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Abstract
Background: Recent adaptations of the spatial scan approach to detecting disease clusters have
addressed the problem of finding clusters that occur in non-compact and non-circular shapes –
such as along roads or river networks. Some of these approaches may have difficulty defining
cluster boundaries precisely, and tend to over-fit data with very irregular (and implausible) clusters
shapes.

Results & Discussion: We describe two simple adaptations to these approaches that can be used
to improve the effectiveness of irregular disease cluster detection. The first adaptation penalizes
very irregular cluster shapes based on a measure of connectivity (non-connectivity penalty). The
second adaptation prevents searches from combining smaller clusters into large super-clusters
(depth limit). We conduct experiments with simulated data in order to observe the performance
of these adaptations on a number of synthetic cluster shapes.

Conclusion: Our results suggest that the combination of these two adaptations may increase the
ability of a cluster detection method to find irregular shapes without affecting its ability to find more
regular (i.e., compact) shapes. The depth limit in particular is effective when it is deemed important
to distinguish nearby clusters from each other. We suggest that these adaptations of adjacency-
constrained spatial scans are particularly well suited to chronic disease and injury surveillance.

Background
Disease hot-spot detection
Cluster detection methods can be used to identify anom-
alous patterns of disease, and offer clues to the presence
and location of emerging diseases and environmental
hazards. However, these methods can face an important
conceptual challenge if one adheres to traditional prac-
tices of hypothesis testing. It is difficult to formulate a sin-
gle discrete null hypothesis about whether or not a cluster
at a particular location is noteworthy unless we know the
location of that cluster ahead of time. Since this is often
the purpose of a cluster detection exercise, we are caught

in a 'catch-22' – wanting to decide about the anomalous-
ness of something that we have yet to find. One way this
has been avoided is by stepping out of the traditional
hypothesis testing paradigm – for example, by using the
exploratory disease cluster detection tools [1,2]. These
alternatives follow an inductive scientific model, and are
well suited to exploring various patterns of events in space
without a single explicit hypothesis test.

Turnbull et al. offer a disease cluster detection approach,
the cluster evaluation permutation procedure (CEPP),
which remains within the traditional hypothesis testing
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paradigm [3]. They conceive a method of geographic dis-
ease cluster detection that is focused on a most notewor-
thy cluster of disease events. In this form, the cluster
detection process can be thought of as two distinct activi-
ties. First, search a system of disease data for a geographi-
cal subset that is more likely than any other (given the
search criteria) to be an anomalous cluster. Second, test
whether or not this cluster could have occurred by chance.
In this form, a single hypothesis is being tested – is the
cluster that is most likely to be anomalous actually anom-
alous? In their original work, the search proceeds by mov-
ing a circular window over the centroids of census areas.
The window radius is fixed by a population threshold
such that each window has approximately the same pop-
ulation. The window with the highest rate of disease is
deemed the most-likely to be an anomalous cluster, and
Monte Carlo methods are used to test a null hypothesis of
constant risk.

This approach was generalized and more explicitly ration-
alized by Kulldorff, in the 'spatial scan' approach to dis-
ease cluster detection [4]. The spatial scan avoids the
population size constraint of the CEPP by using a window
of varying size. The potential cluster with the largest like-
lihood-ratio statistic is treated as the most-likely cluster to
reject a null hypothesis of constant risk. If the test statistic
is large enough to reject a null hypothesis, the cluster that
caused the rejection remains anomalous (i.e., statistically
significant) regardless of how the data outside the cluster
are re-arranged. This is important since it links the approx-
imate geographic location and size of a cluster to the rejec-
tion of the null-hypothesis. By restricting the search for
most-likely clusters, this approach escapes the catch-22
noted above.

Recent adaptations of the spatial scan approach consider
the problem of finding disease clusters that occur in non-
compact and non-circular shapes – such as along roads or
river networks. Some of these methods make use of adja-
cency characteristics rather than a pre-defined geometric
or topologic structure to make the search for clusters effi-
cient [5-7]. These new methods offer opportunities to bet-
ter understand the precise geographic structure of clusters,
as well as improving the power of detection when disease
clusters occur in irregular shapes. However, they also con-
front a number of methodological challenges and per-
formance issues [8,9]. As such, it is unclear if the benefits
of being able to detect irregular clusters of disease (when
they occur) offset the limitations associated with their use.

In this article we briefly review some recently developed
adjacency-constrained alternatives to finding irregularly
shaped clusters based on the test statistic associated with
the spatial scan. We then describe two small, general
adaptations that can be applied to adjacency-constrained

cluster detection searches methods. These adaptations are
designed to improve the accuracy of detection (reduce the
locations falsely identified as part of a cluster), increase
the ability of these methods to find disease clusters, and
speed up the search process. Finally, these adaptations are
tested on simulated data in order to observe how future
implementations of adjacency-constrained spatial scan
methods can bypass some of the existing challenges.

General properties of adjacency-constrained spatial scan 
methods

We define a study region that consists of a tessellation of
I polygonal regions v1, v2,...,vI. When two regions, vi and vj

meet a definition of adjacency, we treat them as neigh-
bours. Using this convention, a tessellation of regions can
be conceived as a graph of vertices and edges (Figure 1).
Edges connect vertices in a way that reflects the topology
of the polygons the vertices are meant to represent. We
can assign a weight, wij, to each edge eij in the graph that

characterizes the relationship between two connected
nodes. These weights can represent geographic distance,
or other attributes associated with the adjacent nodes. For
a typical problem in disease cluster detection involving
polygonal regions, there are a y+ disease cases and d+ pop-

ulation at risk in a study area. For each vi in ,

we have a number of disease cases yi and population di

( ). We can estimate the rate of

disease associated with each vertex with yi/di.

Using this framework, the general adjacency constrained
spatial scan approach can be conceived as a search to find
a set of connected vertices from all possible sets of vertices
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A system of polygonal areas conceived as a graphFigure 1
A system of polygonal areas conceived as a graph.
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that is more likely than any other set to be a cluster of dis-
ease. Each of these sets or 'potential clusters' is evaluated
by calculating the likelihood ratio statistic (LR). Suppose
Z is a set of connected vertices and nZ is the total number
of cases within the vertices of Z. When searching for high
clusters, the likelihood ratio statistic is

where μZ is the expected number of cases in the potential
cluster under the null hypothesis [4]. The potential cluster
of all possible clusters with the largest evaluation criteria
is treated as the most-likely cluster, and is tested for signif-
icance. The evaluation process for the methods discussed
below is approximately the same as used in the spatial
scan; the methods differ from the original spatial scan
with respect to how they search for clusters, and in that
sense, most can be viewed as special cases of the original
spatial scan approach.

Examples of adjacency constrained spatial scans
There are a number of different ways to search sets of ver-
tices for potential clusters of disease within this general
approach. The size and complexity of a particular search
approach is governed by the definition of adjacency used.
At one extreme, vertices may be treated as connected only
to themselves, and as such, the number of potential clus-
ters available equals the total number of vertices. At
another extreme, each vertex may be considered con-
nected to all other vertices, which results in a total number
of potential clusters equal to

An exhaustive examination of all clusters in a problem of
this type is computationally unmanageable for all but a
small number of vertices. For example, a 40 vertex graph
where all vertices are treated as adjacent to all other verti-
ces has over one-thousand billion potential clusters. Nor-
mally, first-order connectivity (where only immediate
neighbours are considered adjacent) is used to both limit
the size of the cluster search problem, in addition to
increasing the usefulness of search results. When a search
employs a first-order connectivity constraint, the resulting
clusters are connected in the sense that it would be possi-
ble to 'walk' from any vertex to any other vertex along the
edges of the graph. In this form, it is usually difficult to
estimate the exact number of potential clusters searched
because complexity is defined by the topology of the

graph. Nonetheless, the search process is more managea-
ble, and more importantly, has more epidemiological
meaning; 'clusters' of disease imply a process of diffusion,
local hazard or common cause, all of which seem more
sensible when potential clusters are contiguous systems.

Tango and Takahashi recommend a full enumeration of
all possible first-order connected clusters up to a specified
size (e.g., a certain number of the nearest neighbours) [7].
This size limit bounds the computational complexity, but
also limits the search to clusters that are relatively small.
In this form, the value of wij is the same for all edges in the
graph (by simply defining adjacency), and not immedi-
ately relevant to how the search proceeds. Although the
size limit prevents this strategy from finding large clusters,
there are a finite and estimable number of potential clus-
ters within this size constraint. Once a set of potential
clusters is found for a given study area, this same set can
be used in future searches for clusters in the same study
area, thereby saving computing time. It may be possible to
spatially index all potential clusters, which could also save
time in the Monte Carlo sampling process.

Patil and Taille describe an adjacency constrained
approach that restricts the search process to vertices
within what they refer to as 'upper level sets' [5,10].
Assunção et al. define this strategy more generally, and
refer to it as a 'static minimum spanning tree' approach
[8]. In this form, the wij measures the difference between
the disease rates among neighbouring vertices. Minimum
spanning trees are grown in a way that minimizes the sum
of edge weights, which in this case, is the difference in
rates between vertices within the tree. Each stage of tree
growth represents a new potential cluster. Unlike the fully
enumerative approach, the set of potential clusters is not
fixed, and must be recalculated with each new set of case
and/or population data. This is because the values of yi
and wij are not constant with different case data (including
simulated data). Though the search strategy is relatively
efficient, this can add a considerable burden to the Monte
Carlo simulations used for hypothesis testing.

The Duczmal and Assunção approach begins by finding a
most-likely circular cluster of disease [6]. This is a starting
potential cluster set A; the complement of this potential

cluster set is . Any vertex in  that is adjacent to any

vertex in A may be moved from  into A; likewise, any

vertex in A can be moved from A into  provided that
this move does not make A an discontiguous cluster. Each
feasible move is associated with a change in the global
objective function – the LR associated with A. Moves that
increase the global objective function are usually preferred
over moves that do not, although a simulated annealing
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heuristic is incorporated into the decision strategy to
ensure the problem is not confined to local optima. This
strategy enables the possibility of short-term 'bad' moves
to prevent the search process from getting stuck in local
optima. Unlike the other methods discussed here, the
method does not aim to generate a large number of poten-
tial clusters, rather, the search process aims to actively
search for a single most-likely cluster by maximizing the
objective (the LR associated with A). When the search
process is finished, A is treated as the most-likely cluster,
and evaluated using Monte Carlo methods.

As an alternative, Assunção et al. simplify the above strat-
egy into a greedy search from all vertices, rather than a
probabilistic search starting from an identified circular
cluster [8]. This algorithm, which we refer to as a 'greedy
growth search' (GGS), is essentially a greedy hybrid of the
Duczmal and Assunção and Tango and Takahashi
approaches. The method starts with any vi, which is
treated as a potential cluster. Of all vj adjacent to all vi,
identify the vj that results in the largest LR if it were joined
with vi to form a new potential cluster. This vj is added to
the potential cluster, and other vertices are added in this
same manner until all vertices have been added (or a pop-
ulation or other threshold is met). This process is repeated
for all vi. The potential cluster with the largest LR is treated
as the most-likely cluster of disease.

The above adjacency constrained disease cluster searches
are all able to locate irregularly shaped clusters relatively
efficiently. However, evidence suggests that these
approaches may have lower power to detect clusters and
poorer accuracy in defining cluster shapes than methods
that search a specific geometry, such as circles or ellipses
(Duczmal, Kulldorff and Huang 2006). A number of strat-
egies are available to offset these challenges. In the
remainder of this article, we describe our implementation
of the GGS method in detail, and discuss two simple
adaptations of the GGS that improve its ability to avoid
some of the pitfalls typical of adjacency constrained
searches for disease clusters. We then observe the perform-
ance of these adaptations on simple simulated data sets.

Results
The Greedy Growth Search (GGS)

Here we describe the general procedure that creates the
sets of vertices that are evaluated as potential clusters for
the GGS approach. Suppose an area is divided into I geo-
graphic regions: v1, v2,...,vI. As above, we treat these

regions as vertices on a graph in which edges represent
adjacency. Suppose Z is a set of connected vertices and nZ

is the total number of cases within Z. A sequence of sets is
constructed for each vertex vi, i = 1,...,I. For region vi we

start with the set Ai0 = {vi}, i = 1,...,I, and define its com-

plement as i0 = V\Ai0, i = 1,...,I. We expand on this set by

adding one vertex at a time. At the m-th step, Ai,m = Ai,m-1

∪ v*m where v*m is the region in i,m-1(=V\Ai,m-1) that is

connected to at least one vertex in Ai,m-1 and that results in

an LR that is larger than any the LR resulting from the
addition of any other feasible vertex. More precisely, let

i,m-1 be the subset of regions i,m-1 that are connected to

a region in Ai,m-1, i,m-1 ⊆ i,m-1. The next vertex to be

added to Ai,m-1 is defined as

The addition of regions continues until the addition of
another region would exceed a pre-specified threshold,
typically half of the population. Suppose for region vi, that

at most Mi regions are added to meet this criterion, then

, where 1 ≤

Mi ≤ I. Thus for region vi, the collection of potential clus-

ters is Ai = {Ai0, Ai1,..., } and the collection of all

potential clusters is defined as

A = {A1,...,AI}. (3)
The most-likely cluster is the set in A that has the highest
associated LR, arg maxC∈A LR(C), and this cluster is tested
for statistical significance using the Monte Carlo approach
similar to the spatial scan.

In order to avoid some of the problems related to the GGS
approach (notably, its tendency to over-fit data with
oddly shaped clusters), we describe two adaptations to the
approach. One is a penalty applied to the test statistic, and
the other affects how the search for clusters terminates.

Adaptation 1: non-connectivity penalty
Duczmal, Kulldorff and Huang recommend a non-com-
pactness penalty be used to limit the irregular shapes
often found when using adjacency constrained searches
[9]. This penalty is based on the ratio of a potential clus-
ter's area and the area of a convex hull that encloses the
vertices of this potential cluster. This penalty encourages
clusters to take a roughly compact form, since the effect of
the penalty increases proportionally to a drop in the ratio
of a potential cluster's area and the area of a convex hull
enclosing it. The magnitude of the penalty can be varied
according to prior information about a cluster's shape, the
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rarity of disease, or the amount of spatial variation in dis-
ease rates. The penalty is defined as

where B(Z) is the area of the potential cluster Z and H(Z)
is the perimeter of a convex hull of the potential cluster Z.
The penalized likelihood ratio, PLR(Z), generalized to

 is used in place of LR, where α usually takes

on values between 0 and 1.

As an alternative, we offer a non-connectivity penalty.
This method penalizes potential clusters in proportion to
the ratio of edges in a potential cluster Z to the total pos-
sible number of edges in a potential cluster Z. Let e(Z) be
the number of edges that connect the number of vertices
in potential cluster Z. The likelihood ratio statistic
becomes

where

K(Z) is the ratio of the number of edges in a potential clus-
ter to the total possible number of edges in a potential
cluster, which is can be determined based on the number
of vertices (v(Z)) in a potential cluster set. As with the pre-
vious penalty function, α is a user specified scaling value.
The non-connectivity penalty is applied in the same man-
ner as the non-compactness penalty. As values of α
approach 0, the penalty has little effect on LR; as values
increase above 1, the effect of the penalty increases. As the
penalty increases, clusters tend to take on forms in which
there are more connections between vertices, which gen-
erally results in more compact shapes.

The rationale for the non-connectivity penalty is similar to
the non-compactness penalty, with the key conceptual
difference that the former is not explicit about shape,
merely about the structure of adjacency. In this respect,
there can be considerable variability in the shape that two
potential clusters with the same non-connectivity penalty
may take (Figure 2). This may be an advantage when a
more relaxed penalty is required – such as when clusters
are small and suspected to be irregular, or when the dis-
ease is common and highly irregular cluster shapes are of
less concern.

Adaptation 2: depth limit
In the GGS approach, as a search from a particular vertex
proceeds, the LR associated with the new potential cluster
changes depending on the neighbouring disease rate.
When a search is in the general geographical area (or
'neighbourhood') of vertices with high disease rates, LRs
associated with potential clusters are larger than when a
search is in the neighbourhood of vertices with low dis-
ease rates. This results in a search profile, associated with
each search from vi, that varies depending on the disease
characteristics of the neighbourhood in which the search
is taking place (Figure 3). When the objective is to find
high local disease clusters, we suggest that it may be
worthwhile to stop a search that has descended into a
trough, or low point, even if it were to climb out of the
trough if more vertices were added. We apply a 'depth
limit' to control the length of time a search sequence will
stay within a trough. The GGS search proceeds in the nor-
mal manner; for each search from vi, a feasible node vj is
added that results in the largest LR. If the LR associated
with a search from a particular vertex has not increased to
a new high-point in the search after a specific number of
moves (the depth limit), the search stops, and moves to a
new vi.

In the framework of the GGS method above, the stopping
point Mi for the sets associated with region vi is not neces-
sarily based on a proportion of the population in the
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potential cluster search process. Instead, failure to increase
the LR to a new high-point after u steps (1 <u <I) stops the
creation of sets for region vi and Mi is the last of those u
steps. In particular, LR(Ai,Mi-u) > LR(Ai,Mi-u+1),...,LR(Ai,Mi-u)
> LR(Ai,Mi). The parameter u is set by the user, and takes
on values from 0 to I. Large values of u relaxes the search
constraint (allowing searches to descend into troughs)
and a value of 0 means that searches are terminated if no
vertices can be added that increase the LR.

Terminating searches with the depth limit helps prevent
distinct clusters from being combined into one super-set
composed of several clusters. This may be particularly
important when there is a meaningful physical separation
between real clusters of disease – perhaps because the
forces influencing these clusters differ from place to place.
In Figure 3, we can see how the LR might change while
searching in the neighbourhood of two geographically
distinct clusters. The largest LR is found when the clusters
are combined, but arguably, these clusters should be
thought of as distinct, since there is a large trough in the
LR separating them. The depth limit can be used to better
define the distinct geographies of multiple clusters. An
added benefit of the depth limit is its ability to speed up
the search process; the number of sets created in a search
spawned from vi is smaller when a depth limit is applied
than when no depth limit were applied.

Experiments
We design a simple experiment based on synthesized data
in order to evaluate the effectiveness of these two adapta-

tions of the GGS. The emphasis of this experiment is on
the ability of these adaptations to define the boundaries
of clusters of regular (circular) and irregular shape. The
experiment uses simulated data. These simulated data are
a simplified representation of disease patterns in the real
world, but give a suitable baseline for understanding the
general behaviour of these two adaptations. The algo-
rithms for solving and testing the GGS method and its two
adaptations were programmed in the SAS® language [11].

Our experimental study space consists of an approxi-
mately square tessellation of 203 hexagons (or 'regions).
The geometric centres of the regions are the vertex set, and
the edge set is defined by immediate neighbours – hexa-
gons that share line segments. In all experiments, each
region receives an equal population of 'persons', and the
study space is divided into two sets – a cluster area set and
a baseline area set. For each person in each region, we
determine whether or not they are a case based on the
level of risk associated with the set in which their resident
region falls. Regions inside synthesized clusters have
higher levels of risk than regions outside the synthesized
clusters.

We base our experiment on 16 different scenarios. The
scenarios consist of four different clusters area set patterns
(two small clusters, an 'X' shape, a 'ring' shape and a 'large
circular' shape (Figure 4)) two region population levels
(1,000 persons per region and 10,000 persons per region)
and two pairs of disease rates associated with the cluster
area and baseline area. We chose these population sizes
because they reflect the population characteristics com-
mon to Census areas in Canada and elsewhere – such as
census tracts and census blocks. Although our experiment
assumes an homogenously distributed population and is
therefore likely to under-represent the variability in dis-
ease incidence likely in the real world, we prefer the
homogenous distribution to simplify the interpretation of
results. We acknowledge, however, that the results of our
experiments are likely to be less variable than would be
observed in real world situations. In all scenarios, the
baseline rate is 2.5 per 1,000. For the ring, circle and 'X'
cluster scenarios, the cluster rates are 5 per 1,000 and 7.5
per 1,000. For the two circle cluster scenarios, there is a
primary cluster with same cluster rate as above, and a sec-
ondary cluster that is half-way between the cluster rate
and the baseline rate (3.75 per 1,000 and 5 per 1,000).

The magnitudes of the non-connectivity penalty (defined
in terms of α) and depth limit (defined in terms of u) are
varied systematically in order to observe how the adapta-
tions affect the method's ability to find clusters. For each
scenario, we vary the combination of settings α and u
from 0 to 4 in 1 unit increments, resulting in 25 different
combinations. In total, there are 16 different scenarios,

Illustration of how a search proceeds within a spatial neigh-bourhoodFigure 3
Illustration of how a search proceeds within a spatial neigh-
bourhood.

0

2

4

6

8

10

12

14

16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Value of m in Aim

L
R

Neighbourhood 
of a cluster Neighbourhood

of a second cluster
Page 6 of 16
(page number not for citation purposes)



International Journal of Health Geographics 2007, 6:28 http://www.ij-healthgeographics.com/content/6/1/28
and each scenario is associated with 25 different α and u
setting combinations.

For each scenario, the GGS is used to search for a most-
likely cluster, with the settings of α and u as described
above. We measure success in terms of true positives
(regions correctly identified as existing inside a synthe-
sized cluster) and false positives (regions incorrectly iden-
tified as existing inside a synthesized cluster) for each
scenario. Each scenario is repeated 100 times, and the
grand sum of true positives and false positives are
recorded for each scenario; that is, the sum of true posi-
tives and false positives found for a given scenario over
100 repetitions. We calculate measures of sensitivity
(grand total of found true positives/grand total of actual
true positives) and positive predicted value (grand total of
found true positives/the sum of the grand total of found
true and found false positives). The values of sensitivity
and positive predicted value vary from 0 to 1, and larger
values are preferred over smaller values.

Findings from the simulations
We present the tabulated results of the scenarios in Addi-
tional files 1 and 2. The results described in detail below
are based on data from Additional file 1, in which the dif-
ference between the cluster rates and baseline rates is
smallest.

For the 'two cluster' pattern we synthesize a main cluster
and a secondary cluster. For this experiment, we assume
that the objective of the cluster detection process is to find
the main cluster. The purpose of synthesizing a secondary
cluster is to observe the effect of a more complex spatial
landscape on the two adaptations of the GGS. Sensitivity
and positive predicted value (PPV) do not appear to differ
greatly for the different adaptation settings (Figures 5).
For scenarios based on smaller region populations (n =
1,000), larger values of u and α correspond with a higher
sensitivity. PPV, on the other hand, is uniformly low. For
scenarios based on larger region populations (n =
10,000), sensitivity is high for all values of α and u. PPV is
highest when the u is small (i.e., the depth limit is shal-
low).

For the 'X' cluster pattern, sensitivity and PPV are similar
for all scenarios based on smaller region populations (Fig-
ure 6). The shape and magnitude of PPV and sensitivity
curves do not differ greatly, particularly when values of α
and u are greater than zero. For scenarios with the larger
region populations, sensitivity is similar for all values of α
and u, though marginally higher for the lower values of α.
However, PPV varies considerably depending on the value
of α; as α increases (and the non-connectivity further
penalizes potential clusters of irregular shape) the PPV
drops. For the 'ring' cluster pattern (Figure 7), the patterns
of PPV and sensitivity are very similar to the observations
for the 'X' cluster pattern. For small region populations,
the PPV and sensitivity vary little with the changing values
of α and u, but when the region population is large, PPV
is highest when the non-connectivity penalty is relaxed (α
= 0). For cluster pattern 4 (where the synthesized cluster
takes the shape of a large central circle), the PPV and sen-
sitivity graphs are similar in shape and magnitude to the
graphs associated with cluster pattern 1 (Figure 8). For
smaller region populations, the PPV is similar across all
values of α and u, however, larger values of α are generally
better. For larger region populations, PPV and sensitivity
are very high, and do not vary noticeably for different lev-
els of α and u.

To help visualize the changes in sensitivity and PPV as a
function of the different settings of α and u, we show
maps of the simulated results found in Appendix 1. The
values associated with the regions are the proportions of
the simulations (for a given scenario) that a region is iden-
tified as part of a found cluster. For regions inside a cluster
area, high values are desirable. For regions outside a clus-
ter area, low values are desirable. Figure 9a–9d show the
maps where α = 4 and u = 203 (that is, where there a rel-
atively high non-connectivity penalty and no depth
limit). In the scenarios used to generate these maps,
regions have populations of 10,000. For all but 'large cir-
cle' cluster pattern, a number of regions are frequently and

The four cluster patternsFigure 4
The four cluster patterns.

a. Pattern 1 b. Pattern 2

c. Pattern 3 d. Pattern 4
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incorrectly identified as part of a synthesized cluster area,
though the inaccuracy is confined to the regions adjacent
to the synthesized clusters. For the 'large circle' pattern the
detected clusters are confined to the synthesized cluster
area.

In figures 10a–10d and 11a–11d, each map is based on
the settings of α and u that produced the highest combi-
nation of sensitivity and PPV for a given synthesized clus-
ter and a given region population size. For the scenarios in
which region populations are small (10a–10d), the
number of falsely included regions is high for all but the
'large circle' cluster pattern. Many of the falsely detected
regions are near the synthesized cluster shapes, but these
maps also indicate that found clusters are frequently quite
large, and irregularly shaped. For the high region popula-
tion scenarios (11a–11d), accuracy is higher. Most regions
are correctly identified, and few regions are incorrectly

identified. For the two cluster scenario (11a) the found
clusters are confined to the higher of the two synthesized
cluster areas.

Discussion
The evidence from our simulations suggests that the non-
connectivity penalty and the depth limit can both
improve the accuracy with which shapes of clusters are
detected, and the mixture of these two adaptations may
help identify the correct shape and location of disease
clusters. As has been observed with a non-compactness
penalty (Duczmal, Kulldorff and Huang 2006), the non-
connectivity penalty prevents the found clusters from tak-
ing on unusual, 'octopus-like' shapes even when there is
no depth limit. When the true cluster shape is compact,
this is a useful constraint on the search process. When the
non-connectivity penalty is completely relaxed (α = 0),
the GGS algorithm is often at its worst, and less sensitive

Sensitivity and positive predicted value for cluster pattern 1 ('two clusters')Figure 5
Sensitivity and positive predicted value for cluster pattern 1 ('two clusters').
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to detecting the correct regions as part of a true cluster. For
scenarios in which the cluster pattern is compact (the
'large circle' and 'two cluster' patterns), the strictest non-
connectivity penalty (α = 4) corresponds to the highest
PPV and sensitivity at both population sizes.

When the depth limit is relaxed completely and u is equal
to the number of regions in the study area (u = 203) the
PPV and sensitivity are roughly the same as when the
depth limit is more restrictive (u = 3). This observation is
not true when the cluster is irregularly shaped however.
For the 'Ring', 'X' and 'two-cluster' patterns, we see a larger
proportion of regions falsely included in found clusters
when the depth limit is relaxed (u = 203) than when a
depth limit is applied (as seen in the comparison of 8a–c
and 10a–c). These considerations are important since it
would appear that using the depth limit may be advanta-
geous when the true cluster shape is irregular, and that its
use is not deleterious when the cluster shape is compact.

For the 'two-cluster' pattern, the depth limit also helps
separate the primary cluster from a nearby secondary clus-
ter. In Figure 8a (α = 4, u = 203), a number of regions are
frequently identified as part of a found most-likely cluster.
In 10a (α = 4, u = 0) the detection process is much more
precise, focusing almost entirely on the regions inside the
primary cluster.

One of the obvious challenges of using these adaptations
in the search for clusters is that they necessitate more prior
decision making on the part of the analyst. In order to
ensure that the GGS and similar algorithms define clusters
precisely, an analyst must specify the correct settings for α
and u. Without already knowing the shape of the cluster
ahead of time, this may be a difficult, and at times arbi-
trary, task. These decisions eliminate much of the elegance
of the original spatial scan, and also introduce a possible
pre-selection bias. For infectious disease surveillance pur-
poses, these limitations are particularly noteworthy, since

Sensitivity and positive predicted value for cluster pattern 2 ('X')Figure 6
Sensitivity and positive predicted value for cluster pattern 2 ('X').
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a common goal of cluster detection in this setting is to
detect the presence of an anomaly or signal, which is then
followed up by field investigations and other verification
exercises. The reward for finding the precise boundaries of
a cluster may not be particularly high. For chronic disease
surveillance – where prevalence is relatively high, and
reporting times are of courser grain – finding the correct
regions may be of more importance. Knowing the precise
regions where risk is high helps inform longer-term plan-
ning, and provides a more precise indication of where fur-
ther field investigation or epidemiological study is
required.

Fortunately, our results show a degree of consistency
across the scenarios, suggesting that there may be some
rules of thumb that can guide the use of these two adapta-
tions. For rare events, small population study areas, or for
diseases in which there is a low magnitude of variation in

disease rates, these (and similar) adaptations are useful
for helping the search process to find plausible cluster
shapes. In these cases, the exact cluster shape and location
may always remain elusive. However, by inhibiting the
search process with these constraints, and in particular,
the non-connectivity penalty, one is likely to find circular
or compact shaped 'hot-spots' that are of most interest in
disease surveillance. Although applying a depth limit
seems of most value when the true disease cluster is irreg-
ularly shaped, or when it is important to keep detected
clusters distinct, since it does not appear to inhibit the
detection of compact cluster shapes, it may be the pre-
ferred adaptation for common diseases, or at lower spatial
resolutions. Within the limited scope of our experiment,
using both adaptations does not appear to harm the
search process most of the time, although using the non-
connectivity penalty may prevent the algorithm from
finding true irregular patterns when they are present.

Sensitivity and positive predicted value for cluster pattern 3 ('Ring')Figure 7
Sensitivity and positive predicted value for cluster pattern 3 ('Ring').
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In the future, one way of managing these adaptations may
be to employ meta-heuristics or cross-validation strategies
that search for 'optimal' combinations of the depth limit
and non-connectivity penalty for a given problem. For
example, one could search for the most suitable values of
u and α on historical data – tuning the parameters based
on the LR test statistic, qualitative assessments of patterns,
or other evaluative criteria. The settings of u and α derived
from this process could then be used for prospective sur-
veillance or cluster detection purposes. Under these cir-
cumstances, the decisions about the role of the two
adaptations are informed by historical data, rather than
purely arbitrary choices on the part of the analyst.

For exploratory research purposes, experimenting with
these adaptations may itself be informative. Observing
systematic changes in the shapes of found clusters, while

values of u and α are varied, may suggest the presence of
an underlying structure or geography. If, for example, the
pattern of found clusters remains compact and circular
whatever the values of u and α, this may indicate the pres-
ence of an underlying circular or compact structure. The
rationale for this is simple: when a search process is not
specific about shape, but a potentially interesting shape is
found, we have some (albeit exploratory and un-falsifia-
ble) evidence that the shape might be meaningful. If the
pattern of the cluster changes considerably with different
values of u and α, this could suggest that the patterns are
more complex, and that a large single geographic structure
is absent. In these capacities, the cluster detection process
provides exploratory information about what the approx-
imate shape of a cluster may be, in addition to the tradi-
tional information about where and what size a cluster is.
Though not conclusive, when such findings are consistent

Sensitivity and positive predicted value for cluster pattern 4 ('Circle')Figure 8
Sensitivity and positive predicted value for cluster pattern 4 ('Circle').
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a–d Maps of scenario results without the use of a depth limitFigure 9
a–d Maps of scenario results without the use of a depth limit.

a. Zone population=10,000, α=4, u=203 b. Zone population=10,000, α=4, u=203

c. Zone population=10,000, α=4, u=203 d. Zone population=10,000, α=4, u=203
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a–d. Maps of scenario results with the best values of α and u (region populations of 1,000)Figure 10
a–d. Maps of scenario results with the best values of α and u (region populations of 1,000).

a. Zone population=1,000, α=3, u=3 b. Zone population=1,000, α=3, u=1

d. Zone population=1,000, α=4, u=0c. Zone population=1,000, α=4, u=1
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a–d. Maps of scenario results with the best values of α and u (region populations of 10,000)Figure 11
a–d. Maps of scenario results with the best values of α and u (region populations of 10,000).

d. Zone population=10,000, α=4, u=3c. Zone population=10,000, α=1, u=3

a. Zone population=10,000, α=4, u=0 b. Zone population=10,000, α=1, u=1
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with other geographic features of the physical or human
landscape, these observations could justify further exami-
nation.

In several ways our experimental design may limit the
scope of our findings. First, we conducted no power tests.
PPV and sensitivity are useful for understanding how the
algorithm adaptations are suited to identifying the correct
boundaries of a cluster of high risk. Power tests are useful
for determining how effective methods are in identifying
the presence of statistically noteworthy clusters. The
former was our emphasis since adjacency-constrained
scan approaches have yet to resolve the best approaches
for finding a cluster without including a large number of
false-positive regions. As the search methods are refined,
power tests will become more important.

Second, we simulated simple disease landscapes with very
little non-random variation in risk. Except for the 'two
cluster' scenario, all scenarios included a single cluster and
non cluster partition of the study area. In the real world,
variation is likely to be less discrete, and much more vari-
able. Future work should consider the issue of detecting
independent clusters in a landscape of considerable varia-
bility. We believe that the depth limit (or a similar adap-
tation) could be an important tool for work in this area.

Third, the difference in risk between the cluster areas and
baseline areas was relatively large (with relative risks
either twice or three times higher in the cluster areas).
These settings were chosen because they reflect the impor-
tance of identifying clinical rather than statistical signifi-
cance common to chronic disease surveillance,
particularly when regional populations are large, or the
disease is common. For common diseases, cluster detec-
tion methods will often identify clusters of statistical sig-
nificance but with small effect sizes (for example, with
relative risk under 1.2). In this study, we stress the impor-
tance of accurately identifying the correct regions within a
true cluster of clinical significance, which is likely to be
important for more common conditions – where the gen-
eral presence and significance of a high risk area is likely
to be known, but where its precise shape or form may be
of independent interest. In rare disease situations, the cir-
cular spatial scan may remain a preferred approach, since
in these cases the objective is to identify the presence and
approximate locations of anomalies and outbreaks, for
which this approach remains both a powerful and elegant
standard.

Conclusion
We believe that the two adaptations we propose contrib-
ute to the growing toolbox of spatial scan methods for use
in disease cluster detection. Methods that can find irregu-
larly shaped clusters are important, but must not sacrifice

the simplicity required in surveillance applications. We
think that irregular disease cluster detection may be of
particular interest for common diseases, or diseases
known to be strongly influenced by features of the physi-
cal environment – such as waterways, roads or geological
structures. In both cases, the use of these and other heuris-
tic adaptations will be critical for ensuring that the found
clusters are plausible and meaningful. We see considera-
ble opportunity for use of these methods for exploratory
spatial analysis and surveillance of chronic disease and
injury. For routine and real-time surveillance of rare dis-
ease outbreaks, we would recommend that the non-con-
nectivity penalty is particularly strict so that the adjacency-
constrained approaches perform in a manner similar to
the traditional spatial scan, or that the traditional spatial
scan is used in their place.
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