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Abstract
Background: Although economic reforms have brought significant benefits, including improved
health care to many Chinese people, accessibility to improved care has not been distributed evenly
throughout Chinese society. Also, the effects of the uneven distribution of improved healthcare are
not clearly understood. Evidence suggests that mortality is an indicator for evaluating accessibility
to improved health care services. We constructed spatially smoothed risk maps for gender-specific
adult mortality in an area of southern China comprising both urban and rural areas and identified
ecological factors of gender-specific mortality across societies.

Results: The study analyzed the data of the Hechi Prefecture in southern in China. An average of
124,204 people lived in the area during the study period (2002–2004). Individual level data for
2002–2004 were grouped using identical rectangular cells (regular lattice) of 0.25 km2. Poisson
regression was fitted to the group level data to identify gender-specific ecological factors of adult
(ages 15–<45 years) mortality. Adult male mortality was more than two-fold higher than adult
female mortality. Adults were likely to die of injury, poisoning, or trauma. Significantly more deaths
were observed in poor areas than in areas with higher incomes. Specifically, higher spatial risk for
adult male mortality was clustered in two rural study areas, which did not overlap with
neighborhoods with higher risk for adult female mortality. One high-risk neighborhood for adult
female mortality was in a poor urban area.

Conclusion: We found a disparity in mortality rates between rural and urban areas in the study
area in southern China, especially for adult men. There were also differences in mortality rates
between poorer and wealthy populations in both rural and urban areas, which may in part reflect
differences in health care quality. Spatial influences upon adult male versus adult female mortality
difference underscore the need for more research on gender-related influences on adult mortality
in China.
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Background
Although economic reforms have brought significant ben-
efits, including improved health care to many Chinese
people, the quality of care remains uneven. Higher quality
health care is available mainly in cities [1]. There are also
signs that for China's women, particularly in the country-
side, the reform era has been associated with declining
access to quality health care services, suggesting that ine-
qualities in improved health care occur along gender and
geographic boundaries [1]. The Chinese government has
articulated its commitment to closing the gaps to access-
ing improved health care services. However, there is no
clear understanding of the effects of health care quality by
gender or socioeconomic status. It is, therefore, important
to identify the variations in accessing improved health
care services among different levels of society in order to
understand the causes and the magnitude of problem.
Some studies suggest that mortality is an important indi-
cator for evaluating variations in accessibility to quality
health care services [2,3].

Twigg et al. [4] postulated that human health-related
behavioral practices are influenced by others within a
society. Thus, addressing the impact of social ecology on
health is important but greatly limited by available analyt-
ical tools. The lack of an effective geocomputational envi-
ronment and algorithms has hindered the development
of spatial analysis techniques [5] leading to unrealistic
assumptions about human behavior. Related analytical
problems include the uneven distribution of physical
facilities, differences in speed of movement in different
areas, and the effect of communications networks. To
address these issues, geographical epidemiologists are
increasingly using more complex methods of statistical
analysis to investigate the spatial distribution of diseases
[6,7].

Disease maps (spatial distribution of disease) provide
researchers with visual displays that can suggest, via pat-

terns of physical facilities and the human environment,
useful avenues of research into causal processes [8,9].
However, the use of simple relative risk assessment of a
disease (e.g., number of observed cases divided by
number of expected cases for each area) may create prob-
lems in areas with small populations (usually rural areas),
yielding extreme relative risks as the number of expected
cases in the denominator is low. Methods for obtaining
stable and accurate estimated rates in small populations
are critical for effective analysis. Bayesian hierarchical
modeling approach that uses Markov chain Monte Carlo
(MCMC) procedure deals with complicated data struc-
tures and models and has good properties for a broad
range of true underlying parameter arrangements [9].

Here we describe the use of neighborhood level data with
identical rectangular 0.25-km2 cells (regular lattice) in a
Bayesian hierarchical modeling approach. We used an
MCMC computational method to obtain the joint poste-
rior distribution of model parameters, from which we
constructed smoothed risk maps of gender-specific adult
mortality in an area of southern China with both urban
and rural areas. Significant gender imbalance in mortality
rates (male mortality more than double that of females of
similar ages) induced us to conduct this gender-specific
mortality study.

Results
The average population of the study area during the study
period (2002–2004) was 124,204, of which 72% lived in
urban areas. In total 1,576 deaths were reported yielding
an annual mortality rate of 3.21 per 1000 people. Annual
mortality rates varied by age and gender, ranging from
0.30/1000 in boys <5 years old to 17.15/1000 for men
≥45 years (Table 1). Overall, the male mortality rate was
1.6 time higher (95% confidence interval = 1.46, 1.79)
than the female mortality rate (Table 1). The mortality
rates in each of the 3 years were significantly higher in the
rural areas than that in the urban areas (Table 2). In the

Table 1: Population and deaths by gender and age groups, Hechi Prefecture, 2002–2004, Guangxi, China.

Male Female

Age group, 
years

Average 
population*

Total deaths† rate/year/1000 Average 
population*

Total deaths† rate/year/1000 Relative risk 
male vs. female 

(95% CI)

<5 3352 3 0.30 2795 7 0.83 0.36 (0.09, 1.38)
5–<15 8670 6 0.23 8136 4 0.16 1.41 (0.40, 4.99)
15–<45 35756 178 1.66 34511 67 0.65 2.56 (1.94, 3.39)
≥45 15604 803 17.15 15380 508 11.01 1.56 (1.40, 1.74)

Total 63382 990 5.21 60822 586 3.21 1.62 (1.46, 1.79)

NOTE. CI, confidence interval.
*average population, 2002–2004
†total deaths, 2002–2004
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study area, about 35% of the households were headed by
women. Overall mortality in female-headed households
was 7.66/1000/year (715/93392), which was more than
twice as high as in households headed by men (3.06; 861/
279220). The difference was statistically significant (rela-
tive risk [RR] = 2.48; 95% confidence interval = 2.25,
2.74).

In the study age group (15–<45 years), the male mortality
was more than double the female mortality (RR = 2.56;
95% confidence interval = 1.94, 3.39); Table 1). We also
derived the rates (male = 1.58/1000/year, female = 0.62/
1000/year) from the MCMC model, which are similar to
the rates derived from actual observations. Most of the
deaths in this age group (as determined from verbal
autopsy data) were due to external causes such as injury,
poisoning, toxicosis, and trauma followed by neoplasm
(Table 3). Because verbal autopsies were not initiated
until mid-2002, the numbers of deaths differed from the
census data.

Aspatial regression model
The descriptive statistics showed no gender-specific varia-
bility in the covariates analyzed (Table 4). By univariate
Poisson regression lower per capita neighborhood
income, longer distance to hospital/health facility, and
longer distance to the river were significantly associated
with higher spatial risk for male mortality (data not
shown). The multiple Poisson regression was fitted with
all of the five variables listed in Table 4. The residuals of
the multiple regression model were checked for spatial
pattern by use of a Moran scatter plot. The results of this
plot show no spatial patterns of the residuals (for males,
Moran's I = -0.0024, p = .52; for female, Moran's I = -
0.0194, p = .35) illustrating that necessary ecological var-
iables were included in the model for predicting spatial
risk of mortality.

By multiple regression analysis only lower per capita
income was significantly associated with higher spatial
risk for male mortality (Table 5). While the univariate

Table 3: Causes of death for men and women aged 15–<45 years, Hechi Prefecture, Guangxi, China, 2002–2004.

Male Female

Cause of death # of deaths % of total deaths # of deaths % of total deaths

Diseases of blood and blood-forming organs and certain immune disorders 0 0.00 1 1.82
Diseases of the nervous system 0 0.00 2 3.64
Diseases of the genitourinary system 0 0.00 2 3.64
Pregnancy, childbirth, puerperium 0 0.00 1 1.82
Mental and behavioral disorders 1 0.71 0 0.00
Diseases of the ear and mastoid process 1 0.71 0 0.00
Diseases of the musculoskeletal system and connective tissue 1 0.71 1 1.82
Certain infectious and parasitic diseases 3 2.13 1 1.82
Endocrine, nutritional and metabolic diseases 4 2.84 0 0.00
Diseases of the respiratory system 4 2.84 0 0.00
Diseases of the circulatory system 10 7.09 4 7.27
Diseases of the digestive system 14 9.93 1 1.82
Abnormal symptoms, signs, clinical and laboratory findings 15 10.64 4 7.27
Neoplasms 21 14.89 16 29.09
External causes such as injuries, toxicosis, trauma 67 47.52 22 40.00

Total 141 100 55 100

Table 2: Overall mortality rates by year and areas (urban vs. rural), Hechi Prefecture, Guangxi, China.

Urban Rural

Year Population Deaths Rate/1000 Population Deaths Rate/1000 Relative risk 
(rural vs. urban) 
(95% CI)

2002 70,631 318 4.26 32,477 184 5.67 1.26 (1.05–1.51)
2003 97,500 350 3.59 36,177 162 4.48 1.25 (1.04–1.50)
2004 97,076 370 3.81 34,751 192 5.53 1.45 (1.22–1.72)

Total 265,207 1038 3.89 103,405 538 5.23 1.35 (1.22–1.50)
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regression model fitted for female mortality did not yield
any significant variables associated with higher spatial risk
of mortality (data not shown), multiple regression
showed that lower per capita income was associated with
higher spatial risk for female mortality after adjusting for
all other variables in the model (Table 6). Higher per cap-
ita health care expenditure in the neighborhood had a sig-
nificant positive association with higher spatial risk for
female mortality in the multiple regression model.

Spatial model
In the MMMC model, we used both fixed and random
effects of the neighborhood and adjoining neighbor-
hoods and fixed effect of the per capita neighborhood
income. The parameter estimates of the models fitted for
adult male and female mortalities are presented in Table
7. The MMMC model yielded neighborhood per capita
income as an influencing factor for predicting higher risk
for adult male mortality, but not for female mortality. We
also checked the results using the CAR model (results not
shown), which did not show any improvement over the
multiple-membership model as obtained from the Baye-
sian Deviation Information Criterion (DIC) diagnostics
[10]; thus we confined our spatial risk analysis using the
multiple-membership model.

Mortality mapping
The mapping of adult mortality in terms of spatially
smoothed relative risk (exponentiation of the predicted

estimate obtained from the MMMC model) is shown in
Figure 1. Higher spatial risk (RR, ≥ 1.5) for adult male
mortality was found only in rural part of the study area.
Two regional clusters can be derived for the high-risk
neighborhoods from this map. Yet, even though adult
female mortality was higher in more rural than urban
neighborhoods (3 vs. 1), no spatial patterns for high-risk
female mortality are shown on the map (Figure 2). There
were far more high-risk neighborhoods for adult male
mortality than for adult female mortality (19 vs. 4) and
none were superimposed. The only high-risk urban neigh-
borhood showed an increase in female mortality. This
area was very poor (per capita income, 158 RMB vs. 290
RMB for all neighborhoods).

Discussion
In our study, adult mortality was significantly higher for
males than that for females. Adults were likely to die of
injury, poisoning, or trauma. Overall mortality was higher
in households headed by women. The disparity in the
mortality rates between adult men and women suggests
that if this trend continues, there will be more households
with women heads, which could eventually increase the
number of deaths in the study area. Our results also illus-
trate disparity in mortality rates between rural and urban
areas, which may in part be due to disparities in health
care accessibility.

Table 4: Study variables for neighborhoods (0.25-km2 grid cells) for men and women aged 15 to <45 years.

Men (n = 243 neighborhoods) Women (n = 236 neighborhoods)

Neighborhood variable Mean SD Minimum Maximum Mean SD Minimum Maximum

Per capita monthly income 288.29 254.79 24.16 2182 290.54 256.50 24.16 2182
Population density/km2 2,694 8,092 16 114,067 2,767 8,200 28 114,067
Hospital/health facility distance (km) 1.28 1.16 0.04 5.43 1.26 1.14 0.04 5.43
Distance from river (km) 1.00 1.03 0.00 4.83 0.98 1.00 0.00 4.48
Per capita health care* expenditure in last month of 2001 
census†

15.33 54.81 0 810 15.74 55.57 0 810

NOTE. SD, standard deviation. Income and expenditures are in renminbi (1 USD = 7.75 RMB).
* Outpatient visits, physician fees, hospital costs, medicines, and lab tests.
†The last month data was collected during census 1 (late 2001).

Table 5: Mortality for men aged 15 to <45 years by multiple Poisson regression, 2002–2004, Hechi Prefecture, Guangxi, China.

Parameter Estimate Standard Error Wald 95% Confidence Limits χ2 Pr > χ2

Per capita monthly neighborhood income -0.0014 0.0006 -0.0025, -0.0002 5.06 0.0245
Neighborhood population density//km2 -0.0000 0.0000 -0.0000, 0.0000 0.05 0.8293
Hospital/health facility distance (km) -0.0312 0.1430 -0.3114, 0.2491 0.05 0.8275
Distance from river (km) 0.2413 0.1420 -0.0371, 0.5197 2.89 0.0893
Per capita neighborhood health care expenditure in the last month of 
2001 census

0.0042 0.0031 -0.0019, 0.0102 1.83 0.1763

NOTE. Income and expenditures are in renminbi (1 USD = 7.75 RMB).
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In our aspatial analysis, the risk for adult mortality was
higher in impoverished communities (defined by lower
per capita neighborhood monthly income) than in
wealthier communities, suggesting that the benefits of
improved health care were not evenly distributed
throughout the study area. The collapse of China's Coop-
erative Medical System in 1978 resulted in the lack of an
organized financing scheme for health care, adversely
affecting access by rural people to health care, especially
the poor [11]. This could perhaps account for the high
number of "at risk" neighborhoods in the impoverished
part of our rural study area. The poor urban neighbor-
hood at high risk for female mortality suggests that even
in areas where health care is easier to access because it is
closer by, gender influences who receives health care serv-
ices in poor societies.

The adult mortality maps (Figures 1 and 2) show many
neighborhoods with increased risks of mortality (RR,
>1.5). These neighborhoods formed two regional clusters,
both in the rural area. In contrast, not many neighbor-
hoods carried increased risk for adult female mortality.
These maps may suggest difference in adverse effects of
health hazards across subpopulations [9]. Because none
of the high-risk neighborhoods for male and female mor-
tality were superimposed, there is a possibility that adult
men and women in southern China face different ecolog-
ical and environmental risks. Future studies should ana-
lyze risk factors in greater depth.

We found significantly higher mortality in rural than in
urban areas, possibly because of less health care accessibil-
ity [1]. Also, health services available in rural areas may
not provide adequate treatment for potentially curable
diseases. Chinese policymakers are currently trying to nar-
row the disparity in health care services for rural and
urban residents through a five-part reform policy. Specific
targets are directed at (1) increasing public funding for
primary health care; (2) providing quality and accessible
health care; (3) extending coverage of social health insur-
ance schemes; (4) providing government health subsidies
to vulnerable portions of the population; and (5) adopt-
ing more appropriate health technologies and pharma-
ceuticals in health care delivery.

A potential limitation of our study is the arbitrary choice
of neighborhoods and therefore variations in the size of
population across neighborhoods. We believe our selec-
tion is an appropriate compromise between loss of resolu-
tion and excess dispersion. One may argue that the mass
vaccine campaign might have influenced neighborhood
level variations in mortality rates. However, the trial was
cluster randomized and we assumed that ecological deter-
minants were independent of the cluster effects under the
trial design for vaccine assignment. Moreover, the rates of
infections targeted by the vaccines were too low to have
affected overall mortality. Another limitation of our study
design is that our study area has an urban area with a high
population density and a sparsely populated rural area.
Thus, the population varied greatly across neighbor-

Table 7: Parameter estimates by a multiple-membership multiple classification model for men and women aged 15 to <45 years.

Men Women

Parameter Estimate SE χ2 Pr>χ2 Estimate SE χ2 Pr>χ2

Intercept 0.482 0.179 7.267 .007 0.379 0.323 1.372 .241
Per capita monthly neighborhood income (in RMB) -0.001 0.000 9.299 .002 -.001 0.000 2.295 .129
Level 2 residual variance 0.032 0.046 0.480 .488 0.014 0.022 0.415 .519
Level 3 residual variance 0.127 0.207 0.373 .541 0.287 0.658 0.191 .662
Deviance (MCMC) 421.204 (243 of 243 cases in use) 229.999 (236 of 236 cases in use)

NOTE. MCMC, Markov chain Monte Carlo computational method; RMB, renminbi

Table 6: Mortality for women aged 15 to <45 years by multiple Poisson regression, 2002–2004, Hechi Prefecture, Guangxi, China.

Parameter Estimate Standard Error Wald 95% Confidence Limits χ2 Pr > χ2

Per capita monthly neighborhood income -0.0020 0.0010 -0.0040, -0.0001 4.05 0.0442
Neighborhood population density//km2 0.0000 0.0000 -0.0000, 0.0000 1.65 0.1987
Hospital/health facility distance (km) -0.0592 0.2587 -0.5664, 0.4479 0.05 0.8189
Distance from river (km) 0.0894 0.2565 -0.4134, 0.5923 0.12 0.7274
Per capita neighborhood health care expenditure in last month of the 
2001 census

0.0057 0.0023 0.0012, 0.0103 6.09 0.0136

NOTE. Income and expenditures are in renminbi (1 USD = 7.75 RMB).
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hoods. However, since we incorporated the neighboring
area effect into the model, we believe the model ade-
quately addressed heterogeneity of across-neighborhood
population. Because we assigned equal weights for neigh-
borhood components without knowing the spatial influ-
ences of mortalities and/or anisotropy on the surface,
complexities may have been diminished.

Although both the models (MMMC and CAR) can be used
to account for the effects of locations, there are differences
between the two models. In MMMC model, we consider
two sets of random effects: exchangeable area random
effects and a multiple membership set of random effects
for the neighbors of each neighborhood. This mean the
rates in each neighborhood is affected by both the neigh-
borhood and its nearby neighbors. The weight columns
contain equal weights for each neighboring neighbor-
hood that sum to 1. In contrast, the CAR prior is a spatial
smoothing prior, and individual random effect is not ran-
dom in the CAR model. This model has only one random
effect for each neighborhood, and it is expected value the
average of surrounding random effect. Note to make the
CAR model identifiable we either need to constrain ran-
dom effect to sum to 0 or remove the intercept from the
model. CAR procedure typically uses weight of 1 for all
observations, as these weights will then be divided by the
number of neighbors in the model.

We focused on the production of reliable maps for gen-
der-specific adult mortality in an area of southern China.
By using the Bayesian hierarchical model, the neighbor-

hood random effects were posterior sampled and the
associated relative risk estimates were averaged to produce
a posterior-average relative risk [12], which was then used
to produce the gender-specific mortality maps. The
approach produces stable and accurate estimates so that
data modeling with this approach implies greater reliabil-
ity in identifying areas at greatest risk for mortality and the
underlying reasons.

Methods
Study area and data
The study was conducted in the Hechi Prefecture of
Guangxi Zhuang Autonomous Region (Guangxi Prov-
ince) in southern China, which borders Guangdong Prov-
ince in the east and Vietnam in the south. Hechi
Prefecture is in the northwest of the province, approxi-
mately 400 km from the provincial capital, Nanning. The
catchment area includes two populous areas: Jin Cheng
Jiang, an urban area (26 km2), and Don Jiang, a rural area
(191 km2). The site was originally set up by the Interna-
tional Vaccine Institute (IVI) in collaboration with the
Guangxi Centers for Disease Control and Prevention for a
multi-centric Vi polysaccharide vaccine effectiveness eval-
uation for typhoid fever [13,14]. All residents of Jin Cheng
Jiang and Dong Jiang were enumerated in late 2001 by the
vaccine trial project staff and were followed in subsequent
years for medical and vital demographic events including
deaths. According to the project's census, an average of
124,204 people lived in the area, half male. Beginning in
mid-2002 all deaths in the community were recorded in
yearly census surveys conducted by project staff.

Spatial variations of relative risk (see text) for adult (15–<45 years) female mortality, Hechi Prefecture, Guangxi, China, 2002–2004Figure 2
Spatial variations of relative risk (see text) for adult 
(15–<45 years) female mortality, Hechi Prefecture, 
Guangxi, China, 2002–2004. The spatial variations of rela-
tive risks from lower to higher are shown in diverging color 
scheme (blue to red) in ColorBrewer.

Dong Jiang (rural) 

JinCheng Jiang (urban) 

Spatial variations of relative risk (see text) for adult (15–<45 years) male mortality, Hechi Prefecture, Guangxi, China, 2002–2004Figure 1
Spatial variations of relative risk (see text) for adult 
(15–<45 years) male mortality, Hechi Prefecture, 
Guangxi, China, 2002–2004. The spatial variations of rela-
tive risks from lower to higher are shown in diverging color 
scheme (blue to red) in ColorBrewer.

Dong Jiang (rural) 

JinCheng Jiang (urban) 
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The project's mortality surveillance team collected infor-
mation from sentinel posts (i.e., hospitals, funeral houses,
family planning offices and local government, village, and
police registrars). A modified (shorter) verbal autopsy
(based on procedures developed by the UK Department
for International Development, 1997; the World Health
Organization; The Johns Hopkins School of Hygiene and
Public Health; and The London School of Hygiene and
Tropical Medicine, 1999) was used by a trained physician
to determine cause of death. The verbal autopsy form con-
taining data on the cause of death (using locally adapted
classifications of diseases) was entered into the project
database. The verbal autopsy was conducted only for the
vaccine trial target population (ages 5–60 years).

We created a household geographic information system
(GIS) in the study area using handheld global positioning
system receivers. Among the geographic features included
in the GIS were Long Jiang River and its branches, roads,
and mountains plus the 35 hospitals/health facility from
which disease surveillance was carried out. By linking
demographic and mortality data, the GIS allowed us to
pursue spatial modeling of adult mortality in the study
area.

Data aggregation
We divided the study area into grid cells of 500 × 500 m,
which we called neighborhoods. Grid cells less than 0.25
km2 resulted in overdispersion of the mortality data (that
is greater variation in the data than expected while larger
cells obscured details of the ecological status) [15]. We
removed parts of cells that fell outside the study area
boundary. In total, we obtained 267 neighborhoods with
at least one person living in the neighborhood. We subse-
quently excluded neighborhoods with fewer than four
persons or no neighboring cell with at least four persons
because neighborhood level ecological data derived from
few observations could bias the outcome. Ultimately we
obtained 243 neighborhoods with at least four adult
males (ages 15–<45 years) in each and 236 neighbor-
hoods with at least four adult females (ages 15–<45
years). Mortality data for individuals and several socioeco-
nomic covariates were aggregated by neighborhood. Lin-
ear distances to the nearest hospital/health facility and to
the nearest river side were computed from the neighbor-
hood center.

Poisson regression analysis
We fitted a Poisson regression model to analyze neighbor-
hood level mortality data. In a Poisson regression model,
observed counts are assumed to have Poisson distribu-
tion, with expected values depending on p predictor vari-
ables x = (x1, x2,..., xp)T. We used the following model for
our analysis:

Log [E(Y)] = log(exp) + β0 + β1x1 + ...... + β5x5,

a generalized linear model with log link function and
Poisson distributed errors where E(Y) is the expectation of
observation, log(exp) is the logarithm of expected number
of cases, x1 is monthly per capita neighborhood income,
x2 is population density in the neighborhood, x3 is hospi-
tal/health facility distance, x4 is distance from the river,
and x5 is neighborhood per capita expenditure on health
care in a month (considered the last month of the census
1 survey conducted in late 2001). βi is the coefficient cor-
responding to xi. The term log(exp) was an offset with the
parameter estimate constrained to 1 since we were inter-
ested in (relative) rates rather than counts. Neighborhood
income is a surrogate for the neighborhood economic sta-
tus, population density and distance from river are the
surrogates of environmental differences among neighbor-
hoods, distance to hospital/health facility describes access
to health care, and health care expenditure is a surrogate
for health care utilization. We used Stata/SE 9.0 for Win-
dows (StataCorp LP, College Station, TX 77845 USA) to
analyze the data using Poisson regression.

Univariate Moran scatter plot
To assess spatial patterns we analyzed the residuals of the
Poisson multiple regression model using univariate
Moran scatter plot (GeoDA™ software; Luc Anselin and
the Regents of the University of Illinois). The spatial
weight was determined using first order Queen Contiguity
(i.e., all common points including boundaries and verti-
ces were included in the neighbor definition). The
method produces four quadrants within the graph that
provides a classification of two types of positive spatial
autocorrelation: high-high (upper right), low-low (lower
left); and two types for negative spatial autocorrelation:
high-low (lower right) and low-high (upper right). Infer-
ence for Moran's I was based on a permutation approach,
in which a reference distribution is calculated for spatially
random layouts with the same data as observed. The ran-
domization uses an algorithm to generate spatially ran-
dom simulated data sets as outlined by Anselin [16]. We
used 9999 random permutations in constructing the ref-
erence distribution.

Spatial model
The standard hierarchical model structure does not explic-
itly incorporate spatial structure, although through the
use of higher levels of geography as additional levels in
the model, we can indirectly incorporate spatial clustering
effects. One extension to the standard hierarchical model
is the multiple-membership model that addresses the
effect of spatial correlation between neighboring areas
[17]. Browne et al. [18] consider Bayesian extensions of
this model as a member of the family models they call a
multiple-membership multiple classification (MMMC)
Page 7 of 9
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model. Alternatively, we can use a conditional autoregres-
sive (CAR) model that also assesses spatial correlation
between neighboring areas. We used MLwiN Version 2.0
(©Multilevel Models Project, Center for Multilevel Model-
ling, University of Bristol, UK) to fit MMMC models; for
CAR models we used through likelihood-based estima-
tion methods and MCMC estimations.

The spatial model considers observed counts for a set of
areas with a known neighborhood structure. Thus, in the
model specification the observed count is affected by the
area where the count is taken and the neighboring areas.
The approach considers a three classification model that
includes the "identity" classification for the lowest level, a
single membership classification, and a multiple member
classification. The Poisson MMMC model is defined as

yi ~ Poisson(πi)

Here y is an N (number of lowest level unit) vector, β is a

vector of fixed effect parameters, and ,  are the

vectors of residuals for the random effects for classifica-

tions 2 and 3, respectively. and  are the vectors

of predictor values and  is a scalar weight for the clas-

sification 3 unit j for lowest level unit i.

To fit the data into the model, we employed neighbors of
the neighborhoods in level 3, and the neighborhood
(group) in levels 1 and 2. We included a covariate "per
capita neighborhood income," which had a significant
relationship with mortality in the aspatial regression
model, in the fixed part of the model (Xβ), in addition to
the intercept term (CONS). The use of a covariate in a
Bayesian spatial model is important for investigating envi-
ronmental variations [9]. The CONS was a vector of 1s,
which allowed for a variance component for each neigh-
borhood to be estimated. The weight was employed based
on the first-order neighborhood using Queen Contiguity
(i.e., both boundaries and vertices are included in the def-
inition). Hence we had eight neighbor columns and eight
weight columns. For modeling, we fitted the variance
component using a burn-in period of 500 and a chain of
50,000.

Spatially smoothed relative risk of mortality
To evaluate the status of each neighborhood with respect
to adult mortality, we obtained spatially smoothed rela-
tive risks of adult mortality within neighborhoods by
means of the Bayesian approach described above. In gen-
eral, the relative risk in disease/mortality mapping meas-
ures whether an area has a higher occurrence of disease
incidence/mortality than that expected from the reference
rate. In Bayesian disease/mortality models, the relative
risk decomposes into two parts that are fixed terms con-
sisting of overall level of relative risk and due to covariates
and random terms. The random terms are spatial correla-
tion structure, which introduces estimates of the risk in
any area depending on neighboring areas, and uncorre-
lated heterogeneity, which pertains to the random sam-
pling variability of the observed counts about the local
mean.
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