential qualitya 0.02 (−0.42, 0.45)

Fixed effects of explanatory variables for hospitalized Rotavirus infections (elderly m
credibility interval, ain percent.
unemployment is identified as a strong risk factor for
disease. The investigation of the underlying causality of
this socioeconomic factor requires the setup of appro-
priate analytical strategies involving multiple interre-
lated variables [17,18]. These include proximal biologic
precursors (e.g. nutrition) and more distal and context-
ual risk factors like behaviour or unemployment as psy-
chological burden. Unemployment in families is related
to child poverty and maybe connected to poor access
to medical care (i.e. Rotavirus vaccination is not gener-
ally covered by health insurance programs). Alterna-
tively, unemployment could act as a cofactor for
educational background or different risk behaviour
regarding hygiene and oral rehydration.

Limitations and strength
The interpretation of the results is limited by the eco-
logical design of the study. The statistical association of
unemployment can be explained by the influence of the
social situation of the neighbourhoods on the frequency
and severity of the disease in all children in the neighbour-
hoods with high levels of unemployment. This would be a
alysis (age group from 60 years and above)

Multivariable analysis

DIC (rank) Excess risk ratio (95% CI) DIC

844.58 (6) −2.56 (−20.30, 17.69) 845.8

843.65 (3) 4.59 (−1.18, 10.56)

844.10 (4) 1.86 (−0.93, 4.45)

845.24 (7) −1.83 (−4.92, 1.27)

842.92 (1) −0.30 (−0.56, -0.04)

844.51 (5) −0.01 (−0.49, 0.46)

odel) in Berlin. Excess risk ratio = (Relative risk-1)�100%; 95% CI: 95% Bayesian
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[0.69,0.87)
[0.87,0.93)
[0.93,1.04)
[1.04,1.15)
[1.15,1.64]
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Figure 2 Relative risk due to combined structured spatial effects ψi and unstructured spatial heterogeneity υi from the final
multivariable regression model in 447 neighbourhoods in Berlin, Germany. In quintiles.
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true ecological effect. Alternatively, the effect on the fre-
quency and severity of the disease was observed in the
underprivileged sub-group only. Furthermore, it is con-
ceivable that the likelihood of hospitalization is increased
in children of families burdened by unemployment, due to
differential access to hospital services or, in cases of
gastroenteritis, to different routines for referral by general
practitioners. Although an analysis with non-hospitalized
Figure 3 Relative risk due to unstructured spatial heterogeneity αj(i) i
Berlin, Germany.
Rotavirus cases included shows similar associations (data
not shown). Similarly, the association of day care attend-
ance rate can be explained as an increased risk in all chil-
dren attending day care of the respective neighbourhood
or only fraction attending day care in the respective
neighbourhood.
Altogether, the issue of bias remains a major limitation

of any ecological analysis such as our [32]. As a
Health district effects:

[0.58,0.83)
[0.83,0.96)
[0.96,1.14)
[1.14,1.20)
[1.20,1.32]
Unpopulated areas

n the final multivariable regression model in 12 health districts in
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consequence, the results of our analysis should be inter-
preted with care – not only because of possible eco-
logical bias, but also due to possible confounding due to
location, i.e. changes in covariate effects due to the
addition of a location based structured random variable
in the model [33].
However, despite its limitations ecological analyses

remain an important hypothesis generating tool where
already readily available registry data can be used to pro-
vide first answers to questions of public health import-
ance. A confirmation of the results by an individual-level
based analyses, e.g. through a case–control study, would
be the natural next step.
Reporting of laboratory-notified Rotavirus infections

in Berlin is mandatory with continuous case definition;
however, eligibility for testing is not defined and the-
refore case ascertainment could vary inside the study
area. Under the German reimbursement system for
hospitalization charges, hospitals receive higher pay-
ments for cases of acute gastrointestinal enteritis with a
confirmed infectious agent and therefore have a high
incentive for the commission of Rotavirus diagnostic.
Further steps in quantifying possible consequences of
reporting artefacts could be to perform a joint model-
ling together with another gastrointestinal disease such
as, e.g. Norovirus, as done in Held et al. [34]. However,
we believe that our analysis restricted to hospitalized
cases only provides results that reduce ascertainment
bias.
The results of our study emphasize the relevance of

spatial regression models including spatially structured
effects and unstructured spatial heterogeneity for the de-
tection of risk factors.
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Figure 4 Distribution of the proportion of hospitalized Rotavirus infe
Berlin, Germany. Median: 26.3% and IQR: 43.8%-57.9%.
Conclusions
Appropriate targeting of public health promotion pro-
grams could be achieved by combining the criteria of
neighbourhood with the risk groups identified in this
study. The influence of the day care attendance rate
indicates that high requirements for hygiene in child
day-care facilities should be regularly checked and rou-
tinely maintained. Due to different policies in Germany,
the attendance rates for day care centres of infants are
unequal. Since 2008, a federal law supports the expan-
sion of day care centres, and realizes the legal claim of
all parents throughout Germany to a place their child in
a day care centre in 2013 [35]. Thus, this difference is of
future relevance for public health services in regions in
West-Berlin and Western Germany with expected in-
crease of children attending day care in the next years.
Subsequent small-area studies of Rotavirus or other in-

fectious diseases could provide further insight into
spatial effects on disease risk. Individual based risk fac-
tors have to be refined and integrated in the future.

Methods
Case data
Rotavirus cases were notified by laboratories to the 12
local public health offices in Berlin, anonymised and
transmitted via the State Office of Health and Social
Affairs, Berlin, to the Robert Koch Institute [36]. We
restricted our analysis to patients who were hospitalized
in order to avoid case ascertainment bias, since eligibility
for a laboratory diagnostic test is unclear in outpatients
and may have led to differences in notification rates in
Berlin neighbourhoods (Figure 4). The case definition
included all clinical and laboratory-confirmed patients
60 80 100

 of all Rotavirus patients (%)

ctions to all notified Rotavirus infection in 447 neighbourhoods
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with Rotavirus infection, which were hospitalized due to
Rotavirus between 01 January 2007 and 31 December
2009 with residence in Berlin (n = 3270). Patients having
no date or a date of hospitalization prior to the date of
onset of illness were excluded as definite or probable
nosocomial infections (n = 846). Furthermore, we
excluded 14 travel-related patients as well as 40 with un-
known residence. All in all, 2370 hospitalized Rotavirus
cases were analysed in this study. Transmitted data
included information on age, sex, laboratory results,
onset of illness, start and end date of hospitalization.

Geo-referencing and disease mapping
Case location is given in a geographical reference system
used for the urban infrastructure in Berlin [37,38]. This
consists of 447 spatial units with a median population of
6631 inhabitants per unit (Interquartile range (IQR):
3960 – 9974). We refer to these units as neighbourhoods.
Descriptions of the polygons for mapping were obtained
from the Statistical Bureau Berlin-Brandenburg. The Rota-
virus cases were geo-referenced to their neighbourhoods
at the local health departments according to their home
addresses. We estimated the expected number of cases ei
in each neighbourhood i that would have been observed if
the incidence of disease had had the same age structure as
the incidence in the whole study area:

ei ¼
X
a

X
i

yi;a
X
i

ni;a
� ni;a; i ¼ 1; . . . ; 447;

where yi,a is the observed number of cases of the disease
in the age strata a of the i’th neighbourhood and ni,a is the
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Figure 5 Distribution of hospitalized Rotavirus infections in the 447 n
number of residents in the strata a of the i’th neighbour-
hood. In our case, a denotes the 13 age groups (<1 year,
1- < 2 years, 2- < 3 years, 3- < 4 years, 4- < 6 years, 6-
< 10 years, 10- < 20 years, 20- < 30 years, 30- < 40 years,
40- < 50 years, 50- < 60 years, 60- < 70 years, ≥70 years).
For the comparison of expected and observed counts we
produced values for the absolute disease excess (zi) in a
neighbourhood i as zi = yi-ei, see Figure 1. We choose to
illustrate absolute excess in this descriptive figure, since
absolute excess immediately contains information about
the relevance of the differences (as opposite to relative
risk), which is favourable when communicating results on
a purely descriptive basis. Note that the subsequent mod-
elling happens on a relative risk scale.
Spatial Bayesian Poisson regression model
When mapping the incidence of a rare and non-
infectious disease, a common model is the spatial Pois-
son model, where the number of disease cases per
spatial unit is assumed to follow a Poisson distribution
with expectation λi. The unadjusted number of hospita-
lized Rotavirus cases in our study, however, exhibited
extra-Poisson distribution and had an asymmetrical stat-
istical distribution (Figure 5). One of the explanations
for this effect is the infectious character of rotavirus
which can cause clustering. To address this infectious
disease aspect we include a spatial unstructured random
effect ψieN 0; σ2ð Þ to allow for extra-Poisson variation
while staying within a Poisson likelihood framework.
Furthermore, a spatial structured effect υi was incorpo-
rated for each of the 447 neighbourhoods using a Gauss-
ian Markov random field in order to address spatial
dependence between the neighbourhoods [39]. Finally, a
15 20 25 30

alized Rotavirus cases

eighbourhoods in Berlin, Germany.
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hierarchical unstructured random effect was included
for each of the 12 health districts that each neighbour-
hood i was located in, i.e.αj ið ÞeN 0; τ2ð Þ , which accounts
for reporting artefacts at local health district level and
thus also allows for a hypothesized east–west difference
originating from pre-reunification times.
Independent variables include factors, which were pre-

sumably related to spatial variation of disease risk in
Berlin and are incorporated as fixed effects inside the
model. A full description of the explanatory variables is
given in table 4 and maps illustrating their spatial distri-
bution in the study area are shown in figure 6.
Altogether, the total number of cases for age group a

in neighbourhood i is in our spatial regression model
given by:

yi;aePo λi;a
� �

;

ηi;a ¼ log λi;a
� � ¼ log ni;a

� �þ μþ υi þ αj ið Þ þ ψi þ z
0
iβ

Here, ni,a denotes the population in neighbourhood i
in age group a and zi denotes the vector of explanatory
variables which contains the age groups as factor
Table 4 Summary statistics of variables in 447 neighbourhoo

Variable Median
value

Interquartile
range

Full definition

Unemployment1 8 6-12 Proportion of unempl
Source: Senate of Berl
is highly correlated to
of the inhabitants in t

Migration volume1 26 21-31 Sum of all moving to
year 2008. Key variable
(i.e. gentrification). Sou
Query date: 31 Decem

Foreign residents1 10 6-17 Proportion of foreign
for Urban Developme

Population density2 97 44-173 Population density de
neighbourhood. This i
the respective neighb
Query date: 31 Decem

Basic residential
quality1

27 0-96 Basic residential qualit
all three quality classe
Department for Health

Infants1 3 8-4 Proportion of inhabita
in percent.

Day care
attendance
(<1 year)1

1 0-3 Proportion of children
1 - <2 years; 2 - <3 ye
Science and Research.

Day care
attendance
(1 - <2 years)1

39 29-55

Day care
attendance
(2 - <3 years)1

73 62-83

Day care
attendance
(3 - <4 years)1

89 82-99

1 percent, 2 number of inhabitants, 3 number of cases.
variable. The intercept μ was the estimated value when
all predictors were zero (continuous covariates) or at
their baseline values (discrete covariates), respectively.
For the Bayesian inference, we took the integrated
nested Laplace approximation (INLA) approach as
introduced by [28] and implemented in the R package
R-INLA [40,41]. Altogether, our statistical approach
resembles the one used before by Schrödle et al.
[29,30]. Deviance information criterion (DIC) [42] was
used as a measure for comparing Bayesian models,
since it provides a trade-off between model fit and
model complexity. Thus, we searched for the model
with the lowest DIC.
Because we assumed different risk profiles for infants

and elderly, the regression analysis was performed in
two separate models: One for infants, i.e. the <4 year old
containing four age groups (<1, 1- < 2, 2- < 3 and 3-
< 4 years) and one for elderly, i.e. the ≥60-years-old con-
taining a single age group. In the infant model the age
group specific population was included as an offset vari-
able to control for the strong effect of age in the infant
model. Following the suggestions in Rothman et al. [43]
ds in Berlin

oyed persons in percent of inhabitants between 15 and 65 years of age.
in's Department for Urban Development. The unemployment rate
other job market related variables. Key variable for the economic status
he respective neighbourhood. Query date: 31 December, 2008

and away from the neighbourhood in percent of inhabitants in the
for the dynamic and extent of environmental changes in the area
rce: Senate of Berlin's Department for Urban Development.
ber, 2008

residents to all inhabitants. Source: Senate of Berlin's Department
nt. Query date: 31 December, 2008

fined as number of inhabitants per hectare settlement area of the
s a possible proxy for the average frequency of social contact in
ourhood. Source: Senate of Berlin's Department for Urban Development.
ber, 2008

y defined as the proportion of the lowest residential quality class on
s of the Berlin rent index in the year 2007. Source: Senate of Berlin's
, Environment and Consumer Protection

nts < 4 years in relation to all inhabitants in the neighbourhoods

attending day care centres to all children in the age groups: <1 year;
ars and 3 - <4 years. Source: Senate of Berlin's Department for Education,
Query date: 31 December, 2009
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Figure 6 (See legend on next page.)
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Figure 6 Spatial distribution of the six covariates in the 447 neighbourhoods of Berlin. For daycare attendance the proportion of <4 year
olds which attend daycare is mapped. Note that in the regression modeling daycare attendance enters as the proportion of kids in the
corresponding age group (<1, 1- < 2, 2- < 3, 3- < 4).
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we decided to start the investigation by performing a
univariable spatial modelling of all potential risk factors
adjusting only for the strong effect of age using the
above model. The actual underlying multiple-inference
question of identifying relevant risk factors while adjust-
ing for the joint conglomerate of risk factors was
addressed by fitting a single multivariable model con-
taining all potential risk factors. Thus, we abandon any
type of step-wise model selection, which is known to
have low efficiency and poor power. Based on DIC, a
health-district effect was only included in the infant
model.
We used Bayesian inference and report the resulting

excess risk ratios as point estimate (posterior mean) and
95% credibility intervals as a quantification of parameter
uncertainty. Residual relative risk of the combined struc-
tured and unstructured spatial effects, i.e. the posterior
median of exp(ψi + υi), and of the 12 health districts, i.e.
exp(αj(i)), for the final multivariable regression model of
the infants <4 years were mapped. In a sensitivity ana-
lysis (not-shown), possible non-linearity of the covariates
was investigated; see Natário and Knorr-Held [44] for a
discussion of the method and the consequences of ignor-
ing non-linearity. However, our analyses showed that lin-
ear effects of the covariates were adequate for our
purposes.

All computations and map visualizations were done in
R v. 2.15.0 [41].
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