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Abstract
Background: Spatial cluster detection is an important tool in cancer surveillance to identify areas
of elevated risk and to generate hypotheses about cancer etiology. There are many cluster
detection methods used in spatial epidemiology to investigate suspicious groupings of cancer
occurrences in regional count data and case-control data, where controls are sampled from the at-
risk population. Numerous studies in the literature have focused on childhood leukemia because
of its relatively large incidence among children compared with other malignant diseases and
substantial public concern over elevated leukemia incidence. The main focus of this paper is an
analysis of the spatial distribution of leukemia incidence among children from 0 to 14 years of age
in Ohio from 1996–2003 using individual case data from the Ohio Cancer Incidence Surveillance
System (OCISS).

Specifically, we explore whether there is statistically significant global clustering and if there are
statistically significant local clusters of individual leukemia cases in Ohio using numerous published
methods of spatial cluster detection, including spatial point process summary methods, a nearest
neighbor method, and a local rate scanning method. We use the K function, Cuzick and Edward's
method, and the kernel intensity function to test for significant global clustering and the kernel
intensity function and Kulldorff's spatial scan statistic in SaTScan to test for significant local clusters.

Results: We found some evidence, although inconclusive, of significant local clusters in childhood
leukemia in Ohio, but no significant overall clustering. The findings from the local cluster detection
analyses are not consistent for the different cluster detection techniques, where the spatial scan
method in SaTScan does not find statistically significant local clusters, while the kernel intensity
function method suggests statistically significant clusters in areas of central, southern, and eastern
Ohio. The findings are consistent for the different tests of global clustering, where no significant
clustering is demonstrated with any of the techniques when all age cases are considered together.

Conclusion: This comparative study for childhood leukemia clustering and clusters in Ohio
revealed several research issues in practical spatial cluster detection. Among them, flexibility in
cluster shape detection should be an issue for consideration.
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Background
Spatial cluster detection is an important tool in cancer sur-
veillance to identify areas of elevated risk and to generate
subsequent hypotheses about cancer etiology. A spatial
disease cluster may be defined as an area with an unusu-
ally elevated disease incidence rate [1,2]. There are several
cluster detection methods used in spatial epidemiology to
investigate apparently suspicious groupings of cancer
occurrences in both regional count data and case-control
data, where the controls are often sampled from the at-
risk population and are used to estimate local relative risk
or local rates, depending on the method utilized. Numer-
ous studies [3,4] in the literature have focused on child-
hood leukemia because of its relatively large incidence
among children compared with other malignant diseases,
its apparent tendency to cluster, and the substantial public
concern over locally elevated leukemia incidence. Many
cluster-inducing factors have been considered in the liter-
ature on leukemia, including infectious agents [5] and
population mixing[6,7], environmental pollution [8],
such as benzene [9], pesticides [10], and radiation [11],
and geographic variation in other risk factors, such as
inherited genetic risk [12], maternal alcohol consumption
and cigarette smoking [13], and socioeconomic status
[14]. There are many studies of potential cancer clusters in
the literature, and the reader is referred to two useful
reviews [15,16].

In this paper, we present an empirical analysis of the spa-
tial distribution of leukemia incidence among children
from 0 to 14 years of age in Ohio from 1996–2003 using
individual case data from the Ohio Cancer Incidence Sur-
veillance System (OCISS) in response to public concern of
potentially elevated cancer risk among children in areas of
Ohio. There has been no previous comprehensive and sys-
tematic spatial analysis of potential clustering of child-
hood leukemia in Ohio. Other studies [7,17] of potential
clusters of childhood leukemia in Ohio do not include
spatial analysis methods or individual case data, and
instead typically use chi-square tests of differences in
expected and observed case counts in census or political
units. This approach is not expressly a test for clustering or
clusters, but a test of elevated counts inside an often het-
erogeneously populated area, for example, a county, and
the test for one area is considered independently of other
areas. This approach does not consider if areas with signif-
icantly more cases than expected are spatially juxtaposed
[18,19]. We choose not to use aggregated case data at the
census level because we have access to individual case and
control data, want to avoid unstable regional rates caused
by small observed case counts and small population
counts [20,21], and want to avoid the modifiable areal
unit problem (MAUP) [19] arising from using political
boundaries that are arbitrarily related to public health.
More specifically, we explore whether there is or is not sta-

tistically significant global clustering and local clusters of
individual leukemia cases using numerous published
methods of spatial cluster detection. We, therefore,
address the questions of whether childhood leukemia
cases have a significant tendency to cluster in Ohio and
where the most unusual groupings of cases, if any, are
located. The evaluation of the null hypothesis of no signif-
icant global spatial clustering of childhood leukemia uses
three different methods: the K function, the kernel inten-
sity function, and Cuzick and Edwards' method. See
Waller and Jacquez [22] for a discussion of hypotheses in
tests for disease clustering. We evaluate the null hypothe-
sis of no local areas of elevated childhood leukemia risk
using the kernel intensity function and Kulldorff's scan
statistic. The distinction between clustering and cluster
detection tests has been made in the literature [1,19,23-
25], and we follow that distinction in this paper. Cluster-
ing and cluster detection tests are viewed as complimen-
tary, as they test different hypotheses. A simulation study
by Waller et al. [1] indicated that it is possible to have a
significant cluster, but no overall significant clustering. In
spatial point processes, the first-order property (intensity
function) of the process is used for a test of clusters and
the second-order property (K function) is used as a test for
global clustering [19].

Our comparison of cluster detection methods is similar in
spirit to Griffith's comparison of disease mapping tech-
niques for West Nile Virus [26], and is motivated by the
numerous and diverse analytical options currently availa-
ble to cancer prevention researchers investigating poten-
tial clusters with case-control data. There have been
methodological comparison papers in the literature for
spatial cluster detection [27-31], but none exclusively for
individual level data. Our selection set of methods to
compare in this paper includes the leading published
methods designed for individual level case data that are
currently implemented in publicly available software. We
use R software [32] to implement the K function and ker-
nel intensity function, ClusterSeer software [33] for Cuz-
ick and Edwards' method, and SaTScan [34] for
Kulldorff's scan statistic. The reader interested in a com-
parison of general functionality of free software that may
be used for cluster analysis is referred to a review by Anse-
lin [35], although not all features compared in the review
are expressly for individual case data. We next briefly
review each of the clustering and cluster detection tech-
niques and then present and compare the findings from
them.

Methods
Data
In the subsequent analysis, we use 738 individual OCISS
cases diagnosed between 1996–2003, geocoded to the
street level using geographic information system (GIS)
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software from ESRI [36]. The use of the cancer data in this
study was approved by the Ohio Department of Health
Institutional Review Board. The childhood (0–14) leuke-
mia rate for Ohio between years 1996–2003 was 4.2 per
100,000 persons, compared to the SEER rate of 4.8 per
100,000 persons [37]. The completeness of incidence data
in OCISS varies by year, for example, the percent of com-
pleteness was 85% in 1996, 92% in 1998, and 95% in
1999 [38]. We excluded cases from the analysis that were
not address matched to the street level and were matched
only to the ZIP Code centroid level. There were 86 cases
that were matched to the centroid level and omitted to
avoid inducing spurious clustering. A map of these cases
showed an essentially random pattern across Ohio, nei-
ther occurring in exclusively urban or rural areas, and the
lack of pattern or concentration in the cases helped to jus-
tify removing them from the study. As stated earlier, this
paper focuses on a spatial case-control study, which
requires controls sampled from the at-risk population for
leukemia that did not develop leukemia during the same
time period of births as the reported cases. We used as
controls births sampled from the Ohio Vital Statistics
(OVS) records where there were digital files available,
from 1989–2003, which contains most of the possible
birth years of cases (1982–2003). More specifically, we
began with 21,906 randomly sampled birth records from
OVS that were geocoded to the street level and then sys-
tematically sampled 7,302 records as controls, selecting
every third record where the birth records were ordered by
longitude and latitude. Presumably, any rural bias in the
failure to locate addresses in the geocoding process would
affect both cases and controls, so any impact in the analy-
sis presented here is likely slight. The systematic sampling
scheme was employed to provide a geographically repre-
sentative sample of the at-risk population and resulted in
a control-case ratio of approximately 10 to 1. Visual com-
parison of the controls and the larger set of birth records
suggested the controls were a spatially representative sam-
ple. The control-case ratio used was a compromise
between using as many controls as possible and computa-
tion considerations for certain methods. The idea of using
as many controls as possible draws from Peter Diggle's
comments in his written discussion of Cuzick and
Edwards' paper [39] introducing their nearest neighbor
test for clustering. In fact, in a preliminary analysis with
the Cuzick and Edwards method we used a control-case
ratio of 3 to 1 to align with traditional case-control studies
in epidemiology, but found significant clustering at small
distances that appeared to be due to a lack of an adequate
number of controls in some rural areas. A visual display of
the controls using this ratio suggested that controls under-
represented the at-risk population in some rural areas. The
ideal number of controls to use relative to the number of
observed cases and the underlying population structure is
an important issue left for future research. A map of the

sampled controls from a 10 to 1 ratio of controls to cases
shows a pattern that appears to better approximate the
general distribution of population in Ohio. Figure 1 dis-
plays the sampled controls as filled circles and the cases as
open circles, where points have been uniformly randomly
shifted from their true locations for data confidentiality
[40]. Based on the figure, it appears there is no clear over-
all clustering in the cases and no obvious clusters of cases,
after visually accounting for the distribution of popula-
tion, as represented by the controls. However, the map of
cases can be misleading because of the potential for many
cases to be located at nearly the same location given the
map scale, and a statistical analysis is needed to formally
test for clustering and the presence and location of clus-
ters. To investigate potential clustering and local clusters,
we assume a realization of a heterogeneous Poisson point
process for the controls and a second such process for the
cases, with a constant risk null hypothesis where more
cases are expected with a larger population at risk. To test
for spatial heterogeneity in leukemia risk among groups,
we perform four total sub-analyses, one for cases of acute
lymphocytic leukemia (ALL), the dominant sub-type of
leukemia among children, and three for mutually exclu-
sive age groups of 0–4, 5–9, and 10–14 with the Cuzick
and Edwards method and the scan statistic in SaTScan.

Results
K function

The K function is a method introduced by Ripley [41] for
testing for general clustering in a point pattern. It meas-
ures how many events occur within a certain distance of
other events. A simple formula for the K function is K(h)
= (average number of events within distance h of a ran-
domly chosen event)/(average number of events per unit
area). Also see Diggle [42] and Waller and Gotway [19] for
a detailed discussion of the K function. The K function
uses a vector of distances h to calculate the function many
times at a range of distances in the study area. One can cal-

culate a transformation, (h), of the estimated K function

(h) that, when plotted on the y axis as (h) - (h), aids
in the visual inspection of the K function over a range of
distances. Besag [43] recommended the transformation of

(h) = [ e(h)/π]1/2. The e is the edge-corrected K func-

tion estimate defined by Ripley [44] as

, where the weight wij is

the proportion of the circumference of the event-centered

circle with radius dij that is within the study area and  is

the intensity estimate, equal to the number of events in
the study area divided by the area of the study. The
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Childhood leukemia cases (unfilled circles) and controls (filled circles) for years 1996–2003Figure 1
Childhood leukemia cases (unfilled circles) and controls (filled circles) for years 1996–2003.
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expected value under complete spatial randomness (CSR)

of (h) - h is close to zero. The plot in the top of Figure 2

is of (h) - h for cases evaluated at a range of distances
over the study area with 999 Monte Carlo simulations of
CSR to create 95% confidence bands to assess significance
of deviations in the transformed, estimated K function
from CSR. Note that the data points in the study are pro-
jected to Universal Transverse Mercator (UTM), zone 17
coordinates with meters as the distance unit. The plot
indicates that there is significant clustering at smaller dis-
tances (less than 100,000 meters) and generally insignifi-
cant clustering at intermediate and large distances, where
the transformed K function falls within the confidence
bands. While the finding of clustering in the cases may
seem significant, it is not the complete story of this phe-
nomenon. To see this, we must inspect the bottom plot in

Figure 2, which is a plot of (h) - h for the controls. The
figures shows a similar pattern for cases and controls,
which indicates that the significant clustering at smaller
distances for cases is due to clustering in the underlying
population and not clustering in the cases above what is
observed in the at-risk population. While a visual compar-
ison of the K functions for cases and controls shows no
clear differences between the two, a test of difference in K
functions is needed to definitively answer the inquiry of
potential clustering in childhood leukemia.

Fortunately, when using the K function, one can calculate
a difference of K functions for cases and controls to detect
differences in patterns in the two point processes. The
simple formula for doing so is KD(h) = Kcases(h) - Kcon-

trols(h). For this difference in cases and controls, one can
calculate confidence bands using Monte Carlo randomi-
zation to evaluate significance of any differences in pat-
terning. To do so, one first conditions on the locations of
cases and controls, randomizes the case labels among the
locations, and then calculates the test statistic KD(h) at a
range of distances. This procedure is performed a set
number of times and the test statistic from the original
data is compared to the upper 97.5% limit of the test sta-
tistic values from the Monte Carlo randomizations to
assess significance. Figure 3 is a plot of the function KD(h)
over a range of distances for 999 randomizations of the
case labels and shows that, overall, there are not signifi-
cant differences in the K functions for cases and controls,
as the line for KD(h) falls mostly within the 95% confi-
dence bands. The key area of interest in the plot as in indi-
cation of clustering is the area above the 95% confidence
band, primarily at smaller distances based on intuitive
properties of a cluster. If the KD(h) line was in this area, it
would indicate significant clustering. That is clearly not

the case with these data. Therefore, the statistical test of
difference in K functions for cases and controls verifies the
visual impression drawn from Figure 2 of no clustering in
cases that is different than that in controls. The K function
difference plot in Figure 3 was made using R software, as
ClusterSeer software currently produces only individual
case and control K functions.

Kernel intensity function
While the K function is designed to test for clustering, the
kernel intensity function introduced by Kelsall and Diggle
[45] can be used to test for clustering and the presence and
location of local clusters. In fact, it is the only test in this
comparison that can explicitly evaluate both conditions.
The kernel intensity function calculates the number of
events expected in an area at location s (intensity) or the
probability of an event occurring at location s (density)
using a kernel function. The intensity and density func-
tions are proportional and are often used interchangeably
in practice [19]. The kernel function requires a bandwidth
that determines the size of the kernel and the overall
smoothness of the resulting estimate. In a Gaussian ker-
nel, which we make use of in this study, the bandwidth
corresponds to the standard deviation and larger band-
widths result in smoother kernel intensity functions. We
use Scott's [46] rule for optimal bandwidth selection in a
Gaussian kernel, where Scott's rule considers the number
of events and spatial variance of events in a point pattern
when calculating the bandwidth. The two-dimensional
Gaussian kernel we use has a bandwidth in both the u and
v directions, where the map coordinates are in the form of
(u, v). Applying Scott's rule to the Ohio data results in
bandwidths of 34,627 meters in the u direction and
30,882 meters in the v direction for cases and bandwidths
of 23,753 meters in the u direction and meters units in the
v direction for controls. The kernel function uses distance
between a location s and all other points as input to calcu-
late an intensity function at s. We evaluate the kernel func-
tion at each point on a 40 × 40 grid that completely
contains the study area, where the distance between adja-
cent grid points is approximately 11,619 meters. Figure 4
contains contour plots of the kernel density function for
cases and controls separately. The plots show similar pat-
terns in the probability of an event occurring at a given
point in the study area, where the probabilities are highest
in the three largest metropolitan areas of Cincinnati,
Columbus, and Cleveland. While the plots are somewhat
informative, a formal test of difference in the patterns
would be helpful.

Conveniently, one can calculate a log ratio of kernel inten-
sity functions for cases and controls to get a log relative
risk at a location on the grid. When considering all grid
points that cover the study area, this yields a log relative
risk surface. To calculate this log relative risk surface, we

L̂

L̂

L̂
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first redefine the kernel bandwidth with the kernel inten-
sity function ratio because it is beneficial to have the same
kernel bandwidth in both cases and controls in order to

have an equal spatial extent covered in the numerator and
denominator of the ratio. We initially choose for a kernel
bandwidth in both dimensions the mean of the control

K functions (solid) for cases and controls with confidence bands (dashed) and distance in metersFigure 2
K functions (solid) for cases and controls with confidence bands (dashed) and distance in meters.
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optimal bandwidths calculated previously, which is
22,647 distance units. We favor the controls in this band-
width selection because there are many more of them
than cases and they should in theory reflect the underlying
population distribution. This bandwidth yields a smaller

kernel than with the cases, and will reveal more detail in
the estimated kernel intensity function but will also be
more variable. With the kernel intensity function ratio,
one can again use Monte Carlo randomization of the case
labels to detect significant local differences in case and

Difference in case and control K functions with confidence bands (dashed) and distance in metersFigure 3
Difference in case and control K functions with confidence bands (dashed) and distance in meters.
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control intensities. Figure 5 shows the log relative risk sur-
face using the log ratio of kernel density functions for
cases and controls and also shows the significant areas of
log relative risk using the 2.5% lower and 97.5% upper
tolerance limits from 999 Monte Carlo randomizations of
the case labels. The hatched ("+") areas in the plot on the
right indicate significant local clusters of elevated log rel-
ative risk and correspond to the higher points on the log
relative risk surface map. The areas with "-" symbols have
significantly low disease incidence. The contour lines on
this plot correspond to smoothed levels of log relative
risk. The contour lines with value 0.5 indicate relative risks
of approximately 1.6 and the contour line of 1 signifies
relative risks of approximately 2.7. The highest log relative
risk is just over 1.5 (relative risk of 4.5) and is found in the
hatched area in eastern Ohio. The plots suggest that there
are areas of higher disease incidence in central, southern,
and eastern Ohio, and also an area of lower incidence
southeast of Cincinnati. As mentioned earlier, one can
also test for overall clustering with the kernel intensity
function method using a mathematical summary of the
local function ratios. The test statistic is a sum of squared
log ratios of kernel intensity functions across the study
area. Monte Carlo randomization is used to assess signifi-
cance of the test statistic for clustering. Figure 6 is a histo-
gram of the values of the test statistic from the Monte

Carlo randomizations of the case labels, along with the
test statistic for the original data plotted on the histogram
as a vertical line. The p-value of 0.27 indicates that there is
no significant global clustering in the cancer cases, consid-
ering the distribution of the at-risk population. To explore
the sensitivity of the results to the selected kernel band-
width, we next choose a compromise kernel bandwidth in
both kernel dimensions as the mean of the optimal case
and control bandwidths calculated previously, which
results in a bandwidth of 27,701 distance units. The log
relative risk surface and significant risk areas with this new
kernel bandwidth are plotted in Figure 7. The bandwidth
used to generate Figure 7 is larger than the one used to
generate Figure 5, and the new resulting risk surface is
slightly smoother than the one in Figure 5. The areas of
significant elevated risk visible in Figure 5 are also present
in Figure 7, but the larger bandwidth extends the signifi-
cant cluster areas and now two north-south swaths are
clearly apparent. The largest log relative risk with this
bandwidth is approximately 1.4 (relative risk 4.4) and is
located in the same hatched area in eastern Ohio as in Fig-
ure 5. As was the case with the first bandwidth, the test for
overall clustering using the summary of the local log ratios
of kernel functions with the second bandwidth is not sig-
nificant, but the p-value decreases to 0.08 in this case.

Contours of estimated kernel density functions for cases and controls with UTM coordinatesFigure 4
Contours of estimated kernel density functions for cases and controls with UTM coordinates.

2  e+05 3 e+05 4 e+05 5 e+05

43
00

00
0

44
00

00
0

45
00

00
0

46
00

00
0

u

v

Cases, bandwidth = 34627
Cases, bandwidth = 30882

2 e+05 3  e+05 4 e+05 5 e+05
43

00
00

0
44

00
00

0
45

00
00

0
46

00
00

0

u

v

Controls, bandwidth = 23753
Controls, bandwidth = 21541
Page 8 of 16
(page number not for citation purposes)



International Journal of Health Geographics 2007, 6:13 http://www.ij-healthgeographics.com/content/6/1/13
Cuzick and Edwards' method
Similar to the K function, Cuzick and Edwards' method
[39] tests for clustering in a point pattern. It measures the
tendency of a point process to cluster at certain specified
numbers of nearest neighbors and asks if there are more
cases then expected under random labeling in the k loca-
tions nearest each case. Cuzick and Edwards' method
counts the number of cases within k nearest case and con-
trol neighbors of each case and sums these counts to make
one test statistic T(k) for each k. In practice, this method
requires specification of the k nearest neighbors in
advance, and, typically, one would specify a range of k
nearest neighbors to use. In this case, there is an adjust-
ment of the overall p-value, using both the Bonferroni
and Simes adjustments, to reflect the multiple nearest
neighbor tests. The Bonferroni adjustment is pB =
n·min[pi] and the Simes adjustment is pS = min[(n-
i+1)·pi], where n is the number of tests, pi is the p-value for
the ith test, and i is the test index, which is sequential from
lowest to highest p-value for the Simes adjustment [33].
ClusterSeer software uses Monte Carlo randomization of
the case labels among the given locations and also a nor-
mal approximation to evaluate significance of each near-
est neighbor test statistic [33]. Some of the results of

applying Cuzick and Edwards' method to all leukemia
cases in the dataset are listed in Table 1. We specified 10
nearest neighbor tests, using k from 1 to 10 and used 4999
Monte Carlo randomizations to evaluate the overall p-
value. As listed in the table, neither the normal approxi-
mation nor the Monte Carlo p-values indicate significant
tests for the ten levels of nearest neighbors. The tests for k
= 6 and k = 7 are somewhat close to significant (at the 0.05
level) with the Monte Carlo randomization assessment
and k = 7 and k = 8 are also close to significant with the
normal approximation. The overall Bonferroni and Simes
p-values for the normal approximation are 0.73 and 0.22,
respectively, where the Bonferroni is overly conservative
and Simes is less conservative. The overall Bonferroni and
Simes p-values for the Monte Carlo randomizations are
0.70 and 0.17, respectively. These values indicate that
there is no clustering of cases among nearest neighbors in
all of the leukemia cases. Figure 8 is a plot of the overall
Bonferroni p-value over the runs of the Monte Carlo ran-
domizations of the case labels. The plot shows that the p-
value has stabilized over the runs and is trustworthy for
testing.

Log relative risk surface using kernel density functions with kernel bandwidth = 22,647 metersFigure 5
Log relative risk surface using kernel density functions with kernel bandwidth = 22,647 meters. The significant 
risk areas according to Monte Carlo simulation are indicated on the right plot using "-" for points below the 2.5% simulation 
value and "+" for points above the 97.5% value. The contour lines on this plot indicate the log relative risk.
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We next applied the Cuzick and Edwards method to sub-
sets of the case data, using three sets for ages 0–4, 5–9, and
10–14 and one for ALL type cases. In the interest of space,
we report only the summary of each subset analysis. There
was no overall significant clustering or significant cluster-
ing at any level of k for cases age 0–4. There was significant
clustering for cases age 5–9 with k = 7 (p-value = 0.04), but
no overall significant clustering. There was no overall sig-
nificant clustering or significant clustering for cases age
10–14. There was significant clustering for cases of type
ALL with all ages with k = 6 (p-value = 0.048), but no over-
all significant clustering. The results suggest some cluster-
ing at six or seven nearest neighbors, depending on the
subset of cases, but no overall clustering, regardless of the
set of cases. The relevance of nearest neighborhood struc-
tures of size six or seven for some leukemia cases is
unknown at this point in time, but could be a subject of
future inquiry with a credible hypothesis. However, there
may not be a factor that can be quantified to explain the
significance of this apparent structure.

SaTScan
Kulldorff's scan statistic [47] as implemented in SaTScan
software is explicitly a test for clusters, as noted in
[1,33,34,48]. For case-control data, it calculates local rates
inside scanning circles of various sizes using the Bernoulli
model, where cases are designated as ones and controls
are designated by zeros. SaTScan places circles at each case
and control, ranging in radius from the smallest inter-
event distance to typically the distance that contains half
the population in the study area, and calculates a likeli-
hood ratio test of each potential cluster, where the likeli-
hood ratio test compares the alternative hypothesis that
there is an increased risk of disease inside the circle with
the null hypothesis that the disease risk is the same inside
and outside the circle. The circle with the maximum like-
lihood is the most likely cluster. SaTScan calculates the p-
value of the most likely cluster using the likelihood ratio
test and repeated Monte Carlo randomizations of the case
labels. The rank of the most likely likelihood ratio test
among all randomization tests determines the p-value. As

Simulated values for the test of global clustering using kernel density functions (p-value = 0.27)Figure 6
Simulated values for the test of global clustering using kernel density functions (p-value = 0.27).
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output, SaTScan reports the most likely cluster and sec-
ondary clusters, along with the corresponding significance
values. The scan statistic in SaTScan has been applied to
Poisson distributed count data [1,49], in addition to Ber-
noulli case-control data [19]. We applied Kulldorff's scan
statistic in SaTScan to all of the cases and then the same
four case subsets described in the Cuzick and Edwards'
method section. The most likely cluster found by SaTScan
using all of the cases is displayed in Figure 9. This particu-
lar cluster contains 43 cases and is located northwest of
the city of Columbus in central Ohio. The p-value of 0.81
for this potential cluster indicates that it is not statistically
significant. The most likely cluster for ALL type cases is of
size 12, has a p-value of 0.73, and is located in southern
Ohio. The most likely cluster for cases age 0–4 has 10
cases, a p-value of 0.71, and is located in southwest Ohio,
northeast of the city of Cincinnati. The most likely cluster
for cases age 5–9 has 23 cases, a p-value of 0.56 and is
located in northeast Ohio, south of the city of Cleveland.
The most likely cluster for cases age 10–14 is comprised of
three cases, has a p-value of 0.33, and is located in Union
County, in part of the most likely cluster found with all
cases. Based on the p-values from the individual likeli-
hood ratio tests, none of the most likely clusters found by
SaTScan are statistically significant.

Typically, when public health professionals investigate a
potential cluster, they use a much smaller study area than
a state, perhaps using the spatial extent of a county or area
surrounding a town. To better mimic this type of investi-
gation, and to evaluate the sensitivity of the spatial scan
statistic's test for significance to the size of the study area,
we next report results from a cluster detection analysis in
a spatial subset of the study area. We selected a contiguous
set of five counties, Union, Franklin, Delaware, Madison,
Champaign, which contained the most likely SaTScan
cluster for cases age 0–14. In practice, a public health ana-
lyst would not refine the study area around a previously
detected cluster. The most likely cluster found by SaTScan
with this subset of data is the same 43 cases in the most
likely cluster with all of the Ohio data, but the p-value is
now 0.71, instead of the value of 0.81 found with the
complete dataset. The highlighted subset of counties and
most likely cluster are visualized in Figure 9. This raises a
point that the size of the study area can impact the result
of the significance test in SaTScan. Naturally, the conclu-
sion of no significant cluster in this situation does not
change, but it could in some circumstances, with a cluster
changing status from insignificant to significant depend-
ing on how the analyst defines the study area. We make
note of this as more of a practical issue for consideration

Log relative risk surface using kernel density functions with kernel bandwidth = 27,701 metersFigure 7
Log relative risk surface using kernel density functions with kernel bandwidth = 27,701 meters.
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then as a criticism of SaTScan. Since the study area pro-
vides the context for interpretation in the investigation of
the question of whether cases cluster in an area, the ques-
tion of interest changes if the study area is changed. The

relationship between study area size and the research
question considered in a cluster detection study has also
been discussed by Jacquez and Greiling [50].

Overall Bonferroni p-value for Cuzick and Edwards' method versus number of Monte Carlo randomizationsFigure 8
Overall Bonferroni p-value for Cuzick and Edwards' method versus number of Monte Carlo randomizations.

Table 1: Results of the Cuzick and Edwards' test

k T[k] E[T] Var[T] z Upper-tail P-value Monte Carlo P-value

1 70 67.66 92.96 0.24 0.40 0.41
2 137 135.32 194.01 0.12 0.45 0.54
3 210 202.98 296.67 0.41 0.34 0.26
4 278 270.63 400.36 0.37 0.36 0.51
5 352 338.29 505.31 0.61 0.27 0.23
6 432 405.95 611.51 1.05 0.15 0.07
7 512 473.61 718.28 1.43 0.08 0.07
8 583 541.27 826.37 1.45 0.07 0.36
9 638 608.93 2432.11 0.59 0.28 0.95
10 714 676.58 2541.57 0.74 0.23 0.17

The table contains the test statistic T(k), the expected test value and variance using the normal approximation, and the normal approximation and 
Monte Carlo randomization p-values for each k nearest neighbors
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Most likely SaTScan cluster for all cases (43 cases, p-value 0.81)Figure 9
Most likely SaTScan cluster for all cases (43 cases, p-value 0.81).



International Journal of Health Geographics 2007, 6:13 http://www.ij-healthgeographics.com/content/6/1/13
Discussion
The three methods used to detect global clustering, the K
function, the kernel intensity function ratio summary,
and Cuzick and Edwards' method, all found no statisti-
cally significant clustering of childhood (age 0–14) leuke-
mia in Ohio from 1996–2003. Cuzick and Edwards'
method also found no significant clustering in three sepa-
rate age groups of cases and ALL type cases. These findings
are not entirely surprising given the large and diverse
study area of Ohio, in which it is doubtful that one partic-
ular risk factor would have a consistent or sustained effect
across space that would result in clustering demonstrated
at the state scale. It is more likely that factors which could
explain clustering of cases would have local or regional
influence, and one factor could be associated with cluster-
ing in one area while another factor could be related to
clustering in a different area. Given the scale of the study
area in this analysis, the search for local cancer clusters is
the more useful investigation, and also the one with more
public interest. In investigation of potential clusters, there
were inconsistent findings from the two methods used to
detect clusters. The kernel intensity function ratio sug-
gested some significant local clusters in cases age 0–14 in
portions of central and eastern Ohio, while the spatial
scan statistic in SaTScan found no significant clusters. SaT-
Scan also found no significant clusters for three different
age groups and ALL type cases. Some reassurance comes
from the fact that some of the most likely SaTScan clusters
are in the same areas as the significant elevated log relative
risk areas from the kernel intensity function ratios. Still,
the cancer cluster investigator is left to wonder which
results are more trustworthy in this circumstance. Unfor-
tunately, without a well-designed simulation study that
reflects the current study situation and where the true clus-
ters are known, one cannot definitively reach a conclusion
on this matter. A simulation study that tests for different
types of clusters is left for future research.

One practical reason to favor the kernel intensity function
method is that it tests for local clusters and explicitly uses
a summary measure of the local results to test for global
clustering; it is unique in this regard. Another advantage
of the kernel intensity function method is that it provides
the log relative risk surface over the entire study area, so
one can visualize the local peaks and valleys in the risk of
disease. In addition, the kernel is more flexible in its shape
than SaTScan's circular scanning window. There have
been advancements in the literature, however, with scan
statistics designed to detect elliptical clusters [51] as well
as more flexibly shaped clusters [52]. An arbitrary shaped
non-scanning method based on minimum spanning trees
has also been recently introduced [53]. A disadvantage
with the kernel intensity ratio is that one must select the
bandwidth in advance of calculating the log relative risk,
and results can certainly vary depending on the selected

bandwidth. One possibility to overcome this is may be to
use a Bayesian framework for kernel intensity estimation
[54], where the kernel bandwidth would be estimated
from the data while simultaneously calculating the log rel-
ative risks.

Numerous practical issues with spatial case-control cluster
detection were encountered in this study. First, the selec-
tion of controls is crucial in these case-control spatial clus-
tering studies. We found a traditional epidemiology ratio
of 3 to 1 to be inadequate with our systematic sampling
scheme, and believe that would be true with a purely ran-
dom sampling scheme as well. We tentatively recommend
using as many controls as possible taking into considera-
tion the cost in acquiring them and in computing, as some
methods such as the K function and SaTScan can take sub-
stantial run time with a large number of points in the
study. More research is needed to determine, if possible,
an optimal number of controls and sampling scheme. In
this study, we also realized the importance of avoiding
unnecessary spatial error when possible, in terms of geoc-
oding and map units. Of course, there is inherent loca-
tional uncertainty in these data [55]. Invariably, in the
address matching process of individual records there will
be observations for which an exact address match is not
possible. These records can be geocoded to census bound-
ary or ZIP Code centroids or omitted from the study,
where the decision on the handling of these records could
depend on the study area scale. For a large study area,
using census tract or ZIP Code centroids matches may be
deemed acceptable in searching for an approximate clus-
ter location, where county centroids may be viewed as
providing spatial locations that are too inaccurate. We
omitted centroid-matched points after checking visually
that they were not spatially influential, i.e. occurring in
one area only or exclusively in rural areas, to avoid induc-
ing artificial clustering in cases or controls. We also used
UTM map coordinates to prevent adding spatial error to
our Euclidean distance calculations. An alternative would
be to use great circle distance calculation for records in lat-
itude and longitude coordinates.

Conclusion
This comparative study for childhood leukemia clustering
and clusters in Ohio is the first one with individual level
case and control data. The study produced results that lead
to different conclusions based on the method utilized
regarding the significance of clusters and also revealed
several open research issues in practical spatial cluster
detection. In summary, we found some evidence,
although inconclusive, of significant local clusters in
childhood (age 0–14) leukemia in Ohio during years
1996–2003, but no significant overall clustering when
considering all case ages simultaneously. The spatial scan
statistic in SaTScan found no significant clusters, while the
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kernel intensity function ratio found clusters, some of
irregular shape, in areas of central, southern, and eastern
Ohio. It should be pointed out that different methods
used to test for clustering look for different types of clus-
ters, and one method may not find a cluster while another
method does, and both may be correct depending on the
underlying true cluster. Consideration of the potential
shape of clusters in the study area appears to be an impor-
tant issue. In considering future work with these data, a
subsequent study should test for spatial clusters in ALL
type cases by age groups based on the finding of Dockerty
and his coauthors [3] of significant clustering using Cuz-
ick and Edwards' method in age subgroups of ALL cases,
but not in ALL cases age 0–14. Additional future work
could systematically investigate the sensitivity of the
results from the methods selected to the ratio of controls
to cases, to different sizes of the study area, and to differ-
ent control sampling schemes, such as simple random,
stratified, or probability proportional to size cluster sam-
pling. A potentially interesting and relevant future com-
parison would be between the results presented here to
those from methods for regional count data at the county
level. There is additional effort involved in spatial case-
control cluster studies compared to regional count cluster
studies, and it would be worthwhile to see if the addi-
tional data needs and computational cost result in sub-
stantially increased power to detect clusters.
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