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Abstract
Background: The optimal method for early prediction of human West Nile virus (WNV) infection
risk remains controversial. We analyzed the predictive utility of risk factor data for human WNV
over a six-year period in Connecticut.

Results and Discussion: Using only environmental variables or animal sentinel data was less
predictive than a model that considered all variables. In the final parsimonious model, population
density, growing degree-days, temperature, WNV positive mosquitoes, dead birds and WNV
positive birds were significant predictors of human infection risk, with an ROC value of 0.75.

Conclusion: A real-time model using climate, land use, and animal surveillance data to predict
WNV risk appears feasible. The dynamic patterns of WNV infection suggest a need to periodically
refine such prediction systems.

Methods: Using multiple logistic regression, the 30-day risk of human WNV infection by town was
modeled using environmental variables as well as mosquito and wild bird surveillance.

Background
Human infection with West Nile virus (WNV) has
emerged as a major public health problem in the US since
its original detection in 1999. As cases of infection in both
animals and humans have spread across North America,
public health strategies have been developed to identify
areas of increased risk of vector borne transmission of
infection to humans [1-3]. One of the goals of such strat-
egies has been to predict areas of increased human risk in
order to take preventive actions such as mosquito control

and public health messaging about protective behaviors.
To varying degrees, predictive systems have relied on envi-
ronmental and animal sentinel indicators to identify
hotspots for human infection risk. These indicators can be
divided into three main groups. Variables in the first
group include land use and population density and are
relatively static over a medium to long time interval, pro-
viding clues regarding likely mosquito habitat or opportu-
nities for enzootic or zoonotic transmission [4,5]. The
second type is more dynamic environmental variables
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including daily climate records of precipitation and tem-
perature that vary over short time periods [6,7]. The third
type is animal sentinel data including surveillance reports
of vector mosquito infection and abundance and reports
of infection in birds and other non-human vertebrates
that could indicate human risk. While dead bird and
trapped mosquito data are commonly used, data on other
mammals such as horses have been used in some settings
[8,9].

Despite the widespread occurrence of WNV infection in
humans in certain years, there remains no agreed upon
predictive model for WNV infection risk, and the relative
predictive value of the different types of indicators catego-
rized above remains unclear. We performed a multi-year
analysis of risk factors for WNV infection in humans in the
State of Connecticut for the years 2000-2005. Our aims
were to determine the best predictive model for human
WNV infection over this time period, to determine the rel-
ative value of the different classes of risk indicators, and to
explore whether the patterns of risk factors were changing
over this time interval.

Results
The summary statistics for the static and dynamic varia-
bles examined are shown in Tables 1 and 2 as well as a risk
map of some of these variables (Figure 1). For the land use
variables, forested land cover displayed the highest mean
percentage by town, by as much as an order of magnitude
greater than many of the other land use variables. For the
dynamic environmental variables, Growing Degree Days
(GDD) showed an increasing pattern over the six-year
period. For animal sentinel variables (bird and mosqui-
toes), there was significant temporal variation in the
number of dead birds being reported annually to the sur-
veillance system, with a peak of 3808 in 2003 declining to
a low of 749 in 2005. The annual number of human WNV
cases reported for the State also shows significant variabil-
ity year to year, ranging from a low of 0 cases in 2004 to a
peak of 17 cases in 2002.

The results of the logistic regression modeling for the
static and dynamic environmental variables of land use,
climate, and population density, as predictors of human
WNV infection risk are shown in Table 3. For the land use
variables, only Agriculture/soil/grass (crop production
areas, etc) remained significant in the model that adjusted
for population density and climate. Population density
remained significant as a predictor of human infection
risk in the model, as did growing degree days and average
temperature in the previous 30 days. Other studies
[10,11] have found that urbanization is a risk factor for
human WNV infection. Population density and residen-
tial/commercial land use are positively correlated and
have both been linked to Cx. pipiens abundance in CT
[12], precluding identification of the actual risk factor for
human infection. To assess the potential bias in the selec-
tion of the lag period for average temperature, we re-ran
the models using a range of lag periods. We found that
using either 14, 60, or 90 day temperature averages did
not improve the model's predictive power. The model that
used only the environmental variables had a ROC/AUC
value of 0.672 for the 2000-2005 period, indicating a
moderate degree of predictive value.

The results of the predictive model that included only ani-
mal sentinel (mosquito and bird) data variables (model
2) is shown in Table 4. Here, the abundance of certain
mosquito species, especially Cx. pipiens, was associated
with an increased risk of human infection, while the
abundance of Cs. melanura was associated with a
decreased risk. When both mosquito abundance and bird
cases were considered, only Cx. pipiens abundance
remained a significant predictor of human risk. In addi-
tion, the presence of a WNV positive mosquito in a town
during the previous 30 days was associated with increased
human infection risk compared to an area where no trap-
ping had been done. Similarly, the reporting of a dead
bird in a town over the past 30 days, as well as WNV
detected in a bird found in the town over the past 30 days
were significant predictors of risk. The ROC value for the
model that included the mosquito and bird sentinel data
was 0.64.

Table 1: Static variables used to model human WNV infection risk in Connecticut from 2000-2005.

Variable Mean Standard Deviation (sd)

Land Use (%) Commercial/Industrial 5.5 7.2
Deep water 2.6 2.2
Agricultural/soil/grass 19.5 9.9
Forest 59.3 21.5
Residential/commercial 8.3 9.7
Rural/residential 1.6 0.9
Wetlands 2.3 2.4

Population Density (persons/sq mile) 341.0 472.7
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Table 2: Dynamic variables used to model human WNV infection risk in Connecticut from 2000-2005.

Statewide Climate Data 2000 2001 2002 2003 2004 2005
Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Daily Temperature 60.4 8.3 62.6 8.5 62.4 10.6 61.7 9.6 62.2 8.6 63.2 10.2
Yearly precipitation 14.3 7.6 11.0 8.2 14.8 6.1 17.6 6.8 14.5 6.7 15.9 13.8
Growing Degree Days 877.8 489.5 1057.4 588.1 1111.9 636.0 928.9 560.2 975.3 542.5 1055.8 655.4

Animal Sentinel Data 2000 2001 2002 2003 2004 2005
# # # # # #

Dead bird sightings 2448 3467 3766 3808 1573 749
WNV positive birds 802 339 436 461 27 21
WNV pos. mosquitoes 219 409 799 1060 924 518
Mosquito abundance 32177 33184 35614 70262 44561 32064
Human cases 1 6 17 15 0 6

Connecticut West Nile Virus surveillance results from 2005Figure 1
Connecticut West Nile Virus surveillance results from 2005. From [33].
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Table 5 shows the results of the model (model 3) that
includes both environmental variables and animal senti-
nel data, and that analyzes these data over the entire time
period of 2000-2005 as well as the three-year periods of
2000-2002 and 2003-2005. Over the entire time period,
the predictive factors retaining significance include
human population density, growing degree-days, average

30 day temperature, finding a WNV-positive mosquito in
the town during the last 30 days, and the reporting of a
dead bird or a WNV-positive bird in the previous 30 days.
As in model 2, towns where no mosquito trapping had
occurred over the past 30 days had a lower risk for human
WNV cases. The ROC statistic for this overall model was
0.748, higher than both other models. The time stratifica-

Table 3: Model 1: Human WNV infection risk in Connecticut from 2000-2005 using environmental variables only.

Unadjusted logistic regression Adjusted logistic regression
OR 95% CI p-value OR 95% CI p-value

Land Use (%)
Commercial/industrial 1.08 1.06 1.10 <0.0001
Deep water 1.02 0.91 1.14 0.7579
Agriculture/soil/grass 1.04 1.01 1.07 0.0088 1.057 1.03 1.09 0.0003
Forest 0.95 0.93 0.96 <0.0001
Residential/commercial 1.09 1.06 1.11 <0.0001
Rural/residential 0.92 0.58 1.46 0.7325
Wetlands 0.91 0.77 1.07 0.2615

Climate
Growing degree days 1.00 1.00 1.00 <0.0001 1.00 1.00 1.00 <0.0001
Avg. rainfall last 30 days 0.99 0.96 1.02 0.4247
Avg. temp. last 30 days 1.18 1.11 1.26 <0.0001 1.20 1.13 1.27 <0.0001

Other
Human population density 1.00 1.00 1.00 <0.0001 1.00 1.00 1.00 <0.0001
Year 1.02 0.91 1.14 0.7437

Table 4: Model 2: Human WNV infection risk in Connecticut from 2000-2005 using animal-sentinel variables only.

Unadjusted logistic regression Adjusted logistic regression
OR 95% CI p-value OR 95% CI p-value

Mosquito abundance last 120 days (mosquitoes/trap day)
Cs. melanura > = 75% percentile 0.17 0.04 0.72 0.0156
Cs. melanura not reported 0.08 0.04 0.16 <0.0001

Cx. pipiens > = 75% percentile 6.25 3.14 12.45 <0.0001 3.00 1.47 6.13 0.003
Cx, pipiens not reported 0.22 0.09 0.54 0.0009

Cx. restuans > = 75% percentile 2.55 1.34 4.87 0.0045
Cx. restuans not reported 0.13 0.06 0.30 <0.0001

Cx. salinarius > = 75% percentile 2.29 1.19 4.38 0.0127
Cx. salinarius not reported 0.13 0.06 0.28 <0.0001

Ae. vexans > = 75% percentile 4.43 2.30 8.55 <0.0001
Ae. vexans not reported 0.18 0.07 0.41 <0.0001

Animal surveillance data in town last 30 days
All mosquitoes negative for WNV last 30 days (reference) 1.00 1.00
Positive mosquitoes last 30 days 14.38 7.89 26.22 <0.0001 6.78 3.42 13.47 <0.0001
No mosquitoes recorded last 30 days 0.16 0.07 0.36 <0.0001
Dead bird in past 30 days
(reference: no birds reported)

7.43 2.88 19.15 <0.0001 2.80 1.19 6.56 0.02

WNV positive bird last 30 days
(ref. no WNV positive birds)

13.18 7.75 22.41 <0.0001 3.94 1.96 7.90 0.0001
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tion showed that the combined model performed better
over the first three years of the study period (ROC/AUC =
0.87) than the second three year period (ROC/AUC =
0.521), and that mosquito data was more predictive in the
first period while bird data, (both sightings of dead birds
and WNV positive birds) was more significant in the pre-
dictive model during the second time period.

Discussion
Our longitudinal analysis of risk factors for human WNV
infection found that a number of environmental variables
including climate and population density, as well as the
occurrence of WNV infection in mosquitoes and birds
detected in active and passive surveillance efforts showed
predictive value for human risk over a six-year time
period.

Despite the attempt to assimilate data from a number of
sources into a predictive model, this study had a number
of limitations. A principal one was the small number of
human cases in the state over the study period. In addi-
tion, the intensity of bird surveillance efforts appeared to
have changed over the period, perhaps due in part to
changing public perception about risk. Information about
the implementation of mosquito control efforts was not
incorporated into the current model, while the efficacy of
control efforts for WNV is not well understood, such
efforts could have affected the predictive ability of the sur-
veillance data. The fact that towns with no mosquito trap-
ping had lower risk of human cases could reflect the fact
that trapping was performed in areas that were judged to
be higher risk for WNV activity. However, such selective
surveillance could result in detection bias. Despite these
limitations, the final model was able to show significant
relationships between risk factors and human risk. We
believe that this was due in part to the data quality of the
ongoing systematic mosquito surveillance program, as

well as the quality of the wild bird surveillance program
that continued over the entire study period.

For the static environmental variables, human population
density remained a significant predictor even when
adjusting for other environmental measures and sentinel
data. This is in agreement with other studies that found
positive association between human infection and urban/
suburban environments versus more rural areas [10,11].
However, other studies such as Degroote et al [13] and
Wimberly et al [14] suggest that the opposite is true in that
less population density and rural areas is a risk factor for
the disease. Perhaps geographical region had an impact
on the discrepancy of these studies with some being in the
Eastern part of the United States [10,11], and the others in
the Western part [13,14]. For the land use/land cover var-
iables, the data suggested a risk associated with the agri-
cultural/soil/grass land use class during the period 2000-
2002, however this variable did not remain significant
across all the time periods. The grassland component of
this class may represent more residential turf areas, which
have been linked to Cx. pipiens [12]. In addition, agricul-
ture has been shown to be a strong predictor of the abun-
dance of Ae. vexans [12], a putative bridge vector of WNV
from wildlife to humans.

We found significant associations between human infec-
tion risk and both growing degree-days and average tem-
perature during the past 30 days. The importance of
climate factors in our models is in agreement with a grow-
ing number of reports suggesting that real-time climate
data can be useful in WNV risk prediction [9,15]. Temper-
ature can affect mosquito emergence and developmental
rates, the length for the pathogen extrinsic incubation
cycle as well as human outdoor activity, all determinants
of human infection risk.

Table 5: Model 3: significant predictors of human WNV infection remaining in full model with both environmental and sentinel data- 
stratified by time period, by town.

2000-2002 2003-2005 2000-2005
OR 95% CI p-value OR 95% CI p-value OR 95% CI p-value

Agricultural Land Use 1.06 1.02 1.10 0.0026

Population Density 1.00 1.00 1.00 <0.0001 1.00 1.00 1.00 <0.0001
Growing Degree Days (GDD) 1.00 1.00 1.01 0.0007 1.00 1.00 1.00 0.0010 1.00 1.00 1.00 <0.0001

Positive mosquito last 30 days 
(ref = mosquitoes neg last 30 days)

3.25 1.29 8.20 0.0124 3.08 1.67 5.68 0.0003

No mosquito testing last 30 days 0.35 0.07 1.68 0.1887 0.57 0.26 1.28 0.1761

Dead bird last 30 days 2.69 1.12 6.46 0.0266 2.48 1.28 4.78 0.0070
Positive bird last 30 days 3.11 1.28 7.56 0.0123 2.41 1.27 4.60 0.0074

Avg. temp last 30 days 1.49 1.29 1.71 <0.0001 1.09 1.00 1.18 0.0388 1.17 1.08 1.28 0.0003
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While earlier studies of WNV infection in the western
hemisphere have used dead bird surveillance to predict
human infection risk [16], some researchers have found
that mosquito surveillance may be more accurate than
bird surveillance as a predictive tool [17]. Others have
pointed out the potential for bias in relying on passive
surveillance of dead birds, with human population den-
sity affecting the likelihood of reporting, and the fact that
birds die from reasons other than WNV [18,19]. Our anal-
ysis of animal sentinel variables showed that both mos-
quito and bird surveillance data added significant amount
of explanatory power to the environmental variables, and
that dead birds remained significant in the final predic-
tion model for the entire study period, even when adjust-
ing for human population density. The relative value of
mosquito and bird data appeared to vary by time period.
Mosquito data were significant in the model for the
period 2000-2002, while bird data were more significant
in the model for the period 2003-2005. Some of this var-
iation could be due to linkage between bird and mosquito
virus prevalence Other changes could have included vari-
ation in level of concern among the public leading to
decreased reporting of dead birds and impact of socioeco-
nomic factors on reporting. These issues deserve further
investigation in future studies of zoonotic disease surveil-
lance systems.

When only animal sentinel data were considered, species-
specific mosquito abundance showed a positive correla-
tion for human infection risk, especially Cx. pipiens. There-
fore the results of this study support the role of Cx. pipiens
as enzootic and potentially a bridge vector in the North-
east United States.

We demonstrated that the predictive power of particular
variables changed over the time period, suggesting that
risk models should be continually updated. In addition,
risk models must take into account the geospatial varia-
tion of West Nile Virus, since surveillance efforts have sug-
gested that both the incidence of the disease, as well what
factors are associated with increase WNV risk, can vary
across different geographical locations in the United
States.

A limitation to this study is the fact that some of the cases
might not have been residents in Connecticut. Since this
study focused on the summer months, there is a possibil-
ity that cases were vacationers from outside the study area.
This could result in an overestimate of the risk of human
WNV infection. Also, the state of Connecticut does not
have universal healthcare. There is a possibility that un-
reported cases occurred because some did not have access
to medical care. If there were a large amount of WNV cases
among the uninsured population in Connecticut this
might have underestimated the risk of WNV infection.

Finally, other studies [7,20] discuss the importance of
summer and winter months in relation to WNV risk. As
future work, the authors want to explore the value of
including winter months within the degree-day model as
a possible improvement for examining WNV risk.

Conclusion
Few published studies have looked at WNV risk factors
over an extended period of time. Our longitudinal analy-
sis of risk factors demonstrated that the relative value of
specific risk factors might differ year to year as the pattern
of infection evolves. We found decreases in the frequency
of wild bird reports over the study period, suggesting
changes in bird species abundance and/or changing host/
reservoir dynamics of WNV infection in bird populations.
These changes could also be due in part to changing sur-
veillance practices and public awareness or concern over
the time period. These dynamic patterns reinforce the
need for prediction systems that are continually refined in
order to adapt to changing environmental conditions and
disease transmission patterns. Despite such fluctuations,
however, and the sporadic and generally uncommon
occurrence of human WNV cases in CT, the quality of the
risk factor data allowed us to create a model with signifi-
cant amount of explanatory power that could potentially
help create a useful tool for public health monitoring and
intervention for WNV risk.

Public health surveillance efforts are often limited by
resource constraints, and there is therefore a need to eval-
uate the relative value of different strategies for prediction
of a disease such as WNV. While integrated systems incor-
porating a variety of environmental and sentinel data
streams may appear ideal, they are costly to maintain. In
fact, the CT Dept of Public Health suspended their wild
bird WNV surveillance in 2006.

The results of this study can contribute to the develop-
ment of cost effective surveillance strategies for early
detection and intervention for WNV risk in the future. Les-
sons learned with WNV surveillance can also shed light on
the effective tracking of other zoonotic infections and vec-
tor borne infections.

Methods
Connecticut Department of Public Health (DPH) West 
Nile Virus Surveillance Data
The Connecticut WNV Surveillance Program has moni-
tored WNV activity in humans, wild birds and mosquitoes
since 2000. In Connecticut (and the United States as a
whole), patients who seek medical care generally do so
through visits to their primary care physician, specialist,
or in more urgent cases, through emergency room visits. If
the treating clinician (and/or laboratory) suspects or con-
firms a case of West Nile Virus, then they are expected to
Page 6 of 10
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report the case to the Connecticut DPH. Between July and
September, the period of greatest human WNV risk, the
Connecticut DPH actively contacts hospitals across the
state to more thoroughly identify patients with WNV, par-
ticularly concentrating on individuals diagnosed with
encephalitis or meningitis. Between 2000 and 2005, 44
human cases of WNV in CT, by town, were reported to the
Connecticut DPH.

Between 2000 and 2005, passive surveillance of bird mor-
tality throughout the state was conducted with the coop-
eration of the public during the months of June through
October. In the event of a dead bird sighting, residents
were encouraged to call a specific telephone number des-
ignated by their local health departments. Data regarding
the location and date of the sighting as well as the species
of bird were submitted to the Connecticut DPH on a
weekly basis and subsequently incorporated into an exist-
ing database. In addition to the records of sightings, dead
birds submitted to local health departments from across
the state were necropsied at the state veterinary diagnostic
laboratory (on the campus of the University of Connecti-
cut), and brain tissue samples were then tested for WNV
using virus isolation. The majority of these birds were cor-
vids (crows and jays). The policy of the surveillance pro-
gram was that testing of dead birds from a given town
ceased following confirmation of WNV in at least five sep-
arate birds; subsequently, further submissions of dead
birds were discouraged and assigned lower priority for
WNV testing. Therefore, we created a categorical variable
for whether WNV positive birds had been identified in a
town over the previous 30 days.

Connecticut Agricultural Experiment Station (CAES) West 
Nile Virus Surveillance Data
Since 1999, CAES has conducted mosquito trapping,
identification, and virus isolation at 91 statewide loca-
tions from June through October [21]. The trapping pro-
gram was expanded from a pre-existing mosquito
surveillance system established to monitor eastern equine
encephalitis virus [22]. Approximately one-third of the
sites were located in densely populated residential areas
along the urban/suburban corridor that extends from Fair-
field County along the coast to the Connecticut River and
north into Hartford County. Traps in the five remaining
counties were established in more rural settings. The
number of traps per town varied from none to as many as
five. Trapping was performed with dry ice baited CDC
miniature light traps and gravid traps once every ten days
at each trap location. Typically, traps were placed in the
field during the late afternoon and retrieved the following
morning [21]. Trapping locations were similar from year-
to-year. Mosquitoes were identified according to species
and processed for WNV infection in groups of up to 50

females and each pool was identified as positive or nega-
tive for West Nile virus using virus isolation.

Results from mosquito testing were stored in a database
that included trap location, date of sampling, total
number of mosquitoes tested, number of each species
found, and whether or not the mosquito pool tested pos-
itive for WNV.

We created abundance variables in terms of mosquitoes
per trap-day, calculated from the mosquito testing data,
by adding together the total number of mosquitoes
trapped within a town on the trap day and dividing by the
number of traps within each town. In a similar fashion,
we calculated, species-specific abundance data by town
for the following species: Culex pipiens, Culex salinarius,
Culex restuans, Aedes vexans, and Culiseta melanura, species
believed to be some of the most important WNV vectors
in CT [21]. Because trapping only took place in certain
towns during the study period, we created a categorical
variable to indicate towns where no testing took place.

Connecticut DPH Population Density Data
The population density for each of the 169 towns was cal-
culated for each year from 2000 to 2005. Estimated town
populations from 2000-2005 were obtained from the
Connecticut DPH based on the 2000 census and esti-
mated growth rates. The denominator, land area for each
town, was measured from a map of Connecticut town
boundaries obtained from the University of Connecticut
Magic Geospatial Data Resources [23].

National Oceanic & Atmospheric Administration (NOAA) 
weather data
Daily surface observations of minimum (Tmin) and max-
imum (Tmax) temperature and precipitation data for
2000-2005 were obtained from the National Oceanic &
Atmospheric Administration (NOAA) [24]. Landesman et
al [25] have used precipitation data to model WNV risk.
We linked each of the 169 towns in Connecticut to daily
data from 16 Connecticut weather stations. All stations
included precipitation data, but only 10 of the 16 weather
stations recorded temperature data. Towns were assigned
to the nearest weather station in terms of linear geo-
graphic distance. If towns were assigned to precipitation-
only stations, they were additionally assigned to a station
that recorded temperature data. For those days where
there were missing observations, daily state averages were
calculated from the remaining weather stations.

Trailing 30-day averages for temperature and precipita-
tion, and daily cumulative growing degree-days (GDD) in
excess of 10°C were calculated for each day within each
town for analysis. GDD is a measure of seasonal accumu-
lation of days where the temperature is over a certain
Page 7 of 10
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threshold. GDD is a common metric used by agriculture
industry to predict emergence of crops and agricultural
pests during the growing season. In addition, studies such
as Zou et al [26] have used it as a variable for WNV surveil-
lance. Accumulation of GDDs begins with the first day in
spring with a daily average temperature greater than 10°C.
We used 10°C as the threshold since there is evidence that
adult Culex spp. emergence is related to this threshold tem-
perature [27]. GDD was computed by comparing the daily
average temperature to a baseline of 10°C (See Equation
1)

Equation 1. Equation for calculating cumulative growing degree-days 
(GDD)

University of Connecticut Magic Geospatial Data Land 
Use Land Cover Data
Using the 1995 land use/land cover classification map
from the University of Connecticut Magic Geospatial Data
Resources [28], the percent of different land use/land
cover (LULC) classes were calculated for each of the 169
towns (In Connecticut, developed land increased by 1.2%
between the time of this 1995 map and 2006 [29]. This
change in urbanization during this period would likely
have minimal effects on the end results.). The LULC clas-
sification map included a total of 28 categories. Using Arc-
GIS software version 9.1, the percentage of different land
use/land cover (LULC) was determined by first collapsing
the 28 total categories into 7 major categories: commer-
cial/industrial, residential/commercial, rural/residential,
agriculture/soil/grass, forest, deep water (e.g. some lakes),
and wetlands. Commercial/industrial regions are used
mainly to sell products and services. Examples include
business districts or shopping centers [30]. Residential/
commercial include high density and low density housing
structures. Residential developments can also include res-
idential strips adjacent to or extending from commercial
urban centers [30]. Rural/residential encompass regions
of scattered residential land use, such as farmsteads [30].
Wetlands consist of areas such as mudflats, swamps, and
marsh [30]. Forest includes both deciduous, evergreen,
and mixed forests [30].

Elements of the Final Data Set
A master data set of human health data, avian surveillance
data, mosquito surveillance data, climate factors and
landscape variables was assembled and analyzed. For each
day from January 1, 2000 through December 31, 2005,
and for each of the 169 towns in Connecticut, the follow-
ing information was included in the data set: daily occur-
rence of human cases of West Nile infection; occurrence
and species of dead bird sighting; occurrence and species
of WNV-positive bird; abundance of mosquitoes by spe-
cies, and occurrence of WNV-positive mosquito pools.

Also included in the data set were the population density;
percentage commercial/industrial LULC; percentage of
residential/commercial LULC; percentage of residential/
rural LULC; percentage of agricultural/soil/grass LULC;
percentage of forest LULC; percentage of deep water; per-
centage of total bodies of water; and percentage of wet-
lands for each town. Finally, the trailing 30-day average
temperature and precipitation measurements, the cumu-
lative GDD for each day as well as the trailing 120-day
average of mosquito abundance during the specified time
period were included. The choice of 30 day time lags for
precipitation and temperature were somewhat arbitrary;
time lags between 0 and 8 weeks have been used in other
studies to predict West Nile vector abundance [31]. A 120-
day trailing average for the mosquito data was selected to
provide an estimate of the build-up of the mosquito pop-
ulation later in the season, which is when human cases are
observed.

SAS software version 9.1 (SAS Institute, Cary, North Caro-
lina) was used for all statistical analyses.

Data Analysis
Logistic regression modeling
Three logistic regression models were created using differ-
ent combinations of variables. The first model included
only environmental variables (both static and dynamic).
The second model used only animal sentinel (mosquito
and bird) data. The third model combined both environ-
mental and animal sentinel data. Unadjusted odds ratios
of human infection risk were calculated using logistic
regression for all independent variables described in the
previous section.

Adjusted analysis was also conducted on the three mod-
els. To minimize collinearity, we included in the same
model only those variables with a Pearson rank coefficient
of less than 0.6. Highly correlated variables were consid-
ered as competing within the model. Forest and Agricul-
ture/Soil/Grass were highly correlated. Population density
was positively correlated with Residential/Commercial
land use and very negatively correlated with Forest. Resi-
dential/Commercial land use and Commercial/Industrial
land use were also highly correlated. Since both Popula-
tion Density and Residential/Commercial land use were
highly correlated with Forest, we used only one of these
correlated land use variables (Forest) in the final logistic
model. A backwards elimination procedure with a signifi-
cance level to stay of p < = 0.05 was used to select signifi-
cant variables remaining in the final models.

In order to explore temporal trends in the predictive value
of different variables, we arbitrarily divided the study
period into two three-year periods (2000-2002 and 2003-
2005), and ran the models for each of those sub-periods.

Cumulative GDD over calendar year T T Tbase= + −Σ( )[( ) / ] ,max min 2   where T Cbase = °10
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As a further check for temporal variation in the data, the
multiple regression analyses described above were run
using a generalized estimating equation (GEE). The GEE
approach adjusts for the effect of temporal autocorrela-
tion in time series data. The independent variables
remaining significant in the models were identical for the
logistic regression and the GEE models, with similar point
estimates (data not shown).

To evaluate the explanatory power of each logistic regres-
sion model, we constructed ROC curves and calculated
area-under-the-curve (AUC/c-statistic) estimates for each
of the models using SAS [32].
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