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Abstract

Background: Health studies and mHealth applications are increasingly resorting to tracking technologies such as
Global Positioning Systems (GPS) to study the relation between mobility, exposures, and health. GPS tracking
generates large sets of geographic data that need to be transformed to be useful for health research. This paper
proposes a method to test the performance of activity place detection algorithms, and compares the performance
of a novel kernel-based algorithm with a more traditional time-distance cluster detection method.

Methods: A set of 750 artificial GPS tracks containing three stops each were generated, with various levels of noise..
A total of 9,000 tracks were processed to measure the algorithms’ capacity to detect stop locations and estimate
stop durations, with varying GPS noise and algorithm parameters.

Results: The proposed kernel-based algorithm outperformed the traditional algorithm on most criteria associated
to activity place detection, and offered a stronger resilience to GPS noise, managing to detect up to 92.3% of actual
stops, and estimating stop duration within 5% error margins at all tested noise levels.

Conclusions: Capacity to detect activity locations is an important feature in a context of increasing use of GPS
devices in health and place research. While further testing with real-life tracks is recommended, testing algorithms’
performance with artificial track sets for which characteristics are controlled is useful. The proposed novel algorithm
outperformed the traditional algorithm under these conditions.

Keywords: Global Positioning System (GPS), Activity location detection, Kernel-based algorithm, Neighbourhood
effects, MHealth, Activity space
Introduction
Studies on the influence of contextual effects on health
are increasingly resorting to tracking technologies such
as Global Positioning Systems (GPS) to monitor mobil-
ity, which opens possibilities to continuously evaluate
exposures to environmental conditions. Yet, GPS track-
ing generates a huge amount of geographic data which is
tricky to handle in its raw form, and requires extraction
of activity locations, and, possibly trips between activity
locations, to be useful for health and place research.
Various activity location algorithms have been proposed,
but few metrics have been proposed to evaluate their
performance. This paper has two aims: evaluate the
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reproduction in any medium, provided the or
performance of a novel kernel-based activity location
detection algorithm, in comparison to a more classical
detection method based on distance and time tresholds
[1-3], and expose a novel method to evaluate the per-
formance of such algorithms, using artificially generated
tracks with known characteristics.
Identifying activity places from GPS can be considered

an exercise of cluster detection, candidate locations be-
ing those where a sufficient number of data points are
non-randomly distributed and have accumulated [4-7].
The classical approach for point cluster detection looks
at the temporal sequence of recorded locations and uses
a set of decision rules based on distance and time to
identify clusters. This class of algorithms iteratively tests
observations to determine if they remain within a given
roaming distance of previous ones. If duration of stay
within the distance threshold - time between the first
and the last observed points - exceeds a predefined stay
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duration, the cluster is retained and its centroid is used
as an approximation of stay location [1]. Similarly,
Agamennoni et al. [8]. apply a speed threshold criteria.
Using truck tracks in an open pit mine, they identify
activity locations through low speed segments. Speed is
also used in Biljecki [9] to determine stop places and to
segment GPS data into trips. Ashbrook et al. [10] use a
two-step procedure where, first, GPS points are flagged
as significant places if the time interval with the previ-
ous point is below a certain threshold and, then, based
on a distance criteria, clustered into locations.
Choosing the appropriate distance threshold is a chal-

lenge, its ideal value being a priori unknown, with pos-
sible needs for adjustment when adding new data [11].
Some learning algorithms have been proposed to opti-
mise parameter choice, for example based on hierarch-
ical conditional random fields [12] or Dirichlet process
mixture models [7]. Liao et al. [12] use hierarchical con-
ditional random fields that consider the high-level con-
text to simultaneously derive activities and significant
places from a person’s GPS track. Numri [7] proposes a
method based on Dirichlet process mixture models,
which functions well with spatio-temporal variations, to
learn the number of places to extract and estimate the
model parameters. Kami et al. [13] present a probabilis-
tic place extraction algorithm based on density informa-
tion that aims at minimizing the negative impact of GPS
noise on the quality of the extracted places.
The hereby proposed algorithm differs from the trad-

itional approach. It does not analyse datapoints sequen-
tially. Rather, it uses GPS points to build a kernel density
surface [14]. Kernel density estimation is a non-parametric
method where a symmetrical kernel function is first
superimposed over each event. The set of overlapping
functions is then summed to create a continuous density
surface (see Figure 1). Kernel densities are frequently used
for point pattern analysis and hotspot exploration in a var-
iety of domains, including criminology [15], spatial epi-
demiology [16-21] or ecology [22]. Local maxima are
extracted from the kernel density surface and become ac-
tivity location candidates for which time tables – periods
of stay – are derived.
Both types of algorithms require the definition of a

spatial and temporal parameter. The spatial parameter,
or bandwidth value, corresponds to the roaming radius
Event

Kernel function

Resulting density estimation

Figure 1 Kernel density estimation.
for the traditional method and the kernel bandwidth for
the proposed algorithm. The temporal parameter defines
the minimal duration of stay at a given location to qual-
ify as a significant stop or activity location. An algorithm
that would be less sensitive to bandwidth parameter
value would be considered as more robust.
This paper assessed the performance of the proposed

novel kernel-based activity location detection algorithm
in comparison with the classical sequential distance
threshold algorithm. Performance was assessed on a set
of artificially generated GPS tracks. Use of artificial
tracks permitted precise simulation of various GPS noise
levels and activity stop durations, and consequently
allowed performance testing under a large variety of
conditions.
Analyses evaluated the algorithms’ capacity to detect

(i) known activity locations and (ii) time spent at a given
location, depending on (i) algorithm bandwidth value,
(ii) GPS noise level, and (iii) actual stop duration. Our
hypothesis was that the kernel-based algorithm would
outperform the more classical cluster analysis. Particu-
larly, we hypothesized that this novel method would be
less susceptible to noise, due to the smoothing effect of
kernel density estimations. For the same reason, we also
thought the proposed algorithm would be less sensitive
to bandwidth value, with high performance for a larger
range of parameter values.
The proposed algorithm is currently used in active re-

search projects and clinical interventions, including the
Dyn@mo lifestyle intervention targeting children with
cardiometabolic risk factors which makes use of GPS
tracking to improve counselling [23] the RECORD-GPS
study looking at mobility, exposures, and cardiovascular
outcomes [24], and a project looking at the impact of a
bicycle sharing program in Montreal [25].

Why are temporal series of activity locations an
important information for health and place research?
Studies of contextual effects on health have largely fo-
cused on place of residence, a clear limitation as most
people spend a large portion of their time out of their
residential environment [26,27]. Acquiring detailed in-
formation on people’s everyday activity locations and
trips allows researchers to draw a more complete picture
of true exposure to environmental hazards or experi-
enced accessibility to opportunities [28-31]. Yet, why
should we focus on extracting information on activity lo-
cations? The fact is that linking exposure and behaviour
at all times, as would allow continuous GPS monitoring,
does not tell us much about how structure opportunities
influence behaviour and health, mainly because of select-
ive daily mobility bias [32]. One of the ways to overcome
such bias is to evaluate whether a behaviour of interest,
observed at a given location and time – for example
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physical activity – is influenced by the exposure or
structure of opportunities observed at the previous or
next activity location, where accessibility to resources
may have influenced use of resources and behaviour.
This requires transforming GPS data into the sequence,
the location and the nature of conducted activities. For
example, if one wanted to know whether exposure to
parks influenced park usage, the predictor of interest
would be exposure to parks at all locations except where
the behaviour of interest – park usage – is observed.
More particularly, relevant exposure would be at the
previous location, the subsequent location, or in the path
between both locations. In short, in line with the princi-
ples of opportunity structures [33], relational approach
[34], and space-time geography [35], a given activity or
visit of an activity location is theoretically linked to the
exposure or accessibility and the space-time budget at
the previous or subsequent activity location.
Consequently, mobility tracking is useful for causality

assessment in epidemiological studies as long as activity
locations and the nature of activities – and not only raw
mobility tracks – are identified. Transformation of GPS
tracks into relevant spatial information has mostly been
driven by the fields of transportation and mobile com-
munication, with a focus on the automatic detection of
(i) activity locations or places [1,2,10], (ii) activity types
[36], and (iii) transportation modes [37]. The hereby
proposed algorithm aims to contribute to the field of ac-
tivity place detection and should allow improvements
for exposure assessment in health and place studies.

Methods
Place detection algorithms
Instead of grouping temporally contiguous and spa-
tially near-by points on a point-by-point basis, the pro-
posed algorithm operates globally by calculating a
kernel density surface. This allows deriving a smoothed
surface corresponding to the probability density func-
tion of a random sample of 2D points, the strength of
the smoothing being controlled by the bandwidth.
Local density maxima, or peaks, are then retained as
candidates for actual stops. GPS points are further al-
located either to a peak or to a trip segment. This
makes it possible to establish a history of stops and
trips. Details of this kernel-density algorithm (Akd) and
of the classical fixed threshold algorithm (Aft) – as
presented in [1] – are provided in Additional file 1:
Appendix 1. The Akd code is further available as an
ArcToolBox for ArcGIS 10 on the Spatial Health Re-
search Lab website (www.spherelab.org).

Track processing
Performance of both algorithms was evaluated using a
set of 750 artificial GPS tracks, with three stops per
track. Details on artificial track generation are provided
in Additional file 1: Appendix 2. Artificial tracks were
used because their characteristics, particularly in terms
of noise level and stop location and duration, could be
controlled. This allowed to precisely evaluate algorithms’
capacity to detect stops, in terms of spatial accuracy –
stop location – and temporal accuracy – stop duration.
Performance was further evaluated according to GPS
track characteristics – noise levels and stop durations –
and according to bandwidth value. Both algorithms re-
quire definition of a minimal stop duration, which was
in our case set to 5 minutes, consequently disregarding
shorter stops. The proposed Akd algorithm requires the
definition of a kernel bandwidth and the traditional Aft

requires the definition of a distance bandwidth. To test
parameter sensitivity to parameter value, six bandwidth
values were defined as follows: [10; 50; 100; 200; 500;
1000 m]. Choosing the best parameter value may require
some trial and error for each new set of data [11]. An
algorithm with a low level of sensitivity to parameter
value, or, in other words, providing suitable results for a
broad range of parameter values, is desirable. All 750
tracks were processed using all six bandwidth values,
resulting in the processing of 750*6=4,500 tracks with
each algorithm, representing an attempt to detect a total
of 4500*2*3=27,000 stops.

Performance indicators
Global performance was measured by computing the
number of stops detected per track. Processed tracks
would be classified as ‘on target’ when three stops were
detected, and ‘false negatives’ or ‘false positives’ when
detecting respectively fewer and more than three stops.
Tracks with detections of three stops resulting from a
combination of false negatives and false positives, i.e. for
which distance between a detected stop and the closest
true stop was greater than 1,000 m, were considered as
outliers and discarded (four cases).
Spatial accuracy was established as the Euclidian dis-

tance between a detected stop and the closest true stop.
This metric was computed for the subset of tracks for
which three stops were detected only (the ‘on target’
group).
Temporal accuracy was defined as the percentage

of over- or underestimation of true duration using
(Δfound − Δtrue)/Δtrue where Δ denotes the duration, the
reference stop being the closest true stop.
Performance indicators were compiled in relation to

GPS noise range – [0; 50], [50, 100], [100; 150] and [150,
200] (bounds in meters) – stop durations – [00:00;
00:20]. [00:20; 02:00] and [02:00; ∞] (bounds expressed
in hours and minutes, results not shown for sake of
brevity) (see track generation below), and bandwidth –
[10;50;100;200;500;1000].

http://www.spherelab.org/
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Capacity to discriminate between two true close stops:
Because of the nature of the Akd algorithm – smoothing
the point distribution and possibly joining nearby clusters
of points – discriminating close but distinct stops may
be a challenge. This may be an even greater challenge
with larger kernel bandwidth, i.e. stronger smoothing. We
therefore compiled the number of stops correctly identi-
fied among tracks that contained two or more neigh-
bouring stops within 800 m, or half a mile.
Sensitivity to bandwidth choice: for each of the 750

tracks, the smallest and largest bandwidths for which the
right number of stops was detected were recorded and
averaged, per noise category. This provided a lower and
upper limit of bandwidths for which the right number of
stops was predicted. The wider the range, the less the
performance was sensitive to bandwidth choice. Because
a high sensitivity to parameter choice would require ex-
tensive testing and adjustment for new datasets, algo-
rithms with low sensitivity are valuable.

Results
Evaluation of stop detection performance
Global performance statistics are shown in Table 1. Akd

correctly detected three stops for more than 90% of
tracks with bandwidths of 200 and 500 m. With Aft, the
best performance – correctly detecting three stops for
65.5% of tracks – was obtained with a 1,000 m band-
width. Yet, Aft generated a high proportion of false nega-
tives and false positives for all bandwidths.

Effect of GPS noise on performance
Logically, highest performance was reached with lower
GPS noise levels (0–50) (See Table 2).
Aft did not detect any stops when the bandwidth was

smaller than noise. Best performance (75.6% of correctly
detected stops) was attained with the largest bandwidth
tested (1,000m) and lowest noise range (from 0 to 50m).
Decreasing bandwidth or increasing noise resulted in
lower performance. For example, performance degraded
steeply when using the 200m bandwidth, from 74.9% at
Table 1 Global performance– proportion of ‘on target’ tracks
bandwidth

Bandwidth

Aft

False neg. On target False

10 100.0

50 90.8 3.1

100 78.9 9.7

200 54.2 22.8

500 14.8 54.8

1 000 11.7 65.5
a [100, 150] noise range to a mere 4.7% with a [100, 150]
noise range.
Meanwhile, Akd attained high ratios of tracks with cor-

rect detection of three stops (i.e. around or above 90%)
as long as noise was smaller than the kernel bandwidth.
Even when noise magnitude was several-fold wider than
kernel bandwidth, Akd still succeeded in a few cases to
find the right number of stops. It is worth keeping in
mind that for this metric, only the number, not the
spatial accuracy, of the detected stops was considered.
Spatial accuracy and duration estimation
Figure 2 shows three graphs for each tested algorithm,
illustrating the average number of stops detected per
track, the average Euclidian distance between a detected
and the closest actual stop, and the average percentage
of over/underestimation of stop duration. Performance
measures are presented in relation to GPS noise levels
(x-axis) and bandwidth (colour symbol).
Average number of detected stops
Akd slightly underestimated the number of stops, while
Aft had a tendency to overestimate them, a known limi-
tation of this class of algorithms [10]. Moreover, Aft

presented a much larger variance in performance than
Akd. For example, with a 200m bandwidth, the average
number of detected stops increased from almost 3
(noise<50m) to more than 10 (50m<noise<100m) then
back to 3 (100m<noise<150m) but with a much larger
variance and finally to no stops detected at all for the
highest noise level (150m<noise<200m). Akd exhibited
more resilience to noise with a clearer pattern and less
degradation of performance with increasing noise.
Graphs b and c in Figure 2 provide statistics for tracks

and noise/bandwidth combinations for which three stops
were detected, because in the case of a non one-to-one
match, spatial correspondence between detected and
true stop could have been spurious and could bias
results.
or with false negatives or false positives in relation to

Algorithm

Akd

pos. False neg. On target False pos.

86.0 9.9 4.1

6.1 45.6 42.1 12.3

11.3 22.9 73.3 3.7

23.0 7.7 92.3

30.4 8.0 92.0

22.8 12.1 85.6 2.3



Table 2 – Performance according to noise at stop – percentage of trips with the right number of stops detected in
relation to bandwidth

Bandwidth Algorithm

Aft Akd

[0. 50]* [50. 100] [100. 150] [150. 200] [0. 50] [50. 100] [100. 150] [150. 200]

10 36.3 6.5

50 13.7 92.3 59.5 17.4 4.7

100 42.3 1.0 93.5 92.0 65.8 43.8

200 74.9 18.5 4.7 92.9 95.5 92.6 88.0

500 75.0 66.5 51.6 28.1 91.1 93.0 93.2 90.6

1 000 75.6 69.5 59.5 58.3 86.3 85.5 88.4 82.3
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Spatial accuracy
Spatial accuracy was inversely related to GPS noise level.
For Aft, bandwidth value strongly influenced spatial ac-
curacy. The worst performance was obtained with a
1,000m bandwidth, notwithstanding the noise level. Yet,
this same 1,000m bandwidth performed best in terms
of number of stops detected. This means that with
Aft, bandwidth choice represents a trade-off between
detecting the right number of stops and positional
accuracy.
Akd exhibited a clear homothetic pattern as spatial ac-

curacy degraded much quicker as noise increased when
using smaller kernel bandwidths than larger ones. With
increasing noise, the average distance between a true and
a detected stop rose from around 3.5m to 35.1m using the
50m kernel bandwidth while it only doubled from 5.7m to
12.2m with the 1,000m bandwidth. Whereas Aft yielded
the shortest distances between true and detected stops at
very low levels of noise (and excluding the 1,000m band-
width), Akd maintained a better performance across the
board with a spatial accuracy below 15m for most band-
widths larger than 50m.

Temporal accuracy
Overall, larger bandwidths translated in larger overesti-
mation of stop durations. The 200 and 500m parameter
values provided the best stop duration estimation and
were relatively independent from noise, especially for
Akd. Smaller bandwidths provided underestimation of
stop durations that were larger than the overestimation
obtained with larger bandwidths.

Capacity to discriminate close stops
Table 3 presents the number of tracks for which three
stops were correctly detected, among the 88 tracks that
had two or more stops within 800m.
For Aft, capacity to discriminate close neighbours in-

creased with growing bandwidths, from no track being
correctly classified using a 10m bandwidth to 54 tracks
correctly classified (61%) using a 1,000 m bandwidth.
For Akd, the relationship between bandwidth and dis-
crimination capacity was inverse U-shaped, with a best
performance of 60 correctly classified tracks (68%) using
a 200m kernel bandwidth.

Sensitivity to bandwidth choice
For both algorithms, the average of the largest band-
width values for which three stops were correctly identi-
fied exhibited a similar pattern, with a more or less
constant average, slightly below 1,000m (See Figure 3).
This indicates that noise had a limited impact on the
1,000m bandwidth’s capacity to detect stops, for both al-
gorithms (but, as mentioned above, positional accuracy
was affected at larger bandwidths).
Yet, the average of the smallest parameter values for

which three stops were correctly identified exhibited
contrasting patterns between methods. For Aft, the aver-
age minimum bandwidth rose steeply with noise, from
229m to 520m, 614m and 771m for each increasing
noise category. For Akd, values remained much lower,
from 47m to 173m, each average minimum value being
just below the upper bound of the noise category. The
average minimum value was always 4.6 to 6 times larger
for Aft than for Akd. Consequently, the range of band-
widths to choose from to correctly identify stops was
much larger for Akd than for Aft. In the highest category
of noise, correct performance of Aft was restricted
to bandwidths comprised between 771m and 975m
whereas Akd would perform well with values between
173m and 912m, providing 3.6 times more headroom.
Akd is less sensitive to parameter choice and more resili-
ent to noise.
Some summary findings are provided in Table 4. Akd

outperforms Aft for each of the six presented perform-
ance measures.

Discussion
A new algorithm to extract significant places and derive
a timetable of visits from raw GPS data based on kernel
density computation is assessed in comparison to a more
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Figure 2 Performance metrics for both algorithms.
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Table 3 Number of tracks for which three stops were
correctly detected among the 88 tracks with two or more
stops within 800m

Number of correctly identified tracks (three stops)

Bandwidth Aft Akd

10 0 8

50 2 32

100 9 54

200 18 60

500 49 35

1000 54 5

Total 132 194

Thierry et al. International Journal of Health Geographics 2013, 12:14 Page 7 of 10
http://www.ij-healthgeographics.com/content/12/1/14
‘classical’ distance threshold algorithm. Artificial tracks
with known characteristics are processed and allow pre-
cise performance evaluation. Motivations driving the de-
velopment of this algorithm were both practical – that
is, to provide an efficient solution to derive activity loca-
tions from GPS datasets in order to improve the
characterization of activity spaces and related environ-
mental exposures in epidemiological modelling – and
technical, by trying to offer a solution for which the sen-
sitivity of the algorithm parameter choice was low,
i.e. where a broad range of parameter values would per-
form well under various conditions. An algorithm
whose performance is less sensitive to parameter choice
or noise is also important because noise can vary de-
pending on built environment characteristics. Longer
stays in high-rise central areas or urban canyons gener-
ally generate subsets of data points with large noise.
Other methods such as learning algorithms [12], which
were not discussed here, may provide interesting results
without fiddling with parameter adjustments. Yet, such
algorithms require to be trained beforehand on sample
data and their setup is generally more complicated. The
proposed algorithm offers a good balance between the
simplicity of use of the fixed threshold approach and
Figure 3 Parameter sensitivity to noise.
the performance of more advanced and more technical
solutions, such as learning algorithms.
Experiments on randomly generated synthetic GPS

tracks showed the proposed algorithm outperformed the
fixed threshold algorithm for almost all indicators, cor-
rectly identifying the three artificially generated stops
with varying duration and noise levels more than twice
as often (2,964 cases against 1,169, on a total of 4,500).
Similarly, although Aft had the best spatial accuracy with
smaller bandwidths and for the lowest noise levels,
Akd succeeded in maintaining a better overall accuracy
across all bandwidths and noise categories. Stop dur-
ation estimation was very accurate, although smaller
bandwidths systematically provided underestimation.
We believe the methods presented here are useful for

three reasons. First, the proposed method for artificial
track generation allows control over various parameters
such as GPS noise at stop locations and stop durations.
This makes it possible to precisely evaluate the perform-
ance of a given algorithm in relation to these character-
istics. We welcome application of this methodology
which would optimize comparison with other algo-
rithms, and allows testing of performance under a wide
range of controlled conditions. The Python code for
automatic generation of artificial tracks as presented
here is made available on the authors’ lab website at
www.spherelab.org/tools. Second, the proposed set of
performance indicators is useful for algorithm evalu-
ation. Looking at one performance criteria only (such
as the number of detected stops for example) may be
misleading, as trade-off sometimes occurs, for example
between spatial and temporal accuracy. Third, the pro-
posed kernel-based algorithm has outperformed the more
‘traditional’ fixed-threshold method along all measured
performance indicators. Because of its ease of implemen-
tation, we recommend its use for activity location detec-
tion in health research. To facilitate usage, an ArcToolbox
version of the algorithm for ArcGIS 10 is made avail-
able on the authors’ website. We welcome proposals for

http://www.spherelab.org/tools


Table 4 Summary of performance

Criteria Aft Comment Akd Comment

Highest proportion of tracks with correctly
identified number of stops. depending on
parameter value

65.5% Obtained with 1000 m radius 92.3% Obtained with 200 m bandwidth

Number of noise/parameter combinations for
which detection correctly identifies three stops for
at least 70% of tracks (out of 24 combinations)

3 Performance sharply decreasing with
increasing noise; best combination yields
75.6% of correct identification of three-stop
tracks

15 10 out of these 15 successfull
combinations with correct
detection of 90% or more of three-
stop tracks

Number of correctly identified stops among tracks
with close (<800 m) neighbours

132 Larger radii=better prediction 194 Inversed U-shaped relation to
bandwidth: best capacity with
‘average’ bandwidth of 200 m

Number of noise/parameter combinations for
which the average number of detected stops is
around 3 (2.8<average<3.2)

6 10 noise/parameter combinations for which
average=zero

15 2 noise/parameter combinations
for which average=zero

Number of noise/parameter combinations for
which distance between detected and true stop is
less than 15 m in average (out of 24
combinations)

8 Standard-errors larger in AFT than in AKD
for all combinations

17 11 combinations with less than 10
m in average

Number of noise/parameter combinations with
duration difference between detected and true
stop less than 10% error

11 AKD outperforms AFT for 16 out of 24
combinations

16 Duration difference below 5% for
200 m bandwidth at all noise
levels

Akd/Aft comparison.
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improvement of this algorithm and will maintain his-
tory of versions on our website.
Limitations
Whereas the use of artificial tracks offers advantages, some
limitations need to be acknowledged. Because place extrac-
tion is based on point density, such algorithms will not per-
form as well if points are not sampled continuously. In
real-world situations, GPS signals can be interrupted, par-
ticularly in urban areas where people spend time inside
buildings that hinder signal reception. This shortcoming
requires filling data gaps using techniques such as inter-
polation. This was not an issue in the context of this
paper since the synthetic tracks did not contain signal
drops. In our own experiments conducted with real-life
GPS data, a simple linear interpolation was used and gave
satisfactory results. More sophisticated approaches, such
as interpolation along a network, could prove useful, and
decision rules to optimize interpolation, for example using
time and distance thresholds between two collected con-
secutive GPS data points, need to be evaluated.
Another limitation in the work presented here is the

use of a constant travelling speed (roughly 36 km/h) for
the trip sections of the tracks; no speed variation was in-
troduced to simulate change of transportation mode or
traffic slow-downs for example. This was done to limit
the number of varying factors. However, slower speeds
should not influence significantly the stop detection cap-
acity. Indeed, empirical tests on real-life GPS tracks
showed that the main issue for automatic stop detection
was related to signal noise measured at the stop itself.
Another limitation of artificial tracks is the choice of a
normally distributed random noise, which may be viewed
as an oversimplification of true GPS noise, particularly
in an urban context where bad satellite reception can
lead to systematic errors in the calculated position.
However, actual GPS fixes provide quality information
along latitude and longitude (e.g. Dilution Of Precision
values, number of satellites used) that can help filter out
suspicious fixes.
Finally, one shortcoming of the proposed algorithm is

that because GPS points are processed globally, real-
time processing may be less efficient, although periodical
re-running of the algorithm or treatment of data subsets
may prove efficient.

Conclusions
The proposed novel kernel-based algorithm performed
better than its classic counterpart on a set of synthetic
tracks with varying stop durations and noise levels. Yet,
further validation with real-world tracks, covering a var-
iety of contexts, both in terms of urban environments
and mobility patterns, are required. However, in order to
be able to be considered as a ‘gold standard’ source to
document stop locations, collected GPS tracks should
actually be post-processed for validation of stops – and
trips and transportation modes – by people who wore
the GPS units. Prompted recall applications allowing
participants to visualize their tracks and confirm/infirm
stop locations and transportation modes are required.
Only artificial tracks with known characteristics or real-
life tracks with post validation through prompted recall
surveys are useful to truly test the performance of such
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algorithms. In short, true stops need to be known to
allow identification of true/false positives or negatives
following track processing.
Increasing availability and use of GPS devices opens

great opportunities for mobile health applications. Yet,
well-performing and validated algorithms are required to
correctly identify activity locations, trips and transpor-
tation modes from raw GPS datasets, both for health
research and for other fields increasingly considering
mobility patterns. We therefore recommend further de-
velopments in the area of activity place, travel mode and
activity type detection. Such efforts require the constitu-
tion of comprehensive datasets including both raw GPS
tracks and prompted recall validations of itineraries and
activities.
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