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Abstract
Background: Hydropower plants provide more than 78 % of Brazil's electricity generation, but
the country's reservoirs are potential new habitats for main vectors of malaria. In a case study in
the surroundings of the Manso hydropower plant in Mato Grosso state, Central Brazil, habitat
suitability of Anopheles darlingi was studied. Habitat profile was characterized by collecting
environmental data. Remote sensing and GIS techniques were applied to extract additional spatial
layers of land use, distance maps, and relief characteristics for spatial model building.

Results: Logistic regression analysis and ROC curves indicate significant relationships between the
environment and presence of An. darlingi. Probabilities of presence strongly vary as a function of
land cover and distance from the lake shoreline. Vector presence was associated with spatial
proximity to reservoir and semi-deciduous forests followed by Cerrado woodland. Vector absence
was associated with open vegetation formations such as grasslands and agricultural areas. We
suppose that non-significant differences of vector incidences between rainy and dry seasons are
associated with the availability of anthropogenic breeding habitat of the reservoir throughout the
year.

Conclusion: Satellite image classification and multitemporal shoreline simulations through DEM-
based GIS-analyses consist in a valuable tool for spatial modeling of A. darlingi habitats in the studied
hydropower reservoir area. Vector presence is significantly increased in forested areas near
reservoirs in bays protected from wind and wave action. Construction of new reservoirs under the
tropical, sub-humid climatic conditions should therefore be accompanied by entomologic studies
to predict the risk of malaria epidemics.

Background
Malaria is caused by protozoan parasites of the genus Plas-
modium and is transmitted, in Central Brazil, principally

by Anopheles darlingi Root and four other dipters species of
the Anophelines genus: Anopheles aquasalis, Anopheles albi-
tarsis, Anopheles cruzi and Anopheles bellator. An. darlingi is
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considered the most anthropophilic and endophilic spe-
cies among the Amazonian anophelines [1]. The preferen-
tial reproduction habitat of A. darlingi is in areas of still,
clean water, and adults can fly up to 7 km for resting and
feeding [2].

In Brazil, malaria is endemic in the Central Amazon
region. Roberts et al. [3] reported an increasing incidence
of malaria in the Amazon in the early and mid-nineties
due to changes in strategies for malaria control (reduction
of residual house-spraying). By 2002, cases had reduced
slightly, to 349,873 cases [4]. More than 99% of all cases
in Brazil have been observed in the Amazon region, which
includes Mato Grosso state [5]. In southern Mato Grosso,
An. darlingi is abundant, but no malaria epidemics have
yet been observed. Epidemic outbreaks, however, are a
latent risk, particularly in areas with a high density of vec-
tors.

Hydropower plants provide more than 78 % of Brazil's
electricity generation. With an estimated growth in
demand of about 4.5 % per year, implantation of new
power plants is ongoing [6]. The filling phase of the
Manso hydropower plant reservoir, located about 100 km
north of Cuiabá, the capital of Mato Grosso state, was ini-
tiated in November 1998 and concluded in 2001. At its
highest operational levels, the reservoir covers an area of
about 427 km2, and is a potential new habitat for malaria
vectors [7].

Remote Sensing and Geographical Information Systems
(GIS) has emerged as an innovative and important com-
ponent in public health and epidemiology [8], and has
been widely used for monitoring, surveillance and map-
ping of vector habitat and spatial modeling of vector-
borne diseases [9]. Thomson et al. [10], as well as Rogers
et al. [11], have given overviews of applicability of Earth-
observation satellites for the study of ecology and forecast
of malaria. Pope et al. [12], Beck et al. [13] and Roberts et
al. [14] have given application examples for the mapping
of malaria vectors, pointing out the suitability of high res-
olution Remote Sensing (RS) data, such as from the Land-
sat ETM or SPOT systems, for vegetation and land cover
mapping. Newly available imagery of very high-resolution
RS systems such as Ikonos and Quickbird were found to
improve mapping results of small larval habitats or vege-
tation cover in highly structured landscapes [15,16].

In their comprehensive overview of applicability of RS
techniques for vector disease analysis, Beck et al. [9] men-
tioned factors such as vegetation/crop type, vegetation
green up, deforestation and landscape structure as rele-
vant for the evaluation of malaria breeding, resting and
feeding habitats. Malaria transmission in the Brazilian
Amazon has been found to be positively related to defor-

estation [17], due to the increase of populations which
have direct contact with vectors and which are commonly
living in precarious conditions of habitation, nutrition
and health care, factors favoring malaria transmission and
complicating vector control [18,19]. Vittor et al. in 2006
[20] reported a striking increase in human biting rates of
An. darlingi densities in deforested areas in the Peruvian
Amazon. Castro et al. [21] mentioned for a study area in
Rondonia that malaria transmission in early stages of
frontier settlement is dominated by environmental risk,
while in consolidated occupations infection risk is mainly
determined by behavioral factors.

Singer & Castro [22] pointed out that principal natural
breeding places of An. darlingi in the Amazon are at the
forest margins; when inside undisturbed forests, ideal
breeding habitats are rare, since standing water is acidic
and the partial shade favored by this species is absent. In
addition, the construction of rural roads frequently creates
permanent breeding sites for An. darlingi, as a conse-
quence of poor drainage [21]. Studies in the savannah
ecosystems of the Brazilian Amazon are still rare, as they
are not considered to be endemic regions [23].

The monitoring of wetlands – both natural and artificial –
and flooding is fundamental, as bodies of water are the
breeding habitat of Anopheles larva [2]. In Belize, An. dar-
lingi densities have been found to be positively related to
riverine vegetation types [24]. Principal reproduction hab-
itats were shaded or partly shaded patches of floating
debris and submerged plants along creek and river mar-
gins. The comprehensive study of Keiser et al. [25] con-
clude that the implantation of dams favor habitat
suitability of malaria vectors. In Brazil, increase of malaria
transmission has been reported for the great reservoirs of
Balbina, Tucuriu, Samuel and Itaipu [25,26]. Vasconcelos
et al [17], as well as Tadei et al [27], mentioned that the
accumulation of nutrients in reservoirs can favor growth
of aquatic vegetation, important reproduction habitats for
An darlingi. As shown for the Lower Kihansi Hydropower
plant in Tanzania, artificial bodies of water can even intro-
duce malaria into areas not known to have the disease
[28]. On a local scale, the expectation of an increase of
vector densities around reservoirs is supposed to vary as a
function of distance from the shoreline and the proximity
to portions of the reservoir suitable as breeding habitats
[17,25,29]. In GIS-based approaches these factors can be
derived from Digital Elevation Model (DEM) analysis
[15].

Mosquito activity is supposed to be strongly influenced by
environmental factors such as temperature, humidity,
wind speed and moon phase and should therefore be con-
sidered in spatial model building [23,30,31].
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In the present study we report on our experience of apply-
ing satellite-based remote sensing of vegetation and land-
use cover and geographic information system (GIS) ana-
lytic techniques based on DEM to the study of habitat suit-
ability of the malaria vector Anopheles darlingi Root. In our
study area, the Manso hydropower plant influence area in
the Central south of Mato Grossso state (Central Brazil),
malaria is not endemic, but in 2006, a case was reported
for the "Bom Jardim" settlement (Fig. 1). Despite the
resettled former inhabitants of the areas flooded by the
reservoir, the study area is frequently visited by tourists,
mainly from the city of Cuiabá, which use the lake for rec-
reation purposes on weekends. As monkey fauna, which
is believed to be the main animal host of malaria para-
sites, is common in the Cerrado woodlands and gallery
forests [32], presented habitat evaluation should be con-
sidered a potential transmission risk assessment. Our
focus is on the influence of the Manso hydropower plant
reservoir on vector incidence, applying logistic regressions
and testing model sensitivity and specificity by ROC
curves. Spatial and temporal distribution of the vector is
related to reservoir climatic and environmental factors
(temperature, humidity, rainfall, land cover, distance to

potential reproduction habitat, reservoir shoreline mor-
phology) in order to present a detailed map of vector hab-
itat suitability which could provide the basis for the
development of a malaria early warning system.

Methods
Study area
Figure 1 shows the location of the Manso powerplant res-
ervoir at 15°11'25" and 14°44'42" southern latitude, and
55°52'46" and 55°19'23" western length, about 100 km
to the north of Cuiabá, in the southern part of the Brazil-
ian state of Mato Grosso. At its maximum operation level
of 287.5 m NN, the reservoir covers an area of approxi-
mately 427 km2. Average annual temperature of the semi
humid tropical climate is about 26° degrees Celsius, with
an estimated precipitation height of about 1,750 mm with
two distinct periods: about 80% of precipitation occurs
between November and April, while mean monthly pre-
cipitation in June through August is above 20 mm. The
study area is located in the Central Brazilian Cerrado
region, a savannah biome, which, principally due to
edaphic factors, includes formations ranging from open
grasslands to dense woodlands. Vegetation classification

Study areaFigure 1
Study area.
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schemes distinguish two formations of denser scrub- or
woodlands in the Cerrado biome: the Cerrado strictu
sensu (dense, mostly mesophyllous shrubs with a grass
understory) and Cerradão (woodland, mostly mesophyl-
lous trees) [33]. The term savannah used here refers to
these two vegetation formations. Native woodland and
scrublands surrounding the reservoir have been partially
deforested and used for extensive cattle farming. Semi-
deciduous forests are developed along the hydrographical
network and at the ramps of the scarps of the central Bra-
zilian shield. Former inhabitants of the flooded areas have
been resettled in six newly created communities in the
southern part of the lake region (Fig. 1). The proximity to
the urban agglomeration of Cuiabá and Várzea Grande,
with more than 700,000 inhabitants, has led to significant
land transformation processes in the lake surroundings,
with intense recreational activities, particularly on week-
ends, of a highly mobile population.

Field work and data organization
156 adult vector collection campaigns were conducted at
a total of 22 sites between May 2000 and September 2002.
Three to five persons conducted sampling of adults during
four-hour periods, elaborating a data set of human-biting
rate (HBR) that followed human-biting collection tech-
niques per WHO protocol [34]. Malaria transmission risk
to researchers during entomological field survey can be
considered low. During the sampling period no malaria
case was reported for the study area.

At each site, captures were conducted with a mouth suc-
tion aspirator at four sampling points, in intra-, per- and
extra-domicile situations and in four consecutive hourly
periods, initiating first collection period at the start of sun-
down. Captured specimens were placed in vials contain-
ing 70% ethanol for later identification. Air temperature
and relative humidity were measured during each hourly
sampling period (Table 1). Lunar phase was registered for
each sampling date.

Maximum hourly biting-rates of one of the four sampling
periods were used as the dependent variable.

All entomologic data sets, including geographical coordi-
nates of sites and environmental conditions (temperature,
relative humidity, lunar phase, wind speed) were joined
in a database, developed under an Access/VB environment
(Microsoft Inc.), which includes modules for the calcula-
tion of human biting rates differentiated for species.

Spatial data sets and its processing
Figure 2 gives an overview of the data processing sequence
for An. darlingi habitat mapping in the Manso hydro-
power plant region. Geographic coordinates of sampling
sites were determined by using a Garmin XL12 (Garmin

Ltd., Olathe, Kansas) global positioning system (GPS)
and exported into the Access 2000 (Microsoft) database of
entomologic data and environmental field observations,
which had been linked to an ArcView 3.2 GIS environ-
ment (ESRI, Redlands, CA).

All Remote Sensing and GIS data sets were georeferenced
according to digital cadastre, available from FURNAS in a
1:25.000 scale UTM projection. Five spatial data layers
were elaborated to examine its exploratory power of vec-
tor presence prediction (Table 2). Land cover was classi-
fied by Multispectral Landsat ETM imagery from July 2,
2000 (WRS 226/70). All six ETM bands with a 30 m spa-
tial resolution (1–5, 7) were classified, applying the max-
imum likelihood algorithm implemented in the SPRING
4.2 GIS software (INPE, São José dos Campos, Brazil). As
no high-resolution imagery was available at reasonable
pricing for the evaluated period of field campaigns
(2000–01), we had to base land cover mapping for habi-
tat characterization exclusively on Landsat ETM imagery.
A total of 57 ground truth sites were visited during field
campaigns in 2000 and 2001, in a stratified sampling
approach in order to obtain class samples from the com-
plete extent of the study area. As land cover units are gen-
erally extent, average size of ground truth sites was about
54 ha. The classification algorithm was trained by half of
the sites, whereas the other half was used for cross-valida-
tion. To parameterize land cover of vector sampling
points, we determined the predominant cover in a 200 m
radius, applying a majority filter with a 13 × 13 matrix.
Land cover class was then numerical coded according to
expected positive influence on vector densities (Pasture/
farming: 1, Savannah: 2, Forest: 3).

Digital elevation model was interpolated using plani-alti-
metric information from the 1:25.000 topographic map
of the reservoir area applying the Topogrid algorithm [35]
implemented in ArcInfo 7.2.1 (ESRI, Redlands, CA). Iso-
lines with 1 m vertical resolution were combined with dig-
itized river network as elaborated by FURNAS through
photogrammetric stereoplotting before lake filling.

Slope and aspect layers were created applying standard
GIS routines. A convolution filtering procedure with a 13
× 13 window was then applied to obtain averages
weighted according to distance to vector sampling points
in the 200 m radius.

Reservoir extension was modeled for each entomologic
sampling date using water-level data monitored at the
hydropower dam. Spatial querying was then applied to
derive the site-reservoir distances during each entomo-
logic sampling campaign.
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A shape index of reservoir shoreline was developed based
on the hypothesis that lake bays favor vector reproduc-
tion, as they are more protected from wind and waves
than peninsulas. Shorelines simulated for each sampling
data were segmented in 30 m arcs. Then a shape index for
the arc nearest to each sampling site was determined by
executing a sequence of spatial analysis procedures (Fig.
2). First, the land use layer was recoded into two classes:
land and water. Through a region growing segmentation
procedure, vector layers of shorelines at each entomologic

sampling date were simulated. A spatial convolution filter
with a 9 × 9 window, operating on the land-water layer
was then applied to count and attribute number of water
pixels in the neighborhood of each pixel. Overlay proce-
dures were then applied to extract a land/water ratio for
each sampling date. A distance map describing the dis-
tance of each shoreline to the next sampling site was then
modeled. That way, shoreline pixels of a peninsula mar-
gin have ratios under 0.5, while shoreline pixels in bays
have ratios above 0.5. Flight range estimates of An. darlingi

Table 1: Non-spatial explanatory data sets evaluated in logistic regression models.

Explanatory variable Description Method Scale Number of classes

Season Season Wet: Nov.-April/Dry: May-Oct. Nominal 2
Temperature Air temperature Digital thermometer Interval continuous
Humidity Relative humidity Digital humidity indicator Ratio continuous
Moon Lunar phase Field observation Nominal 4

Data processing for habitat suitability mapping of An. darlingi in the APM Manso regionFigure 2
Data processing for habitat suitability mapping of An. darlingi in the APM Manso region. Data layers with no significant relation-
ships with human bite rates are not considered.
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vary between 2 and 7 km [2]. The comprehensive study of
Keiser et al. [25] assumed a range of 2 km to estimate pop-
ulations under malaria risk in dam influence areas. Con-
sidering the minimum water level of the reservoir, 19 of
the 22 sampling points were located at a maximum dis-
tance of 2 km from the reservoir margin. For these points,
a 2 km buffer was created and averaged shoreline indexes,
weighted by the distance between shoreline elements and
the sampling point. For the two remaining points (dis-
tance at minimum water level between 2 and 2.6 km
respectively), we averaged weighted shoreline indexes in a
radius of the minimum distance plus 10% (2.2 and 2.9
km respectively).

Spatial model building by logistic regression
Logistic regression is a modeling technique for describing
the relationship between a response variable and one or
more explanatory variables, where the response variable
follows a binomial distribution. To model the probability
p of occurrence of a binary or dichotomous outcome, lin-
ear combination of the descriptor variables is taken,
whose results are transformed to lie between 0 and 1. For
analysis, the dependent variable, in our case the Human
Bite Rate (HBR), has to be recoded according to a cut-off
value, which determines the number of true positives, true
negatives, false positives, and false negatives. The logistic
regression model can be written as:

ln [p/(1-p)] = a + BX + e (1)

where:

p: probability that the event Y occurs

ln [p/(1-p)]: log odds ratio, or "logit"

a: coefficient on the constant term,

B: coefficient(s) on the independent variable(s),

X: independent variable(s), and

e: error term.

The discrimination capacity of logistic regression models
can be measured by cross-classifying observations and
predictions in a two-by-two table, and calculating indices
of classification performance [36] such as the Cox & Snell
R Square. To overcome the essentially arbitrary choice of
a cut-off value necessary in this approach, Receiver-oper-
ating characteristic (ROC) curves have been proposed for
model validation. ROC evaluates the predictive accuracy
over a range of threshold probabilities (cut-off) and can
be graphically represented by plotting the false positive
rate (1-specificity) against the true positive rate (sensitiv-
ity or 1 – the false negative rate) on the Y-axis. The accu-
racy of a logistic regression model test (i.e., the ability of
the test to correctly classify cases with a certain condition
and cases without the condition) can than be measured by
the area under the ROC curve. An area of 1 represents a
perfect test, while an area of 0.5 represents a worthless
test. Statistical analysis were realized with SPSS, Rel. 10.0
(SPSS Inc., Chicago, IL)

Results
Human biting rates
An. darlingi is widely described as an endophilic or endo-
phagic [37]. In campaigns in and around housings of bet-
ter quality, however, such as those realized in the
residential areas of the hydroelectric stations of Samuel,
Balbina, and Tucurui, only 0.6 % of An. darlingi specimens
had been captured in the interior of houses. As shown in
Fig. 3, maximum HBR from extra-domicile captures were
much higher that those of peri-domicile and intra-domi-
cile observations. Joining captures from both seasons, a
paired sample Wilcoxon test results in highly significant
differences (p < 0.01).

Following the argumentation of Charlwood [37], we sup-
pose that these results could be a function of housing
quality: all resettled families have obtained newly con-
structed houses. As we focus in the present study on the
influence of environmental factors on habitat suitability
we only considered extra-domicile samples for LR model
building (n: 73). All evaluated sampling points, neverthe-
less, were inside An. darlingi flight ranges of rural settle-
ment housing or tourist infrastructure (distance equal or
less than 2 km).

Table 2: Spatial explanatory data sets evaluated in logistic regression models.

Explanatory variable Description Method Data scale layers

Slope Slope DEM analysis ratio 1 layer
Aspect Aspect DEM analysis ratio 1 layer
Land Cover Vegetation/land use Supervised classification of ETM data nominal 1 layer, 3 classes
Distance Distance of sampling point from water 

line at sampling date
DEM simulation, spatial queries ratio 21 layers for each field 

sampling date
Shoreline index Reservoir margin shape: relation of 

water and soil pixels
DEM simulation, convolution filter, 
overlay, spatial query

ratio 21 layers for each field 
sampling date
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Various studies have identified the relation between cli-
matic conditions such as precipitation and temperature
and human-biting rates of malaria vectors [27,36]. Figure
3 shows a comparison of human biting rates (HBR) of the
22 sampling points obtained from intra-, peri- and extra-
domicile captures during two dry (March of 2000 – Octo-
ber 2000 and March of 2001 – October 2001) and two
wet seasons (November of 2000 – April 2001 and Novem-
ber of 2001 – April 2002).

Exploratory analysis indicates slightly higher HBR during
the wet season (Fig. 3), which could be expected due to an
increase of reproduction habitats and higher water tem-

peratures [38]. A maximum HBR value of 128 was
obtained during a wet season campaign at the end of
March 2000 near the reservoir. Captures of more than 10
specimens, however, were obtained in distances of more
than 1.6 km from the reservoir, too. The median of HBR
is higher for extra-domicile captures during the wet season
(8.60) than for those of the dry season (1.25). A Wilcoxon
test for paired samples, however, does not result in signif-
icant differences in vector incidences between the two
periods (p = 0.328). Nevertheless, all meteorological
explanatory data sets were tested in multiple LR model
building to evaluate if spatial habitat simulations must be

Human bite rates during the dry and wet seasons of the years 2000 through 2001 obtained from extra-, peri- and intra-domi-cile capturesFigure 3
Human bite rates during the dry and wet seasons of the years 2000 through 2001 obtained from extra-, peri- and intra-domi-
cile captures.
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done for different meteorological-climatic conditions (see
Tab. 4).

Spatial data processing
Land cover classification was initially stratified in forest,
savannah, cattle farming, crop farming/open soil and
water. Only one small crop farming area was observed
during field work. As this test site showed spectral signa-

tures similar to recently reformed pastures, and as this
land use is supposed to occupy less than 1 % of the reser-
voir influence area, pasture and crop farming areas were
joined in one class in the final thematic layer. Proximity
of sample points to waterbodies is already represented by
the reservoir distance layer (Fig. 4). To minimize colinear-
ity between explanatory data layers, percentages of water

Distance map for the average high water level of the reservoir at 278.5 m NNFigure 4
Distance map for the average high water level of the reservoir at 278.5 m NN.

Table 3: Error matrix of supervised Landsat ETM imagery classification (pixel counts of validation sites).

Reference data

Classified data Pasture/Crop farming Savannah Forest User's accuracy

Pasture/Crop farming 11257 1245 44 89.73
Savannah 2980 16075 502 82.20
Forest 40 673 1741 70.97

Producer's accuracy 78.85 89.34 76.15 84.13
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Table 4: Coefficients (B) of multiple logistic regression ("forward stepwise"), applied for spatial modeling of Anopheles darlingi habitat 
suitability (HBR > 4).

B S.E. Wald Sig. Exp(B)

Step 1 Season .522 .627 .693 .405 1.686
Slope -.126 .146 .747 .388 .881

Aspect -.006 .003 4.413 .036 .994
Moon .117 .265 .197 .657 1.124

Temperature -.010 .060 .027 .869 .990
Humidity .004 .022 .028 .868 1.004

Land Cover .721 .747 .932 .334 2.057
Shoreline 2.240 2.803 .639 .424 9.395
Distance -.356 .197 3.266 .071 .701

Step 2 Season .512 .624 .674 .412 1.669
Slope -.129 .146 .786 .375 .879

Aspect -.006 .003 4.528 .033 .994
Moon .094 .226 .175 .676 1.099

Humidity .003 .021 .016 .898 1.003
Land Cover .720 .749 .924 .337 2.054

Shoreline 2.074 2.599 .637 .425 7.955
Distance -.365 .191 3.641 .056 .694

Step 3 Season .555 .526 1.113 .292 1.742
Slope -.126 .142 .780 .377 .882

Aspect -.005 .003 4.569 .033 .995
Moon .099 .224 .194 .660 1.104

Land Cover .748 .714 1.096 .295 2.113
Shoreline 2.092 2.593 .651 .420 8.098
Distance -.357 .181 3.888 .049 .700

Step 4 Season .611 .509 1.445 .229 1.843
Slope -.108 .134 .656 .418 .897

Aspect -.005 .003 4.410 .036 .995
Land Cover .758 .697 1.183 .277 2.134

Shoreline 1.929 2.533 .580 .446 6.881
Distance -.332 .168 3.923 .048 .717

Step 5 Season .704 .497 2.010 .156 2.022
Slope -.080 .128 .392 .531 .923

Aspect -.005 .002 4.114 .043 .995
Land Cover .994 .636 2.439 .118 2.701

Distance -.281 .153 3.375 .066 .755

Step 6 Season .628 .478 1.728 .189 1.874
Aspect -.005 .002 3.976 .046 .995

Land Cover .673 .361 3.465 .063 1.960
Distance -.209 .095 4.781 .029 .812

Step 7 Aspect -.004 .002 3.200 .074 .996
Land Cover .965 .294 10.792 .001 2.625

Distance -.163 .086 3.583 .058 .850

Step 8 Land Cover .693 .251 7.629 .006 1.999
Distance -.222 .080 7.642 .006 .801
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pixels in the 200 m radius around entomological sam-
pling points were omitted.

Table 3 presents the error matrix obtained from the Land-
sat ETM imagery classification for the three land cover
classes used as descriptors in LR models. The result of
supervised land cover classification is shown in figure 5,
which is overlaid with scaled circles representing average
HBR during the sampling period for the years 2000
through 2002.

Overall accuracy for the three land cover classes used as
predictors in LR model building was determined to be
84.1. Producer's and User's accuracies are similarly high
for Pasture and Savannah formations, whereas forest clas-
sification is less accurate. Denser savannah woodlands
("Cerradão"), build ecotones with the semi-deciduous
forests, causing higher rates of misclassifications between
both classes. Thematic map (Fig. 5) shows Savannah and
Pastures as the predominant land cover. Semi-deciduous

forests, the vegetation formation where the highest HBR
were obtained, covers the dissected steep ramps of the
Central Brazilian shield and accompany the stream val-
leys.

Figures 4 and 6 expose the distance map and shoreline
shape classification for the entire reservoir area as well as
detailed subsets. Figures are overlaid with scaled circles
representing average HBR during the sampling period for
the years 2000 through 2002.

From the 73 extra-domicile sampling campaigns, 31 were
carried out at a distance between 0 a 200 m of reservoir
shoreline, 12 at a distance between 200 and 500 m, 25
between 500 and 1,000 m and 5 at a distance greater than
1 km (Fig. 4).

Figure 7 represents the ROC curve with sensitivity and spe-
cificity obtained for LR models with cut-off values of 0.5,
1, 2, 4, 6, 10, 20, and 50. The area under the ROC was

Land cover classification from Landsat ETM imagery with entomologic sampling pointsFigure 5
Land cover classification from Landsat ETM imagery with entomologic sampling points.
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found to be 82.51%, considered to be a satisfactory global
predictive power [39]. Best equilibrium between sensivity
and specificity was obtained for a cut-off value of 6. For
final model building, however, we opted for a cut-off
value of 4, since positive cases are poorly predicted for cut-
off values of 6 and 10.

Table 4 summarizes LR outcomes for a cut-off value of 4.
Spatial model of habitat suitability in the Manso hydro-
power plant influence area is shown in Figure 8. Shorter
distances to the reservoir border are positively related to
mosquito presence. Semi-deciduous forests (coded as
three for LR) are the best habitats for An. darlingi, followed
by savannah.

Discussion
Although An. darlingi is the most important malaria vector
in Brazil, knowledge about its habitats is limited, particu-
larly on a local scale and in the influence area of hydro-
power plant reservoirs.

Various studies have reported the importance of climatic
factors on vector incidence and malaria prevalence in
semi-humid tropical climates; increased rain and temper-
atures, for example, can have positive effects on vector
breeding and development rates [21]. Our results indicate
that the availability of a permanent reproduction habitat
seems to equilibrate seasonal differences in vector inci-
dence generally observed in humid and semi-humid trop-
ical climates [22]. Slightly higher vector densities
observed at collections during the rainy season (Novem-
ber through April) were not found to be significantly
superior to those of the dry season (p < 0.05). Similarly,
Guimareas et al. [26] in their study on the Itaipu power
plant reservoir mentioned that Anopheline incidence did
not increase during the summer rainy season. Contrary to
our findings, An. darlangi incidences in the surroundings
of the Serra da Mesa power plant in the Cerrado savannah
region of Goias state was found to be higher during the
rainy season [23].

shows a detail of morphological shoreline classificationFigure 6
shows a detail of morphological shoreline classification.
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Multispectral Landsat ETM imagery classification and
DEM-based GIS methods were applied to local scale pre-
diction of vector presence probabilities. As climatic factors
showed no significant influence on vector presence, only
a unique logistic regression model was developed.

First, higher incidences are associated with spatial proxim-
ity to reservoir and semi-deciduous forests followed by
Cerrado woodland. Vector absence was associated with
open vegetation formations such as natural grasslands,
pastures and agricultural areas. As in our study, Guima-
raes et al. [23] noted higher incidences of An. darlingi for
locations covered with denser savannah formations
("Cerrado", "Cerradão"). None of their sampling sites,
however, was covered by semi-deciduous forest, which
showed the highest incidences in our study. It is impor-
tant to mention that vegetation units in the hilly terrain of
the Manso power plant region are highly fragmented,
reflecting variability in geoecological conditions as well as
anthropic transformations. Forest formations in the study
area are spatially limited to corridors of straight river val-
leys along the outlets of inflowing streams. Semi-decidu-
ous forests as well as Cerrado woodlands and savannahs
are reminiscent of patches interlaced by managed pas-
tures. None of the sampling points was located in a con-
tinuous singular vegetation unit whose area would exceed
the flight ranges of An. darlingi. Therefore, we see no con-
tradiction to studies that have reported an increase of An.
darlingi incidence in Amazon regions suffering recent
deforestation [20,26]. As rural populations predomi-
nantly settle near stream valleys covered by forest, vector

presence may be additionally favored by the availability
of feeding sources.

Maximum flight range of An. darlingi is estimated to vary
between 2 km and 7 km [2]. As pointed out by Charlwood
& Wilkes [40], An. darlingi may follow edges of the forest
margin following road systems. As the implantation of
resettlements and tourist infrastructure has opened poten-
tial flight paths, we believe that mosquitoes may reach
areas in a distance of at least 2.5 km from the supposed
breeding habitats in the hydropower reservoir. This thesis
seems to be confirmed by some HBR above 10 in a dis-
tance more than 1.6 km from the shoreline. In reservoirs
such as that of the Manso power plant, which experience
extensive water level variations as a function of operation
schemas for power generation and seasonal hydrological
stream regimes, distance estimates based on DEM analysis
should be done for date specific water levels. Maximum
water level amplitude of about 10 m can result in horizon-
tal alterations of shoreline distances of more than 200 m.
Vector presence and reservoir proximity had significant
positive correlation in an univariate as well as in the mul-
tivariate LR model (p < 0.05). Since preferred breeding
habitats of An. darlingi are large pools of stagnant water
and slow-moving streams [23], we developed and tested a
shoreline morphographic index based on DEM analysis.
In an univariate LR model, vector absence was signifi-
cantly related to peninsula situations (index > 0.5), when
vector incidence was elevated at sampling points near
embayments, protected from wave action. In the multivar-
iate LR model, however, shoreline index was rejected as an
explanatory variable in a 0.05 confidence interval. Results
of nonparametric correlation analysis suggest that this is
due to correlation of shoreline index with vegetation
types. Sampling points with high vector densities near res-
ervoir bays – in many cases flooded stream valleys – are
mainly covered by dense wooden vegetation formations.

Conclusion
According to the presented results, we conclude in the
framework of formulated hypothesis: the incidence of An.
darlingi in the surroundings of the Manso hydropower
plant in the Central Brazilian Cerrado region is highest
near the reservoir and inside semi-deciduous forest.
Savannah scrub- and woodlands are more suitable habi-
tats than pastures or cropland.

Only slight seasonal differences among HBR were
observed, indicating that the increase of mosquito pres-
ence in the wet season as reported for other sub-humid
tropical regions is balanced by the presence of an artificial
reproduction habitat.

Remote Sensing and GIS techniques such as digital land
cover classification and DEM based buffering were found

ROC curve of HBR cut-off values of Anopheles darlingiFigure 7
ROC curve of HBR cut-off values of Anopheles darlingi.
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to contribute to habitat characterization and mapping.
GIS-based morphographic classification, still little
explored for habitat suitability simulation, was found to
be a promising technique that should be included in
future studies of An. darlingi habitats.
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