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Abstract

Introduction: The global spread and the increased frequency and magnitude of epidemic dengue in the last
50 years underscore the urgent need for effective tools for surveillance, prevention, and control. This review aims at
providing a systematic overview of what predictors are critical and which spatial and spatio-temporal modeling
approaches are useful in generating risk maps for dengue.

Methods: A systematic search was undertaken, using the PubMed, Web of Science, WHOLIS, Centers for Disease
Control and Prevention (CDC) and OvidSP databases for published citations, without language or time restrictions.
A manual search of the titles and abstracts was carried out using predefined criteria, notably the inclusion of
dengue cases. Data were extracted for pre-identified variables, including the type of predictors and the type of
modeling approach used for risk mapping.

Results: A wide variety of both predictors and modeling approaches was used to create dengue risk maps. No
specific patterns could be identified in the combination of predictors or models across studies. The most important
and commonly used predictors for the category of demographic and socio-economic variables were age, gender,
education, housing conditions and level of income. Among environmental variables, precipitation and air temperature
were often significant predictors. Remote sensing provided a source of varied land cover data that could act as a proxy
for other predictor categories. Descriptive maps showing dengue case hotspots were useful for identifying high-risk
areas. Predictive maps based on more complex methodology facilitated advanced data analysis and visualization, but
their applicability in public health contexts remains to be established.

Conclusions: The majority of available dengue risk maps was descriptive and based on retrospective data. Availability
of resources, feasibility of acquisition, quality of data, alongside available technical expertise, determines the accuracy of
dengue risk maps and their applicability to the field of public health. A large number of unknowns, including effective
entomological predictors, genetic diversity of circulating viruses, population serological profile, and human mobility,
continue to pose challenges and to limit the ability to produce accurate and effective risk maps, and fail to support the
development of early warning systems.
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Background
Dengue is an arboviral disease, transmitted by two main
vectors, Aedes aegypti and Ae. albopictus. It is found mostly
in the tropical and subtropical regions of Asia and South
America, and its transmission is influenced by manifold
factors, including vector mosquito density, circulating
virus serotypes, and the susceptibility of human popula-
tions. It is estimated that the annual number of dengue
infections lies between 50 and 100 million, with about
25,000 deaths worldwide in 2013 [1]. Demographic
change, urbanization, inadequate domestic water sup-
plies, migration [2], and introduction to new areas via
international travel have led to an increase in the global
incidence of dengue and about 3.6 billion people cur-
rently at risk [3]. Additionally, thespread and establish-
ment of dengue is facilitated by a changing climate [4,5].
Because of a changing environment and population

immunological profile, dengue transmission and disease
show inherently dynamic spatial and temporal patterns.
The non-homogeneous character and instability in the
distribution of potentially influential predictors make it
difficult to ascribe epidemiological changes to single fac-
tors. Despite the complexities, an analysis of the vari-
ables linked to the distribution of vectors and identified
dengue cases can be a useful tool to generate spatial and
temporal scenarios for dengue [6].
Surveillance tools, such as incidence maps, have been

utilized to enhance public health preparedness for dengue
outbreaks by providing a visual aids for reaching a deci-
sion. Although plotted disease occurrence can to some ex-
tents facilitate the allocation of public health resources,
there is an urgent need for methods that will allow an as-
sessment of the dengue epidemiology over time and space.
Such tools have been developed and have gained import-
ance in the last decade, but most of them were not used
in the public health context because of their complexity
and the extensive need for input data. With this system-
atic review we attempt to address the research gap caused
by the lack of structured overviews of available methods,
of relevant predictors and of types of dengue risk maps.
We provide a comparison of the most important predic-
tors and the most commonly used modeling methods in
order to generate specific types of risk maps, which may
have different applicability and relevance for public health
decisions. Increased availability of dengue surveillance and
prediction maps would allow public health workers to
identify and target high- risk areas with appropriate and
timely control measures.
The objectives of this systematic review were:

� to collect and describe currently available dengue
risk maps,

� to assess the underlying modeling predictors used
for developing dengue risk maps,
� to describe methods used for dengue risk mapping
and discuss their applicability in the context of
public health.

Methods
Search terms and databases
This review follows the guidelines for systematic reviews
and meta-analyses as laid out in the PRISMA statement
[7]. It was carried out between October 2013 and January
2014. All data were extracted by two independent
researchers, and discrepancies were resolved concordantly.
The following databases were searched electronically:
PubMed, Web of Science, World Health Organization
(WHOLIS), Centers for Disease Control and Prevention
(CDC) and OvidSP. In the first step of the multi-level ap-
proach we used MeSH (Medical Subject Heading) terms
(for PubMed) and undertook plain text searches for key-
words connected with Boolean operators. Searches were
run for 10 different combinations of keywords derived from
the following categories: i) dengue, ii) geographic tools (e.g.
remote sensing, GIS, mapping) iii) surveillance and moni-
toring, and iv) spatial and spatio-temporal models and clus-
ter analysis. The databases of WHOLIS and the WHO
regional databases were searched for grey literature, and we
manually searched the reference lists found in the elec-
tronic search. No restrictions on time period or language of
publication were applied. Although the search was con-
ducted in English language only, no articles were excluded
from full text assessment if published in another language.
Results were combined using Zotero (zotero.org), and

duplicates were removed during a second round of revi-
sions. Once the search results were obtained, the selection
of studies for inclusion was made using a two-stage ap-
proach. During the first stage, two independent researchers
selected articles from the search results based on titles and
abstracts, excluding those deemed irrelevant to the topic.
Disagreements were resolved with mutual consent. The
bibliographies of reviewed articles were scanned for add-
itional literature. Studies relevant to the research questions
were assessed for full text, including those studies for
which inclusion was uncertain on the basis of title or ab-
stract screen. All articles retained after the first stage went
through a full-text review performed independently by two
reviewers (Figure 1).

Inclusion and exclusion criteria
The following inclusion criteria were used: (i) Full text
articles that generate risk maps for dengue occurrence.
Risk maps were defined as maps obtained through some
modeling approach with the purpose of quantifying the
risk of dengue over a geographical area; (ii) studies that
use dengue morbidity or mortality and at least one add-
itional predictor for model generation. The following ex-
clusion criteria were applied: (i) models dealing only with

http://www.zotero.org


Figure 1 Flow diagram of article selection and inclusion/exclusion process.
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a temporal component of dengue risk; (ii) studies dealing
exclusively with dengue in international travelers; and (iii)
abstracts, letters, newspaper articles and lectures repre-
senting single expert opinions.

Data extraction
All data were extracted and collected manually in a
matrix. Collected variables included—besides general in-
formation—the type of study, the data collection period
and the prediction models used. Other analyzed charac-
teristics included the scale of the study (e.g. district or a
whole country), thespatial resolution (e.g. at household
level or aggregated to municipalities or larger areas), and
study areas were distinguished on the basis of their urban
or rural characteristics. Detailed information was ex-
tracted about variables incorporated in the generation of
the risk maps. Besides dengue morbidity and mortality
data, which were a prerequisite, entomological data (adult
vectors, mosquito larvae), and socio-economic, climatic,
and environmental predictors were extracted. The cat-
egory of “modeled risk” distinguishes between a risk map
for dengue and the probability of dengue vector occur-
rence. Finally the study output regarding the type of risk
maps and its relevance was analyzed, along with the key
findings. The key findings section presents suggested
correlations between independent variables and dengue
occurrence. Modeling variables were summarized in a
narrative description of each study (Additional file 1:
Table S1).

Results
Summary of observations
General characteristics of the selected studies
Twenty six citations met the eligibility criteria and were
included in this review (Figure 1). The selected references
are indicated in round brackets ( ) and listed in the Table 1.
Details of all the studies are included in Additional file 1:
Table S1 and analyzed in the sections that follows. Al-
though no time period restriction was applied in the
search, none of the 361 records screened for titles was
published before 1992, and all selected articles were
published in the last 10 years (2005 onwards). Two
thirds of the selected studies were published in the last
four years.
Scale and scope
The distribution of studies by region, country and adminis-
trative level is shown in Figure 2. Most of the studies
undertaken at local scales took place in urban areas,
known to be at high risk for dengue transmission [1].
Because they were more general and geographically ex-

tended, studies done at country, state and province levels
were more likely to include rural areas.
Study design
All studies were retrospective. Most of them used second-
ary data on dengue cases from surveys implemented in the
health surveillance systems, although several studies (3, 10,
19, 20, 23, 24) ran over a shorter period of time during
occurring epidemics. Besides reported dengue cases,
critical predictors used for model generation and dengue
risk maps included variables from a variety of categories,
including population, demography, socioeconomic status,
climate, environment, and entomology. Reviewed articles
used dengue data ranging from one to 15 years, with an
average and median of five years (Figure 3). Eleven studies
used dengue data sets shorter than two years while 13
of the 26 studies used data sets of five years or longer
duration.



Table 1 List of publications selected for the systematic review

ID Selected studies

(1) S. Arboleda, N. Jaramillo-O, and A. T. Peterson, “Mapping environmental dimensions of dengue fever transmission risk in the Aburrá Valley,
Colombia,” Int. J. Environ. Res. Public. Health, vol. 6, no. 12, pp. 3040–3055, Dec. 2009.

(2) K. C. Castillo, B. Koerbl, A. Stewart, J. F. Gonzalez, and F. Ponce, “Application of spatial analysis to the examination of dengue fever in Guayaquil,
Ecuador,” Spat. Stat. 2011 Mapp. Glob. Change, vol. 7, pp. 188–193, 2011.

(3) R. Cordeiro, M. R. Donalisio, V. R. Andrade, A. C. N. Mafra, L. B. Nucci, J. C. Brown, and C. Stephan, “Spatial distribution of the risk of dengue fever
in southeast Brazil, 2006-2007,” BMC Public Health, vol. 11, p. 355, 2011.

(4) M. C. de Mattos Almeida, W. T. Caiaffa, R. M. Assunção, and F. A. Proietti, “Spatial vulnerability to dengue in a Brazilian urban area during a 7-year
surveillance,” J. Urban Health Bull. N. Y. Acad. Med., vol. 84, no. 3, pp. 334–345, May 2007.

(5) D. P. O. de Melo, L. R. Scherrer, and Á. E. Eiras, “Dengue fever occurrence and vector detection by larval survey, ovitrap and MosquiTRAP: a
space-time clusters analysis,” PloS One, vol. 7, no. 7, p. e42125, 2012.

(6) S. K. Dickin, C. J. Schuster-Wallace, and S. J. Elliott, “Developing a Vulnerability Mapping Methodology: Applying the Water-Associated Disease
Index to Dengue in Malaysia,” Plos One, vol. 8, no. 5, May 2013.

(7) R. F. Flauzino, R. Souza-Santos, C. Barcelllos, R. Gracie, M. de A. F. M. Magalhães, and R. M. de Oliveira, “Spatial heterogeneity of dengue fever in
local studies, City of Niterói, Southeastern Brazil,” Rev. Saúde Pública, vol. 43, no. 6, pp. 1035–1043, Dec. 2009.

(8) B. Galli and F. Chiaravalloti Neto, “(Temporal-spatial risk model to identify areas at high-risk for occurrence of dengue fever),” Rev. Saúde Pública,
vol. 42, no. 4, pp. 656–663, Aug. 2008.

(9) H. Hassan, S. Shohaimi, and N. R. Hashim, “Risk mapping of dengue in Selangor and Kuala Lumpur, Malaysia,” Geospatial Health, vol. 7, no. 1,
pp. 21–25, Nov. 2012.

(10) N. A. Honório, R. M. R. Nogueira, C. T. Codeço, M. S. Carvalho, O. G. Cruz, M. de A. F. M. Magalhães, J. M. G. de Araújo, E. S. M. de Araújo, M. Q.
Gomes, L. S. Pinheiro, C. da Silva Pinel, and R. Lourenço-de-Oliveira, “Spatial evaluation and modeling of Dengue seroprevalence and vector
density in Rio de Janeiro, Brazil,” PLoS Negl. Trop. Dis., vol. 3, no. 11, p. e545, 2009.

(11) W. Hu, A. Clements, G. Williams, S. Tong, and K. Mengersen, “Spatial patterns and socioecological drivers of dengue fever transmission in
Queensland, Australia,” Environ. Health Perspect., vol. 120, no. 2, pp. 260–266, Feb. 2012.

(12) P. Jeefoo, N. K. Tripathi, and M. Souris, “Spatio-temporal diffusion pattern and hotspot detection of dengue in Chachoengsao province,
Thailand,” Int. J. Environ. Res. Public. Health, vol. 8, no. 1, pp. 51–74, Jan. 2011.

(13) H. M. Khormi and L. Kumar, “Modeling dengue fever risk based on socioeconomic parameters, nationality and age groups: GIS and remote
sensing based case study,” Sci. Total Environ., vol. 409, no. 22, pp. 4713–4719, Oct. 2011.

(14) H. M. Khormi, L. Kumar, and R. A. Elzahrany, “Modeling spatio-temporal risk changes in the incidence of Dengue fever in Saudi Arabia: a geographical
information system case study,” Geospatial Health, vol. 6, no. 1, pp. 77–84, Nov. 2011.

(15) H. M. Khormi and L. Kumar, “Assessing the risk for dengue fever based on socioeconomic and environmental variables in a geographical
information system environment,” Geospatial Health, vol. 6, no. 2, pp. 171–176, May 2012.

(16) R. Lowe, T. C. Bailey, D. B. Stephenson, R. J. Graham, C. A. S. Coelho, M. S. Carvalho, and C. Barcellos, “Spatio-temporal modelling of climate-sensitive
disease risk: Towards an early warning system for dengue in Brazil,” Comput. Geosci., vol. 37, no. 3, pp. 371–381, Mar. 2011.

(17) E. A. Machado-Machado, “Empirical mapping of suitability to dengue fever in Mexico using species distribution modeling,” Appl. Geogr., vol. 33,
no. 1, pp. 82–93, Apr. 2012.

(18) A. T. Peterson, C. Martínez-Campos, Y. Nakazawa, and E. Martínez-Meyer, “Time-specific ecological niche modeling predicts spatial dynamics of
vector insects and human dengue cases,” Trans. R. Soc. Trop. Med. Hyg., vol. 99, no. 9, pp. 647–655, Sep. 2005.

(19) X. Porcasi, C. H. Rotela, M. V. Introini, N. Frutos, S. Lanfri, G. Peralta, E. A. De Elia, M. A. Lanfri, and C. M. Scavuzzo, “An operative dengue risk
stratification system in Argentina based on geospatial technology,” Geospatial Health, vol. 6, no. 3, pp. S31–42, Sep. 2012.

(20) C. Rotela, F. Fouque, M. Lamfri, P. Sabatier, V. Introini, M. Zaidenberg, and C. Scavuzzo, “Space-time analysis of the dengue spreading dynamics
in the 2004 Tartagal outbreak, Northern Argentina,” Acta Trop., vol. 103, no. 1, pp. 1–13, Jul. 2007.

(21) A. Shafie, “Evaluation of the Spatial Risk Factors for High Incidence of Dengue Fever and Dengue Hemorrhagic Fever Using GIS Application,”
Sains Malays., vol. 40, no. 8, pp. 937–943, Aug. 2011.

(22) M. Sriprom, K. Chalvet-Monfray, T. Chaimane, K. Vongsawat, and D. J. Bicout, “Monthly district level risk of dengue occurrences in Sakon Nakhon
Province, Thailand,” Sci. Total Environ., vol. 408, no. 22, pp. 5521–5528, Oct. 2010.

(23) T.-H. Wen, N. H. Lin, C.-H. Lin, C.-C. King, and M.-D. Su, “Spatial mapping of temporal risk characteristics to improve environmental health risk
identification: a case study of a dengue epidemic in Taiwan,” Sci. Total Environ., vol. 367, no. 2–3, pp. 631–640, Aug. 2006.

(24) T.-H. Wen, N. H. Lin, D.-Y. Chao, K.-P. Hwang, C.-C. Kan, K. C.-M. Lin, J. T.-S. Wu, S. Y.-J. Huang, I.-C. Fan, and C.-C. King, “Spatial-temporal patterns
of dengue in areas at risk of dengue hemorrhagic fever in Kaohsiung, Taiwan, 2002,” Int. J. Infect. Dis. IJID Off. Publ. Int. Soc. Infect. Dis., vol. 14,
no. 4, pp. e334–343, Apr. 2010.

(25) P.-C. Wu, J.-G. Lay, H.-R. Guo, C.-Y. Lin, S.-C. Lung, and H.-J. Su, “Higher temperature and urbanization affect the spatial patterns of dengue fever
transmission in subtropical Taiwan,” Sci. Total Environ., vol. 407, no. 7, pp. 2224–2233, Mar. 2009.

(26) H.-L. Yu, S.-J. Yang, H.-J. Yen, and G. Christakos, “A spatio-temporal climate-based model of early dengue fever warning in southern Taiwan,”
Stoch. Environ. Res. Risk Assess., vol. 25, no. 4, pp. 485–494, May 2011.
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Figure 2 World map of dengue evidence consensus (adapted from Brady et al. [8]) with number of publications reviewed in respective
countries. Geographic scale (municipality, district, state/province, country) of studies is given in grey boxes.
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Predictors
Population, demographic and socioeconomic data
Most studies (21 out of 26) used population distribution
and density to describe and model the risk of dengue oc-
currence (Figure 3). In general these data originated from
national censuses, but the working group in Saudi Arabia
(13) used satellite imagery to estimate population density.
Figure 3 Characteristics of reviewed articles indicating reference ID, g
mapping (i.e.; population, demographic, socio-economic, climatological
data (E = eggs, L = larvae, A = adult mosquitoes)) with total number talli
common working group.
Demographic data, primarily age, was used in 14 studies.
Social predictors, such as educational level, occupational
status, and income, as well as housing conditions, were
used to assess environmental conditions and hygiene. Edu-
cational level and type of employment were often used as
proxies for wealth and awareness of dengue and its trans-
mission (3, 4, 10, 11). Furthermore, housing conditions,
eographical origin, time span, predictor categories used for risk
, environmental (T = temperature; P = precipitation), entomological
ed, remote sensing, and temporal component. Brackets indicate a
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which determined in many cases the type and amount of
vector breeding in the vicinity, were used in eight studies
(3, 4, 6, 7, 11, 17, 22). Less commonly used predictors in-
cluded household water delivery, whether or not respon-
dents spent time outside their neighborhood, pronounced
presence of garbage, reports of mosquito bites during the
day (3); proportion of children under 10 and woman over
64 years, ratio between number of commercial establish-
ments and number of households in census tracts (4);
household overcrowding, aborigine origin, elders living
alone, disability, and numbers of clinics (25). The most
commonly used predictors included age, gender, educa-
tion level, and income (e.g. 4, 12, 22). Most studies that in-
cluded socio-economic predictors identified some of them
as significant.

Climatic data
Half of the studies incorporated climatic predictors in
their model generation. Predominantly used predictors
were precipitation and air temperature (5, 6, 9, 11, 12,
15–17, 19, 22, 25, 26) while two studies used relative
humidity (12, 17). These climatic variables were used
to describe both spatial and temporal risk of dengue
transmission. Examples of climatic predictors that
were included in the reviewed models were “minimum
temperature of the coldest month” (17), lagged minimum
and maximum temperatures (26), and average monthly
rainfall and average monthly maximum temperature (11).
Two studies (16, 26) used indicators associated with the
El-Niño-Southern-Oscillation (ENSO) as predictors.

Environmental data
Environmental information comprised data on vegeta-
tion, surface water and land cover. Those predictors
were mostly used to describe the suitability of environ-
mental conditions for vector breeding and survival.
These types of data can be either registered in the field,
or derived via remote sensing, especially on larger scales.
As a result, out of seven studies (1, 6, 15, 18–21) only
one (21) did not collect environmental information par-
tially or completely via remote sensing. Vegetation as a
proxy for surface water, mostly detected via the com-
monly used Normalized Difference Vegetation Index
(NDVI), and the direct detection of water provided an
opportunity to detect vector breeding sites.

Remote sensing
Remote sensing in itself is not associated with specific
types of variables but it is a tool to obtain various types
of data, typically through the use and analysis of satellite
imagery. Eleven studies incorporated remotely sensed
data (Figure 3). The purposes of these studies were di-
verse, and a variety of data were acquired. While three
studies (6, 10, 12) used remote sensing for map creation
or to obtain a land cover map, six studies (1, 13, 15, 18–20)
used satellite images to gain information on the environ-
mental vector breeding appropriateness (NDVI, surface
water, elevation, slope), or anthropo-geographic factors
(population density, neighborhood quality). Two studies
(11, 19) used remotely sensed data on climatic variables to
address the lack of routinely collected data from meteoro-
logical stations. While high-resolution imagery was used
for socioeconomic variables (13, 15, 19), environmental
predictors were derived at a much coarser scale, using
Landsat (1, 20), ASTER (19), and AVHRR (18) satellite
imagery.

Entomological data
Entomological data were collected at egg, larval and adult
stages. Mosquito egg and larval collections were done
either with ovitraps, classical dipping techniques, or re-
cording of an index, such as Breteau index, which is de-
fined as the number of containers positive for Aedes
larvae per 100 houses inspected. Six studies (3, 5, 10, 18,
25, 26) used egg or larval counts as input predictors for
model generation. Capture activities used different types
of traps (light traps, CO2 traps) to estimate adult mos-
quito population densities. Four studies (5, 10, 14, 15)
sampled the adult vector mosquitoes. Entomological
predictors were used for model development mainly at
the municipality level, although these predictors were
also employed at district and country levels (14, 15, 18,
25). Only two studies (5, 10) used both larval and adult
mosquito data, both at the municipality level. Among
the eight studies that included an entomological survey,
three found that neither larval data (5, 25) nor mosquito
abundance data (10) were associated with dengue data.
In contrast three studies (3, 18, 26) included larval data
as significant variables for higher dengue risk while a
study (5) found both eggs and adult mosquitoes associated
with dengue cases. Two studies (14, 15) found that dengue
hotspots corresponded to adult mosquito presence but
not necessarily to the highest vector abundance.

Temporal component
Out of 26 studies, 13 dealt with temporal model compo-
nents added onto spatial risk maps. The temporal classifi-
cation of dengue risk was not homogeneous. Approaches
differed from long-term predictions under the influence of
climate change (e.g. the introduction of dengue to new
areas, over mid-term phenomena inter-annual differences,
such as El Niño) to intra-annual particularities, such as
seasonality. To elicit more precise temporal predictions or
pattern recognitions, meteorological predictors of higher
temporal resolution become necessary to accommodate
for rapid changes in environmental conditions. Eight stud-
ies (5, 6, 12, 15, 16, 18, 22, 26) that included temporal
components used weather predictors. Some studies did
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not use climatic predictors for their temporal models (14,
20, 23, 24) while others incorporated climatic data but did
not model temporal risk (9, 11, 19, 21, 25).
In summary, among the studies reviewed, the type and

number of predictors used varied greatly. Out of the six
categories identified (population, demographic, socio-
economic, climatic, environmental, and entomological
data) (Figure 3), up to five different ones were used in
a single model to generate dengue risk maps. Three
used only one category in addition to reported dengue
cases, namely environmental data (1) and population
(23, 24). Most studies used three to four categories
while two studies (6, 25) used five different categories.
No specific patterns were recognized in the combin-
ation of categories across studies.
Table 2 Overview of modeling approaches used in reviewed p

Publications ID→ 1 2 3 4 5 6 7 8 9 10 11

Types of methods
(models or indices)

Spatial analysis of case
clusters/hotspots

✓ ✓ ✓ ✓ ✓

Spatial autocorrelation
measures

✓ ✓

Logistic regression and
multinomial models

✓ ✓

Generalized Linear Models/
General additive model
(GAM)

✓ ✓ ✓

Kernel estimation ✓

Environmental niche
modeling/Species
distribution modeling
(Suitability)

✓

Maximum Entropy (MaxEnt) ✓

Geographically weighted
regression

Kriging and co-kriging ✓

Knox test concept
(space- & time-distance)

Temporal indices (occurrence,
duration, intensity)

✓

Water-associated disease
index -WADI (Vulnerability)

✓

Types of risk level

Categorical risk level ✓ ✓ ✓

Continous risk level ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Types of maps

Descriptive maps ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Validated maps ✓ ✓ ✓

Predictive maps ✓ ✓ ✓

Early warning system (EWS) ✓
Modeling approaches
A variety of mathematical and statistical methods were
used to generate dengue risk maps (Table 2). Most
studies used multiple or complementary approaches.
Reported dengue cases were used along with other
selected predictors (socioeconomic, climatic and demo-
graphic factors) to estimate the risk of dengue occur-
rence over a geographical area. The maps were based on
values computed from the selected predictors for each
map pixel (smallest surface area with a specific value).
Methodologically, we distinguish the use of models
from that of indices as such a way as to obtain risk esti-
mates. Models imply individual use of variables while
indices use a composite of variables computed from the
available data.
ublications

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Total

✓ ✓ ✓ ✓ ✓ 10

✓ ✓ ✓ ✓ 6

✓ ✓ ✓ ✓ 6

✓ ✓ 5

✓ ✓ ✓ 4

✓ ✓ 3

✓ ✓ ✓ 4

✓ 1

1

✓ 1

✓ ✓ 3

1

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 12

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 18

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 19

✓ ✓ ✓ ✓ ✓ ✓ 9

✓ ✓ ✓ ✓ ✓ ✓ 9

✓ ✓ 3
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Models
Spatial analysis aiming at detecting dengue clusters and
hotspots was the most common approach used in 10
studies to generate risk maps; six of which used mea-
sures of spatial autocorrelation (Table 2). Cluster detec-
tion allowed the identification of areas where dengue
cases were concentrated rather than being geographic-
ally randomly distributed. Through modeling these areas
could be identified as hotspots that are most likely to re-
quire public health awareness and intervention. Spatial
autocorrelation estimated the degree to which observations
close to each other were more likely to be correlated.
Logistic regression models, multinomial models and the

more general generalized linear models and general addi-
tive models (GAM) were common approaches used to
compute risk levels and create maps. One study (26) used
a generalized linear mixed model (GLMM), a model that,
in addition to the fixed effect, includes a random effect for
which the hypothesis of independence of observations is
no longer assumed. Environmental niche or species distri-
bution modeling that models the suitability of an environ-
ment in this case to dengue cases was used in three
studies (1, 17, 18). This approach is commonly used in
Ecology to determine where species are more likely to
be found or to establish themselves. For studies (1) and
(17), the method was based on maximum entropy using
MaxEnt algorithm while study (18) adapted a genetic
algorithm. Maximum entropy approach was also used
in studies (1) and (26) using different computational
methods. Because niche modelling and maximum en-
tropy approach can encompass large area and diverse
environmental conditions, these categories of models
are also well suited for larger scales, e.g. country scale
(19). Kernel estimations were used in four studies (7, 12,
25, 26). Some methods were found only once, namely
geographically weighted regression (13), kriging and
co-kriging (9), and Knox test concept to generate space-
distance and time-distance aimed at identifying spatio-
temporal clusters (20).
Indices
Indices were used in four studies. One approach consisted
of using three different temporal indices that describe oc-
currence, duration and intensity of dengue based on re-
ported dengue cases and population data. It was developed
in Taiwan by Wen et al. 2006 (23), further elaborated in
2010 (24), 2010, and applied by Galli & Netto in Brazil
(2008) (8). This use of indices was simpler to implement
because it did not necessitate further computation. An-
other approach employed only by one group (6) consisted
of using the Water Associated Disease Index (WADI) and
aimed to model vulnerability to different water-associated
diseases, including dengue.
Risk level
Risk levels computed from models or indices are usually
continuous estimates ranging from zero to one, with
“zero” indicating no risk of dengue and “one” confirmed
dengue in the area. Eighteen studies displayed raw con-
tinuous values while twelve categorized the risk level,
alone or in addition to continuous values (Table 2). The
cut-off values used for categorization were rarely given
explicitly. The numbers of risk categories ranged from
three to five in a gradation from low to high. Studies
using the temporal indices (8, 23, 24) used more com-
plex categorizations that included eight levels and incor-
porated a temporal component. Three studies (2, 12, 24)
computed the categorized risk values of a given area (i.e.
map pixel) by considering the continuous risk value of
the area itself and that of its neighbors, in an analysis
with Local Indicators of Spatial Autocorrelation (LISA).
Study (24) combined the temporal indices approach and
applied LISA methods to generate a risk map that can
be interpreted in a conventional “low to high” gradation.
In summary, the reviewed publications modeling ap-

proaches could be grouped in four categories in view of
the different types of predictors used, namely: i) popula-
tion, ii) demographic and socioeconomic, iii) climatic
and environmental, and iv) entomological (Figure 4 and
Additional file 2: Table S2). A fifth category was added
to indicate a temporal component. In modeling ap-
proaches used by more than one study, all five categories
of predictors were included (Figure 4). However, this
was not the case in modeling approaches used only by a
single study. As a consequence, patterns regarding types
of predictors as a function of methodology were not eas-
ily discernable. In general modeling approaches used
only in one study used fewer predictor categories. Those
based on indices used a maximum of three categories
that always included population and socio-economic
predictors. The small number of such studies, however,
may not reflect the full potential and variety of possible
applications.

Types of risk maps
We divided the reviewed risk maps into four different
categories; descriptive, validated, predictive and early
warning system (EWS). Within this review, 19 studies
out of 26 included descriptive maps (Table 2). For the
most part, these maps described retrospective dengue
occurrence within a context of specific socio-economic
or environmental conditions. Although classified as de-
scriptive, they were not simply inventory maps directly
plotting raw databut presented the results of a modeling
approach. They were nonetheless classified as descriptive
because the resulting risk maps were mostly descriptive
and lacked validation and predictive values. They were
primarily based on the premise that the location of



Figure 4 Types of modeling approaches vs. types of predictors (temporal, population, demographic and socio-economic (Dem. + SE),
climatological and environmental (Clim. + Env), and entomological (Entomol.) used in reviewed publications. Abbreviations: reg. = regression;
GAM/GLM/GLMM = general additive model/generalized linear models/generalized linear models; MaxEnt = Maximum Entropy;
GWR = geographically weighted regression; est. = estimation; WADI = water-associated disease index.
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previous events was a good indicator of where future
events might occur.
Nine of the reviewed studies (1, 6, 7, 16–19, 25, 26) were

classified as including validated maps. They included an
evaluation of the model by comparing predicted to ob-
served values to assess the quality of the model and the
goodness of fit. This approach is usually a step toward
making predictive maps. Nine of the 26 studies included
such predictive maps. They aimed to model dengue occur-
rence in areas where data were not readily available by
using knowledge on previous occurrence, socio-economic
or environmental characteristics. Data sets were typically
subdivided into training and test sets to allow for simula-
tion of area without known data and subsequently test the
quality and fit of the model. Only three studies (11, 16, 26)
made an attempt at integrating an early warning system
(EWS) and they all included advanced approaches and a
temporal component. The approaches with EWS attempted
to establish criteria in early recognition of disease out-
breaks for application in public health.
Considering the types of maps created in relation to

the modeling approaches used (Figure 5), it appears that
the majority of descriptive maps used a cluster analysis
and hotspot detection approaches. As these approaches
were also used for all other types of maps it represented
an entry point in creating risk maps. Logistic regres-
sions, general additive models, generalized linear models,
and kernel estimations are general approaches that are
widely used for the creation of all types of maps. Niche
modeling and maximum entropy approaches allowed the
generation of validated and predictive maps. The method
using temporal indices represented a simple approach that
was useful to create descriptive maps. Generating maps
that include EWS relied on a variety of modeling ap-
proaches of higher complexity.

Discussion
Predictors
A large variety of predictors were used to create dengue
risk maps and there was no pattern of predictor use as-
sociated with specific approaches.

Population, demographic and socioeconomic data
Demographic data were mainly used by studies that aimed
to develop risk maps at a local scale, such as wards or
towns. Socioeconomic and demographic data were used



Figure 5 Types of modeling approaches vs. types of maps. Abbreviations: EWS: Early warning system, reg. = regression; GAM/GLM/GLMM= general
additive model/generalized linear models7/generalized linear models; MaxEnt = Maximum Entropy; GWR = geographically weighted regression;
est. = estimation; WADI = water-associated disease index.
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as a proxy for population mobility and housing conditions
[9] and potential exposure to the vector. In this context,
these predictors are known to be associated with aware-
ness about dengue, the use of personal protective
measures, and health seeking behavior [10]. In the
publications reviewed here, predictors associated with
poor housing conditions were reliable indicators for ele-
vated dengue incidence (3, 4, 6, 7, 11, 17, 22), regardless of
whether the data were collected by remote sensing or by
other means. A number of maps were limited to describ-
ing where dengue cases had occurred and employed
approaches that were mostly based on population data
(9, 13). However, such descriptive maps were useful for
visualizingdisease hotspots and areas of heightened
dengue risk at a given time and space (5, 7, 10, 12, 14,
15). They were also effective at identifying unusual var-
iables that might be important for dengue risk. For ex-
ample study (21) identified, among others, proximity
to cemetery, hospital, schools and public infrastructure
as significant predictors; three studies (4, 12, 22) iden-
tified a combination of gender and specific age groups.

Climatic and environmental data – temporal component
Climatic and weather data were found to be particularly
useful for the generation of predictive risk maps and
almost all the reviewed publications that have a temporal
component include such data. These findings show that
high resolution for this type of data is a prerequisite for
the creation of predictive maps, especially those used for
early warning. Although purely temporal modeling of
dengue was shown to produce good forecasts of the gen-
eral dengue situation in some studies [11], our review
showed that for the generation of maps at higher reso-
lution, other factors, such as human movements or
housing conditions, are more likely to be linked to the
occurrence of dengue cases.

Remote sensing
Although remotely-sensed data are not used to detect
Aedes breeding sites directly, the information on the
type of land cover allowed an indirect assessment of ap-
propriateness for vector breeding and survival (1, 6, 15,
18–21) [12]. Remote sensing was found to be an efficient
tool to collect data on different predictors over large
areas and should be considered for inclusion in future
models for risk map creation. In contrast to the fields of
malaria and other vector borne infectious diseases, our
systematic literature review showed that reliable predic-
tors for dengue have not yet been established. Unlike the
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situation with malaria where the vector often breeds in
meter-size ponds, a major problem with dengue is the
high number of non-detectable breeding sites [13-16].
The studies reviewed here did not address this issue.
With advances in satellite technology the resolution of
spatial imagery is likely to increase, allowing the estima-
tion of additional predictors to appraise where humans
and vectors interact. Information extracted from satellite
imagery can be seen as a cost-effective approach to col-
lecting important data for the creation of dengue predic-
tion maps and the steering of control strategies. The wide
variety of predictors sourced via remote sensing can pro-
vide an underlying “base map” displaying human and nat-
ural prerequisites for dengue transmission. Making them
available for public health institutions would be useful in
reducing the need for extensive data searches and in limit-
ing the costs for risk map creation [17].
Entomological data
The dengue vector Aedes is a prerequisite for dengue
transmission. However, despite the intensive use of ento-
mological data in several studies (3, 5, 10, 15, 18, 25, 26),
establishing the link between entomological aspects mea-
sured in the field (larvae abundance, mosquito capture,
ovi-trapping) and clinical dengue cases remains elusive to
this day. Some studies identified a positive correlation be-
tween larval abundance and dengue case location (14)
while others found no link (5, 10). Studies that included en-
tomological predictors typically put a high emphasis on
those predictors although there were not always statistically
significant. These contradictory results indicate that effect-
ive larval samplings representative of actual entomological
profiles are difficult to achieve and that most surveys yield
spurious results that are not useful for prediction. The lit-
erature suggests that pupae surveys, using the pupa index
(defined as the number of pupae per 100 houses inspected),
are better adapted to estimate vector abundance [18]. How-
ever, none of the reviewed studies used such pupae surveys
as the basis for risk mapping. Adult vector abundance and
oviposition showed a more consistent correlation with dis-
ease outcomes (5) although medium rather than highest
vector abundance may be associated with highest dengue
risk (15). Adult mosquito capture was sparsely utilized,
possibly because they are more difficult and costly to be
put in place and kept up running. Commonly used ento-
mological indices such as house-, container- or Breteau-
index were originally designed to check the efficacy of
vector control measures rather than evaluate vector density.
Pupa and adult indices may provide more reliable predic-
tors but the evidences remain limited. Because entomo-
logical surveys are labor-intensive and costly, it would be
important to establish their relevance in risk mapping be-
fore recommending their use.
Research gaps
Host serological profile and virus genetic diversity
The weakness of current dengue prediction maps origi-
nates from the fact that dengue is highly dynamic and
extremely multifactorial. Only a fraction of dengue infec-
tions are symptomatic, and host immunity plays an im-
portant role in diffusion models. Immunology is difficult
to track and requires data on the population´s serology,
and poses a major challenge for the generation of current
models. Only one study (20) integrated serology profile
and virus serotyping. The coexistence of different sero-
types and viral lineages adds complexity to modeling at-
tempts [19,20]. Even when serotypes are documented,
they may be insufficient to explain the full spatial hetero-
geneity of dengue transmission [21]. The association be-
tween introduction of a new serotype and outbreaks, and
the time lag between the two require further studies using
strain specific transmission data [22]. Furthermore viral
genetic variability may be an essential component to bet-
ter understand the transmission dynamics and its spatial
patterns. For future studies that include dengue serotyp-
ing, those data could be used as an additional predictor
for establishing an early warning signal, although it does
not always predict the occurrence of an immediate epi-
demic [23].

Mobility
Human mobility and movements seem to have much
greater influence than previously thought [24-26], even
on a local scale [27] and are not addressed in depth in
any of the models reviewed. In our review, predictors
dealing with mobility were found only in one study (3):
“Staying at home during the day”. Capturing human mo-
bility, which may be expected to be lower in young and
older age groups, along with vector movement and work-
ing at relevant spatial scale is critical in adequately model-
ing dengue dynamics [28]. Studies tracking individual
mobility patterns using cell phone data at various geo-
graphical locations have shown than 90% of the popula-
tion has regular patterns that can be described by simples
rules [29]. It would thus be useful to geo-reference place
where people spend most of their time (homes, schools,
office places, markets, places of worship, hospitals, etc.)
when studying mobility pattern related to dengue cases in
a community. This is a reasonable approach to tackle lo-
calized dengue outbreaks because there is evidence that
most dengue transmissions occur within a small time-
space cluster, namely within one kilometer and within one
month of an identified case [30]. For this purpose geo-
referencing of dengue datasets is necessary. Ubiquitous
technology that can achieve such task is nowadays avail-
able and do not pose a problem anymore. This will allow
the exploitation of data at a much finer scale as recom-
mended for improved surveillance [22]. Encompassing not
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only the home address of patients but the locations of
their usual whereabouts would give a much more accur-
ate picture of the potential infection area. Assuming
that ethical considerations are respected and that data
are exploited at population level, this could better ex-
ploit the potential of maps that are still under-utilized
in routine public health applications.
As more sophisticated models are developed to better

capture the complexity of dengue dynamics [31], creation
of risk maps would benefit from the above mentioned
approaches to enhance predictive capability. Approaches
using mechanistic models rather than statistical approaches
as was the case in the reviewed studies may provide more
appropriate tools to explore this field of research including
the development of early warning systems.

Modeling approaches
The modeling approaches used in the reviewed publica-
tions were varied and ranged from statistics, geography,
ecology to genetics. Cluster detection used for dengue cases
and hotspot analysis is often used as a starting point to gen-
erate risk maps. Approaches used in statistics and applied
to risk mapping included general additive models, general-
ized linear models, kernel estimation, or Bayesian frame-
works. Niche modeling and maximum entropy algorithms
are commonly used in ecology. Geographical weighted re-
gression and kriging are a common tool in geography.

Models
Approaches based on statistical methodology were very
commonly used. Many undertook an analysis of dengue
profile in the study area (e.g. 3, 4, 7, 25). A number of
them were more complex and mathematically involved,
allowing the development of predictive maps. This ap-
proach has been used successfully to describe the poten-
tial areas of dengue occurrence at a global scale [8].
Several studies successfully used such approaches and
usually included a temporal component, as follows: pre-
dictive maps (1), spatio-temporal diffusion pattern (12),
spatio-temporal model as a precursor for an EWS (16),
predictive maps on climate scenarios (17), a genetic al-
gorithm (18), the design and implementation of the den-
gue risk stratification system at the national and the
urban levels (19), predictive incidence maps and spatio-
temporal cluster detection (20), and a spatio-temporal
EWS (26). Indicators of autocorrelation, used here in six
studies (Table 2), are useful to strengthen the models by
borrowing information about dengue occurrence from
the neighboring or connected areas. This is especially
useful when available data is scarce, both at spatial or
temporal scale.
Several studies were distinctive in their methodological

approaches, and a few employed unique approaches (6,
9, 13, 20). Niche modeling and suitability maps fell in
their own category although different methodologies wer-
eused to create the maps: MaxEnt algorithm (1, 17, 19),
Bayesian maximum entropy (26), and genetic algorithm
(18). There was only one study (19) that demonstrated ac-
tual implementation in the field and proved its large-scale
applicability. The three studies using temporal indices
(8, 23, 24) proposed a practical approach with easy im-
plementation capabilities in a public health context.
Study (6) used the water-associated disease index (WADI).
This approach was relatively complex, but it was able to
generate predictive vulnerability maps encompassing socio-
economic and environmental dimensions.

Indices
Approaches based on temporal indices (23–24) are sim-
pler and emphasize the temporal component. Although
lack the advantage of using spatial data they are useful for
visualizing results on maps. In contexts where dengue
longitudinal data are reliable but sophisticated analytical
spatial analysis is lacking, they may represent a practical
public health approach because they are easy to imple-
ment using surveillance data collected at district level.

Types of risk maps
Although all studies used modeling approaches to com-
bine collected influencing predictors, the general nature
of maps created in the reviewed studies is diverse.
Descriptive, validated, predictive and EWS maps require
different predictors and facilitate different public health
purposes.

Descriptive maps
The majority of 19 studies dealt with descriptive maps,
using environmental and human variables associated with
dengue cases. One weakness of this type of maps is the
limited predictive value, as they only point out past areas
of augmented dengue occurrence. Despite their relative
simplicity they can help public health authorities in spot-
ting areas that have an increased probability over time and
are therefore likely to show similar patterns in future.
Those approaches work relatively well in areas where den-
gue transmission is endemic and the detecting of geo-
graphic clusters of cases is of interest. Although predictive
capacity is lacking in this case, such information can be
valuable to deliver care and interventions such as vector
control or vaccination campaigns in the future to areas
with high dengue transmission.

Validated maps
Validated maps mostly represent a step toward creating
predictive maps that are of greater value for public
health applications. Predictive maps were heterogeneous
in their mode of creation. All nine studies developing
predictive maps covered within this review used different
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sets of predictors for their creation. For the creation of
validated maps, most studies used a data subset to test
correlations between influencing variables and reported
dengue cases. Still lacking the explicit prediction of new
dengue cases, those maps were found to permit attribution
of elevated risk of case occurrence to specific predictors,
such as socioeconomic status and type of neighborhood.
Allowing tracing back and spotting specific risk variables
is of major importance in a public health context because
counter measures can be specifically targeted to eliminate
those risk factors, e.g. poor housing conditions, construc-
tion sites. In particular, on a local scale such as a neighbor-
hood this type of map provides an excellent planning
guide to execute constructional and infrastructural mea-
sures. Despite their increased need for input data and
hence possibly increased costs, we assess these models as
more valuable for this specific use than purely descriptive
maps.

Predictive maps
Predictive maps (1, 6, 11, 16–20, 26) allow the designa-
tion of areas at risk outside the study area where few or
no dengue case records are available. Their main
strength is to deliver information on a future epidemic
situation for a defined point in time and/or an area.
Most of the reviewed studies dealing with this type of
maps developed models with low spatial resolution and
predicted dengue risk on country or state scale. Only
two studies (1, 20) were run on municipality level. This
fact defines the designated field of use of the maps that
become appropriate tools to demarcate risk areas within
regions considered to be prone to dengue. On the other
hand most of the reviewed studies did not deliver infor-
mation at a spatial precision that would be sufficient to
take actions on a finer scale. Because dengue prediction
maps were capable of incorporating climatic variables,
available predictive scenarios could range from short-
term (e.g.weather) over mid-term (e.g. seasons; ENSO)
to long-term (e.g. climate change) influence on dengue
epidemiology. From a public health perspective those
maps are an ideal tool to prepare larger administrative
areas for recurring dengue occurrence or even expected
new introduction of dengue due to changes in presence
and type of climate, vegetation, population, virus, and
vector.

Early Warning Systems (EWS)
Early warning systems within this review (11, 16, 26)
build up on predictive maps and are therefore included
in both of those categories. One study (26) fell short of
providing an effective EWS because the model could re-
produce only large outbreaks but not smaller ones. Simi-
larly another study (11) had potential for application in
EWS, but its applicability was not proven. Study (16)
proposed an EWS methodology at a national level cover-
ing large administrative divisions, but again its practical
applicability remains to be established. Their added
value is the capability to deliver more precise forecasts
in space and time. All of the reviewed studies developing
EWS, incorporated temperature and precipitation in their
model building. Those predictors turn out to be crucial
for prediction of dengue, mainly because they determine
vector breeding and survival and hence disease trans-
mission. EWS are ideal tools to support health system
preparedness, allowing optimal resource allocation and
steering of interventions in space and time. A recent ex-
ample is the use of such data to alert public official of
potential health risk during a major public event such as
the football world cup [32]. Their downside is the high
amount of input data needed to build a robust EWS sys-
tem and the lack of spatial precision.

Scale and temporal component: different maps for different
purposes
The different types of maps serve different purposes and
have different roles in public health applications. A
Cochrane review on the evidence on the application of
tools for dengue outbreak prediction/detection and trend
monitoring in surveillance systems highlighted the lack of
evidence about the most feasible and sustainable surveil-
lance [33]. Prospective studies may be needed to better
define the most appropriate and most cost-effective den-
gue surveillance system and trigger for dengue emergency
response.

Scale
The analyzed studies showed that the more the risk map’s
scale moved towards a state or country perspective, the
more environmental and climatic factors played a role for
their generation. Maps at country and continent scale
were found to mostly be suitability maps, evaluating where
the environmental conditions are appropriate for vector
breeding and survival. This approach is common in stud-
ies looking at areas free of dengue but where the virus
could potentially spread, given adequate environmental
conditions [34]. However, this type of studies was not con-
sidered in this review. From a public health point of view,
maps at regional or national levels are useful for strategic
decisions on how and where to most optimally spend re-
sources [32,35] while routine surveillance data collected
and analyzed at local scale benefit short term response
[22]. Acquiring data of good quality at relevant scales is
crucial for fostering the development of robust analyses
and reliable risk maps [17].

Temporal component - applicability and generalizability
For public health applications there is a tradeoff between
the complexity of an approach that may be developed in
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an academic environment and its applicability in day to
day applications at a district or national level.
Bridging this gap appears essential for better disease

control. As the focus of risk maps shifts from a surveil-
lance system to a system of prediction, the number of
driving factors that have to be included into the model
will increase. Therefore a tradeoff exists between surveil-
lance approaches that are basically descriptive but easier
to implement and predictive approaches that require
more data but can generate more valuable information.
For some purposes the limited predictive capacities that
some surveillance systems offer [36] have to be taken
into consideration when deciding for an appropriate tool
for use in public health. Given the complexity of spatio-
temporal analysis to generate predictive maps, early warn-
ing systems for dengue remain difficult. Purely temporal
approaches may be more practical for public health rou-
tine applications at this stage [11] but research should fur-
ther develop the field [31] to take advantage of the
availability of new technologies and applications that may
become mainstream in the future. Only a few studies ex-
plicitly mentioned that their methodology could be applied
to other diseases (6, 16, 19, 24) even though most ap-
proaches were general enough to be applied more widely.

Study limitations
The search in the literature databases was performed in
English language only. Although no language restrictions
were applied to the results, literature using keywords
and MeSH terms in other languages might have yielded
additional relevant studies. Similarly, ambiguous use of
technical terms, for example the delimitation between
weather, seasonality and climate, and prediction, forecast
and risk, within the researched literature could have lim-
ited or biased our search results. Most data used for risk
mapping are secondary data that have not been collected
primarily for the mapping purposes and this may inher-
ently limit the quality of the data analysis. Finally, this
review deliberately focused on studies that included den-
gue cases to link the issues with public health concerns.
As a consequence, a number of studies dealing exclu-
sively with entomological risk or with environmental
suitability were not considered in this review.

Conclusions
This review has shown the great diversity of both predic-
tors and modeling approaches employed to create dengue
risk maps. There is little standardization and no specific
patterns of analysis. This shows that the field of predictive
dengue risk mapping is young and still evolving. Dengue
is characterized by a high variability of reported clinical
cases in time and space. To date, this remains a challenge,
and predictive models still lack reliability for anticipating
outbreaks. The prediction of spatial and spatio-temporal
dengue risk is complex to model and depends on multiple
and diverse factors [37,38]. The distribution and dynamics
of dengue transmission are not only contingent on envir-
onmental and socioeconomic variables, which most models
we surveyed considered. To significantly improve the
current ability to describe dengue transmission dynamics,
future models need to consider serological profiles, circu-
lating viral serotypes/genotypes and human movements
[39]. Geo-referencing data and analyzing data spatially is
crucial to achieve this goal. The general availability of mo-
bile devices with geo-referencing abilities makes it possible
to speculate that integrating the last two factors is feasible
within a reasonable timeframe. Despite their limitations,
dengue risk maps can be powerful tools to facilitate deci-
sion making in public health, ranging from surveillance to
prediction maps. The further development of this tool,
useful both for research and public health applications,
will depend on the acquisition and availability of diverse
data of good quality with adequate requirement in term of
spatial and temporal resolution.
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