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Abstract

Background: Monitoring spatial disease risk (e.g. identifying risk areas) is of great relevance in public health
research, especially in cancer epidemiology. A common strategy uses case-control studies and estimates a spatial
relative risk function (sRRF) via kernel density estimation (KDE). This study was set up to evaluate the sRRF estimation
methods, comparing fixed with adaptive bandwidth-based KDE, and how they were able to detect ‘risk areas’ with
case data from a population-based cancer registry.

Methods: The sRRF were estimated within a defined area, using locational information on incident cancer cases
and on a spatial sample of controls, drawn from a high-resolution population grid recognized as underestimating
the resident population in urban centers. The spatial extensions of these areas with underestimated resident population
were quantified with population reference data and used in this study as ‘true risk areas’. Sensitivity and specificity
analyses were conducted by spatial overlay of the ‘true risk areas’ and the significant (α=.05) p-contour lines obtained
from the sRRF.

Results: We observed that the fixed bandwidth-based sRRF was distinguished by a conservative behavior in identifying
these urban ‘risk areas’, that is, a reduced sensitivity but increased specificity due to oversmoothing as compared to the
adaptive risk estimator. In contrast, the latter appeared more competitive through variance stabilization, resulting in a
higher sensitivity, while the specificity was equal as compared to the fixed risk estimator. Halving the originally determined
bandwidths led to a simultaneous improvement of sensitivity and specificity of the adaptive sRRF, while the specificity
was reduced for the fixed estimator.

Conclusion: The fixed risk estimator contrasts with an oversmoothing tendency in urban areas, while overestimating the
risk in rural areas. The use of an adaptive bandwidth regime attenuated this pattern, but led in general to a higher false
positive rate, because, in our study design, the majority of true risk areas were located in urban areas. However, there is a
strong need for further optimizing the bandwidth selection methods, especially for the adaptive sRRF.
Introduction
Investigating the spatial distribution of diseases has a long
tradition in epidemiology: it provides important insights
into the spatial processes of disease development and
disease etiologies. Thus, the demand for spatial disease
surveillance programs is rising, both for chronic diseases
such as cancer or multiple sclerosis, and for infectious
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diseases, as the recently implemented project for con-
tagious disease surveillance (http://www.healthmap.org)
indicates. A common methodological strategy in monitoring
spatial disease risks is to use regional count data as a
reference. In most countries, administrative population
counts are freely available only at a spatial level that does
not provide sufficiently high resolutions for the demands
and applications of a small-area disease surveillance [1].
Alternatively, case–control designs have been developed
and employed for research purposes. This design has
certain advantages through its ability to distinctly identify
localized risk elevations which tend to be blurred in aggre-
gated data [1-4]. A common risk measure used in a spatial
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case–control design is the spatial relative risk function
(sRRF) computed via kernel density estimation (KDE),
usually employing odds ratios [5-10]. The estimation of
the sRRF has successfully been applied in many different
areas of spatial epidemiology [1,11-14]. However, the
critical point with any KDE is the optimal choice of
the smoothing parameter, i.e., the bandwidth that is
applied: if the bandwidth is too large the data will be
over-smoothed and local extremes might be missed;
on the other hand, if the bandwidth is chosen too
small the data will be under-smoothed and the estimator
appears “hairy” (with many modes). Many statistical
methods have been suggested in order to find the
optimal bandwidth and typical bandwidth selection
methods are Likelihood Cross Validation (LCV
[15,16], Least Squares Cross Validation (LSCV [17,18],
Biased Cross Validation (BCV [19], Smoothed Cross
Validation(SCV [20], and the direct-plug-in method
[21]. Detailed descriptions of these bandwidth selection
methods have been provided [22-25]. Nevertheless, and
despite progress in finding the optimal bandwidth,
KDE may still reflect the true density insufficiently
when the data are very skewed or show a multimodal
structure [26].
Commonly, sRRF are computed using a fixed band-

width, that is, with the same amount of smoothing
being applied for cases and controls over the entire
study area. However, considering that the source
population in reality is not homogeneously distributed
across space, it appears more reasonable to assign less
smoothing to areas with a high population density and
more smoothing to regions with a lower population
density. This is known as the adaptive bandwidth approach
[27]. Davies and Hazelton [28] found theoretical and
practical advantages in the application of the adaptive
bandwidth to clinical data and implemented it in the
R package sparr [29].
In this study we evaluate different bandwidth selec-

tion methods and the resulting fixed and adaptive
bandwidth-based risk estimator using the R package
sparr. To date, the presumed advantages of certain
approaches have been evaluated only in simulation
studies using theoretical data and scenarios [28].
However, many disease surveillance systems, such as
cancer registries, are faced with a demand for a re-
gional monitoring of small-area disease risk based on
individual cases of disease. To address the general
lack of comparison of these two methods under real-
world conditions, we create a risk surface employing
methods that use real-world data and that artificially
produce urban ‘risk areas’. Finally, we assess the per-
formance of the sRRF, using fixed and adaptive
bandwidth-based kernel density estimation, to detect
these urban ‘risk areas’.
Methods
Incident cancer cases
Data on individual incident cancer cases were obtained
from the epidemiologic cancer registry of North-Rhine
Westphalia [30]. The records for all 199,280 cancer cases
arising between 1986 and 2005 in the Regierungsbezirk
Münster (an administrative district in the Northwest of
Germany with a total population 2.7 million) (Figure 1a)
were geo-coded. The geo-coding was performed by the
NRW state office for information and technology [31].
For this study, we restricted the study period from

1994 to 1998 and the study population to the age group
40 to 79 years. This age range was chosen because the
incidence of cancer is too low for regional surveillance
programs at younger ages and of only limited public
health relevance above that age. The time period was
chosen because of a high geo-coding rate (95.2%) for this
region and a high completeness of cancer case notification
(>90%). This study was restricted to incident cases of
lung cancer (ICD 11: C34) for both sexes, breast cancer
(ICD 11: C50) in females only, prostate cancer (ICD 11:
C61), and all cancer for both sexes. The sample sizes are
given in Table 1.

Sampling of spatial controls and risk areas
In order to create a surface of ‘risk areas’, a high-
resolution (HR) population grid (grid size 20 meters)
(Figure 1b) was constructed for the Regierungsbezirk
Münster (RB-MS). We used ancillary land cover data
that were based on remote sensing information about
the degree of sealing (0 - 100%) [32] and population at
community level (age group 40–79 years; averaged for
the period 1994–1998). This approach is known to
produce systematic errors, that is, population sizes in
urban areas were grossly underestimated while popu-
lation sizes in rural areas were overestimated, mostly
due to a lack of knowledge of the height of buildings
or floor area ratio [33-35].
To quantify this systematic error, the resulting HR popu-

lation grid was evaluated against population reference at
census tract level which provided a higher spatial
resolution (N = 1,983) than the population source data
at community level. The deviations of the population grid
from the reference data were calculated as relative errors
(REb) for each grid cell (Figure 1c) by:

REb ¼ ŷb−yb
yb

� �
100; ð1Þ

with ŷb the estimated number of inhabitants and yb the
true number of inhabitants in census tract b.
In this study, those census tracts where the relative

error for the population density estimate was below −50%,



Figure 1 Overview of the used data sources. (a): Location of the study area in Germany. (b): Disaggregated, high resolution population grid
using the EEA Fast Track Service Precursor on Land Monitoring dataset. (c): Relative errors of the disaggregated population estimates using
reference data at census tract level (N = 1,983).
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denoting the third quartile (0.75) of the error distribution,
were subsequently assigned as ‘risk areas’. These ‘risk
areas’ were spatially buffered with a 500 m radius in order
to obtain more smoothed borders of the risk areas.
Samples of spatial controls (which represent the

spatial distribution of the disease-free population)
were proportionally drawn from this biased HR popula-
tion grid as spatial point coordinates in a 1:1 sampling
Table 1 Estimated bandwidths [m] and nearest neighborhood

N Fixed bandwidth Adaptive

Cancer type Nf = Ng OS h(pooled) LSCV h(f)

Lung cancer (male) 4826 6802.04 918.08

Lung cancer (female) 1189 8753.08 1008.07

Breast cancer (female) 5628 6881.42 840.50

Prostate cancer 2926 7839.94 713.21

Cancer all (male) 20213 5438.46 522.82

Cancer all (female) 18019 5642.10 564.36

‘Pooled’ refers to entire sample, ‘f’ refers to cases and ‘g’ refers to control sample.
design using the function “genrandompts” in the freely
available Geospatial Modeling Environment (GME)
(version 0.7.2.0) [36].

Predicting spatial relative risk function (sRRF) via adaptive
and fixed kernel density estimation
For arbitrary point coordinates x, usually taken over a
regular grid, the sRRF is defined as the (log-transformed)
ratios (NN-ratio)

bandwidth Nearest Neighbour ratio

LSCV h(g) OS’ h(pooled) f(NN_ratio) g(NN_ratio)

637.53 7635.04 0.36 0.47

873.61 9825.00 0.41 0.55

566.05 7724.13 0.35 0.46

713.50 8800.03 0.40 0.39

530.88 6104.47 0.32 0.42

529.21 6333.01 0.30 0.42
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ratio ρ̂ xð Þ of bivariate KDEs from cases f̂ xð Þ and controls
ĝ(x), conditional on their respective sample sizes [5,6].

ρ̂ xð Þ ¼ f̂ xð Þ
ĝ xð Þ

 !
ð2Þ

The bivariate KDE for cases f̂ xð Þ and controls ĝ(x) at
location x can be written as [29]:

f̂ xð Þ ¼ 1
n

Xn
i¼1

h−2i K
x− Xi

hi

� �
; ð3Þ

where K is the Gaussian kernel function with a radially
symmetrical probability density function, x1, …, xn the
bivariate coordinates of the case and, respectively,
control locations, and hi the bandwidth for the i-th
observation.
For the estimation of the fixed KDE-based sRRF a

constant degree of smoothing (hi = hfix) is applied to
all observations. A constant bandwidth was applied to
the cases and the controls using the oversmoothing
principle (OS) described by Terrell [37] in order to
benefit from a first-order bias cancellation in areas
where f ≅ g [9]. In contrast, for the adaptive KDE the
bandwidth is inversely related to the population density as
defined by Davies and Hazelton [28]:

hi ¼ h0

f Xið Þ1=2γ
; ð4Þ

where h0 refers to the global bandwidth, which is scaled
by the product of the inverse square-root of the pilot
density (f(Xi)

-0.5) and the geometric mean (γ) of this
term. Thus, two bandwidths must be selected: a pilot
and a global bandwidth. The pilot bandwidth is needed
to replace the unknown density with an estimate, which
is itself a fixed-bandwidth kernel estimate. For estimating
pilot densities, a fixed bandwidth was applied using the
least-squares cross validation (LSCV) approach [38]. The
pilot bandwidths were calculated separately for the case
and control data in order to assist in preserving the
spatial heterogeneity in pilot densities [28]. For the
global bandwidth, which is adjusted by the pilot density
estimate, a common value for both data was used, imple-
menting again the OS principle [37]. The relative risk
function is then expressed as the ratio of the case and con-
trol densities f and g, respectively [5,6]. In order to
symmetrize the treatment of the two density estimates
and to stabilize the numerical results, the ratio was log-
transformed [5,6,28,29]. To avoid boundary effects, the
correction method of Diggle [39] was used for the fixed
sRRF and for correcting the adaptive sRRF we applied the
methods described in [40].
Different bandwidth sizes were applied for the adap-
tive and fixed risk estimator in sensitivity analyses
(see Additional files 1, 2 and 3). For the fixed sRRF,
two scenarios were implemented, based on halving
(S1_fix) and doubling (S4_fix) the OS bandwidth. For
the adaptive sRRF, four scenarios were set up: in the
first scenario (S1_ad) the pilot (LSCV for cases and
controls) and the global (OS) bandwidth were halved,
and in the fourth scenario (S4_ad) both bandwidth
were doubled. For the second scenario (S2_ad) the pilot
bandwidth was halved and the global bandwidth was
doubled and vice versa for the third scenario (S3_ad).

Statistical analyses
To extract significant areas of risk elevations (H0: r(x) = 0;
H1: r(x) > 0), based on the test statistic r(x), tolerance con-
tours (at a significance level of α = 0.05) were calculated
using the z-statistic-based asymptotic normality test [28].
This approach approximates the variances of the fixed
and adaptive sRRF to construct test statistic z(x) at
each location x, using the asymptotic theory of the kernel
estimator z(x) ~ N(0,1), where N(0,1) denotes the standard
normal distribution [28,41].
The spatial relative risk functions with the p-value

contours were estimated using the R package sparr
version 0.3-3 from [29]. This package is freely available on
the Comprehensive R Archive Network [42]. All maps
were projected in the ETRS89/ UTM 32N coordinate
reference system [43].

Overlay analyses of ‘risk areas’
Based on the spatial overlay of the ‘true risk areas’ with
the areas of significant tolerance contours (α-level =0.05),
the area portions of correctly detected risk regions
(True Positives, TP) were calculated. Also, the area
portions that were falsely detected (False Positives, FP)
and of non-detected risk areas (False Negatives, FN) as
well as that of correctly assigned non-risk areas (True
Negatives, TN) were determined. We calculated for each
cancer type and bandwidth method the sensitivity as
Se = TP/(TP + FN), i.e. the proportion of correctly detected
‘risk areas’, and the specificity as Sp = TN/(FP + TN), i.e.
the proportion of correctly assigned non-risk areas.
Furthermore, the likelihood ratio was calculated as LR+ =
Se/(1-Sp) = (TP/(TP + FP))/(FP/(FP + TN)), indicating how
many times more likely a significant p-contour was in a
risk area as compared to a non-risk areas.

Ethics statement
The data used in this study were stored by the Epidemio-
logical Cancer Registry North Rhine-Westphalia with
doubly encrypted personal identifiers. The procedure is
precisely defined by state legislation and does not require
personal consent of cancer patients. Data were transferred
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to the investigators in an anonymized form. Use of
anonymized data for research purposes does not require a
vote by ethics committee or an institutional review board.

Results
Individual cancer cases and controls sampled (with bias)
from the HR population grid were obtained to estimate
the sRRF using automatically determined (data-driven)
optimal bandwidths. Table 1 compares the results of
the bandwidth selection methods. The table includes
additionally the nearest neighborhood ratio (NN_ratio)
which is the quotient of the averaged distances of each
point to its closest neighbor and the mean distance of a
random distribution, calculated separately for the case and
the control distribution. Values < 1 indicate a clustered
and values > 1 a dispersed pattern as compared to the
completely spatial random distribution. The NN-ratio was
calculated using the function ‘nndist’ from the spatstat
package [44] (a package for analyzing spatial point pattern
data). From Table 1 it can be seen that both selectors, the
OS and the LSCV, showed narrowing bandwidths with
increasing sample sizes. Of note, the OS-based bandwidths
were eight to ten times larger than those based on
LSCV. Moreover, the global bandwidth, OS’h(pooled),
was generally larger than the bandwidths achieved
with OS h(pooled). The LSCV-based bandwidths were
Figure 2 Estimation of the spatial relative risk function for different c
(d – f); a. & d. refer to cancer all, b. & e. refer to lung cancer, c. & f. refer to
solid black lines and the true risk areas as dotted purple lines.
calculated separately for cases and controls and they
were mostly wider for the cases than for the controls,
except for prostate cancers and all cancers in females.
The NN-ratios indicated consistently that the spatial
case patterns were more clustered than the control
patterns, except for the prostate cancer type. Figure 2
(men) and Figure 3 (women) show the estimated
values of the sRRF based on adaptive and fixed bandwidths.
Significant contour lines derived from asymptotic nor-
mality tests and the outlines of the true risk areas
were superimposed upon the sRRF maps. The adaptive
risk estimator produced a more heterogeneous risk
surface with larger differences in the logRR and significant
areas that were more frequent, generally larger and
more heterogeneous in size than those obtained with
the fixed bandwidth approach. In the latter, areas with
significantly elevated risk were confined by more
smoothed contour lines.
Interestingly, the sRRF for different cancer types showed

contrasting spatial patterns. Thus, the significant risk areas
for ‘all cancers’ were mainly located around urban centers
while the risk areas for ‘lung cancer’ were mainly located
in the southern study area which covers the northern Ruhr
district, the largest urban-industrial agglomeration in
Germany. By contrast, sRFF analyses for ‘prostate cancer’
and ‘breast cancer’ revealed few or no risk areas in the
ancer types in males. Use of adaptive (a - c) and fixed bandwidth
prostate cancer. The 5% significant tolerance contours are overlaid as



Figure 3 Estimation of the spatial relative risk function for different cancer types in females. Use of adaptive (a - c) and fixed bandwidth
(d – f); a. & d. refer to cancer all, b. & e. refer to lung cancer, c. & f. refer to breast cancer. The 5% significant tolerance contours are overlaid as
solid black lines and the true risk areas as dotted purple lines.

Table 2 Summary of the spatial overlay analysis of the
‘risk areas’ with the significant tolerance contours
(α = .05): Sensitivity, specificity, and the positive
likelihood ratio (LR+) are presented as area ratios

Bandwidth Cancer type Sensitivity Specificity LR+

Adaptive Lung cancer (male) 0.33 0.93 4.71

Lung cancer (female) 0.38 0.90 3.80

Breast cancer (female) 0.21 0.83 1.24

Prostate cancer 0.24 0.78 1.09

Cancer all (male) 0.34 0.85 2.27

Cancer all (female) 0.34 0.85 2.27

Fixed Lung cancer (male) 0.30 0.92 3.75

Lung cancer (female) 0.33 0.92 4.13

Breast cancer (female) 0.20 0.87 1.54

Prostate cancer 0.17 0.78 0.77

Cancer all (male) 0.30 0.91 3.33

Cancer all (female) 0.26 0.89 2.36
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south. ‘Prostate cancers’ produced a large pronounced risk
area in the north of the study region, while the significant
risk areas for ‘breast cancer’ clustered around urban areas.
Overlay analyses compared the agreement between the

significant tolerance contours and the ‘true risk areas’
are given in Table 2. When regarding ‘all cancers’, the
adaptive risk estimator showed a slightly better sensitiv-
ity than the fixed sRRF but this was achieved at the cost
of a reduced specificity and a lower LR+. For ‘lung cancer’
the sensitivity was also slightly higher with the adaptive
approach, but specificity and LR+ were high for both
approaches. Although the sensitivities for both ‘prostate
cancer’ and ‘breast cancer’ were rather low with the
adaptive and the fixed approach, the sRRF for ‘prostate
cancer’ had a slightly higher sensitivity with equal specifi-
city. The adaptive sRRF for ‘breast cancer’ in women
showed a sensitivity similar to the fixed approach but a
lower specificity.
The impact of applying different bandwidth sizes

was assessed for ‘all cancers’ in men and women. The
results of the overlay analyses were summarized in
Additional file 1 and the sRRF maps are displayed in
Additional files 2 and 3. Halving the bandwidths (S1),
both risk estimators showed an increase in sensitivity,
while the specificity, and thus the LR+ were increased
only for the adaptive estimator. Halving the pilot and
doubling the global bandwidths (S2) led to a similar
sensitivity as in S1, but it reduced the specificity and thus
lowered the LR+. By contrast, scenario 3 (S3) markedly
reduced the sensitivity while raising the specificity; the
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LR+ was slightly lower than in S1. Doubling both band-
widths in the adaptive approach (S4) resulted in a sensitivity
comparable to that in Table 2, but specificity and LR+
dropped to their lowest values. This contrasted with the
fixed estimators, where despite a marked drop in sensitivity
the increased specificity resulted in the highest LR+.
Discussion
Existing studies that compare the fixed against the adaptive
bandwidth-based estimation of the sRRF use either a
simulation design, where the data arise from a standard
parametric distribution with an a priori known risk
surface [28,45], or real-world data, where the data rarely
follow a standard distribution and the risk surface is com-
monly unknown [1,11,14,46,47]. The novelty of this study
is that it combines the advantages of both study types: we
use real-world data and a known risk surface to evaluate
the performance of both bandwidth types in estimating
the sRRF. We artificially created ‘risk areas’ for cancer by
application of a spatial sampling method for the controls
that is recognized as being biased to underestimating the
population density in urban areas.
When employing in our study the default setting for

automatic bandwidth selection – as implemented in
sparr –, the optimal bandwidth was inversely related
to sample size for both methods (OS principle and
LSCV score). This is a known property of the optimal
bandwidth [48]: the larger the sample size the less
smoothing is required. The OS bandwidths were also
consistently wider than for the LSCV score, because
the OS method applies ordinary scale estimators such
as the standard deviation or the interquartile range
and these are inclined to place upper bounds on the
smoothing parameter and hence produce conservative
density estimates which tend to eliminate “accidental
features” [37]. The differences in the two OS bandwidths
(OS h(pooled) and OS* h(pooled) in Table 1) are caused
by the different definitions of the overall sample size used
in the denominator for calculating this bandwidth [28,37].
For the fixed risk estimator, the overall sample size
(nf + ng) is used as described by Terrell [38]. However,
Davies and Hazelton [28] suggest to use

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nf � ngp

(=geometric mean) instead in an attempt to define an
‘effective’ sample size for the adaptive sRRF. Since
((nf + ng) > (

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nf � ngp ÞÞ; the OS bandwidth for the fixed

is smaller than that for the adaptive risk estimator.
The LSCV bandwidth selector aims to find an opti-
mal bandwidth in minimizing the mean integrated

squared error (MISE) between the kernel estimator ( f̂ )
and the true density (f ) [37] which implies a known
tendency of undersmoothing. It has also been recognized,
that the LSCV score tends to show multiple local minima
which are occasionally minimized at h = 0 [24,26,49]. This
has been particularly observed when the sample sizes
increase and clusters of observations at the same or
nearly the same location are likely [48,50-52]. This could
be one possible explanation for the “counterintuitive”
observation of larger bandwidths for the spatial case
patterns and may indicate a possible failure of the
LSCV method to find a minimum bandwidth which
minimizes the MISE.
The OS principle was elected due to its potential to

control excess variability in the estimated densities [28].
However, if the risk is constant across the study area,
the fixed estimator naturally overestimates the relative
risk in rural areas due to a too small bandwidth. In turn,
in urban regions, the risk is underestimated due to too
large bandwidths relative to the underlying population
density. In our study, the risk was assumed to be a function
of the underlying biased population density, that is, the
relative risk was artificially increased (due underestimation
of the population density) in urban areas and decreased in
rural areas. This explains much of the generally lower
sensitivity of the fixed estimator: the main portion of the
risk areas was located in urban areas where the fixed
estimator has a priori a reduced sensibility to detect the
risk areas. On the other hand, this led to reduced FPs and
a higher LR+ as compared to the adaptive estimator. The
adaptive estimator was introduced to reduce this bias by
an adjustment of the bandwidth inversely to the underlying
case resp. control density. Therefore, the adaptive risk
estimator had a greater variability in urban areas, leading
to more detected risk areas, but at the cost of a reduced
specificity and therefore a lower LR+.
These patterns were most clearly observable in ‘all

cancer’, because the case density reflects (more or less)
the true population density: areas of high case densities
were therefore strongly linked to areas of the most pro-
nounced underestimation (due to the sampling with bias)
of the control densities, thus producing the largest relative
risk differences. When regarding the other cancer types,
sensitivity and specificity were additionally influenced
by cancer-specific processes, such as regional over- or
underreporting or the presence or absence of screening
bias. For example, the case density for ‘lung cancer’ was
particularly high in the south of the study region, a district
with large agglomerations of heavy industries and coal
mines. Thus, the high lung cancer incidence attributable
to smoking among the industrial workers may have
been compounded by additional occupational and
environmental exposures to high doses of dusts, foams
and other industrial emissions. Therefore, the sensitivity
of both estimators was fairly similar to that for ‘all cancers’
because the majority of risk areas are located in the south
of the study area. But compared to ‘all cancer’ the specifi-
city was also similar, because the fixed estimator detected
an unusual large risk area north of the lung cancer
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agglomeration, probably due to a too small bandwidth in
this rural setting (higher FP rate). This difference in speci-
ficity regarding the rural areas emerged more clearly in
the ‘prostate cancer’ data. Here, the highest case density
was found in the north, a less populated region in the
study areas possibly related to overdetection of ‘prostate
cancer’ by an active prostate cancer center which has a
northern catchment area. The generally low sensitivity for
this tumor type is attributable to the fact that only few risk
areas were a priori located in this region due to an over-
estimation of the source population. While differences in
sensitivity between the two estimators were largest, the
specificity was exactly the same. And again too small
bandwidths might have caused these enlarged risk areas as
compared to the adaptive sRRF. Expectedly, the spatial
distribution of ‘breast cancer’ was more concentrated in
urban areas because participation in - at this time - an
opportunistic screening (e.g. mammography offered at
gynecologist contacts) was more prevalent here. On the
other hand, several regions, in particular in the south of
the study area, showed low screening participation rates
which have been shown to be associated with reduced
socioeconomic resources at individuals and regions level
[53,54]. Indeed, the risk surface resembles that for ‘all
cancer’ but with a reduced overall sensitivity due to the
reduced case density. Here, again the concentration of
the case density mostly over urban (‘risk’) areas explains
the sensitivity and specificity pattern: The fixed estimator
oversmoothed the relative risk in urban areas due to
larger bandwidth, but produced simultaneously fewer
FPs, resulting in an increased LR+.
In summary, we observed that the fixed risk estimator

was characterized by a conservative behavior in the
urban (‘risk’) areas i.e., less sensitive while avoiding FP
alarms. In contrast, when the risk differences coincided
with sparse data (= rural areas), especially seen for ‘prostate
cancer’, the adaptive risk estimator profits from a variance
stabilization due to a larger bandwidth, resulting in higher
sensitivity and comparable specificity. These findings
correspond well with the results of Davies and Hazelton
[28]. Zhang et al. [14] applied the adaptive and fixed
bandwidth-based sRRF to 80 cases and controls of schisto-
somiasis in the Guichi region (China) and found that the
adaptive sRRF had a better ability to depict the spatial
heterogeneity of sparsely populated risk areas.
Varying the originally derived bandwidth sizes for ‘all

cancers’ accentuated the bias-variance tradeoff of the
fixed sRRF: A reduction of the bandwidth (S1) reduced
the difference between the density estimate and true
density (bias), but at the expense of a higher variability
of the estimate (variance). Therefore, a higher sensitivity
was offset by a reduced specificity (mainly in rural areas).
A doubling of the bandwidth (S4) led to the inverse
process: the higher specificity due to a reduced variance of
the risk estimate came at the cost of a higher bias
(reduced sensitivity). Varying the adaptive bandwidths
is more complicated, because at least two different
bandwidths must be selected. Here, we observed that
the global bandwidth affected the specificity/precision
of the sRRF: when it was large (S2 &S4), specificity
was a generally lower due to a reduced variability of
the sRRF (oversmoothing) as compared to a smaller
global bandwidth (S1 & S3). The pilot bandwidth de-
termines the degree of preserved spatial heterogeneity
present in the distribution of cases resp. controls, and
it seems that this pilot bandwidth influenced the
accuracy/sensitivity of the risk estimator. Therefore,
halving both bandwidths led to an increase in sensitivity
and specificity due to a more precise and accurate estima-
tion of the densities, especially in the urban risk areas. In
contrast, doubling the both bandwidths led to a loss of
spatial precision due to oversmoothing, resulting in the
lowest specificity.
Our results highlight the relative importance of choosing

the optimal global bandwidth, because it essentially
controls the specificity of the sRRF. Therefore, other
bandwidth selection methods should be approved for
selecting the global bandwidth. For instance, Davies [45]
found promising advantage(s) in using the asymptotic
mean integrated squared error (AMISE) criterion for
selecting the global bandwidth. In another study, Davies
[55] suggested to use a triangle dimension as scale estima-
tor in the OS principle. However, these selectors have not
yet been investigated for the adaptive sRRF. A further
point to consider is the use of HR population grids for
selecting a spatial sample of disease-free controls. This is a
novel aspect that will become more popular with a better
availability of an increased spatial resolution of these grids,
because it is a time and cost effective way to obtain these
controls. At present, freely available populations grids with
a resolution of 100m exist for different countries of the
world [56,57], but these grids are still too coarse to permit
a regionalized monitoring of disease risks in small areas.

Strengths and limitations
This study has several strengths and limitations. In
the first place, the use of real world cancer data with
a sufficiently large sample size as well as the use of a
known risk surface, which in practice is always unknown,
increased the precision and the credibility of the study re-
sults. A further advantage with regard to implementation
aspects is the restriction to the exclusive use of open-
source data and software environments given the often
limited financial resources to conduct regional monitoring.
Limitations arise from the fact that we explicitly searched
only for elevated risk areas while there are also areas with
decreased disease risks. However, generally the detection of
risk areas is of greater public health interest than the



Lemke et al. International Journal of Health Geographics  (2015) 14:15 Page 9 of 10
identification of low risk areas or cold spots. Another
limitation may have resulted from the assumption of
a constant cancer risk across the underlying, but biased,
population density, because additional processes may
violate this lead to misclassifications of the sRRF. This
should, however, have had no impact of the comparison of
the two methods because the same sample of cases is used
in both methods. Another critical aspect is the statistical
testing for obtaining the p-values. Here, only the z-test
statistic-based asymptotic normality test was used because
these tests are computationally far less expensive, and
appear more stable in sparsely populated areas than tests
based on Monte-Carlo (MC) randomizations. However,
given the large sample size we regard this source of bias
as relatively small.

Conclusion
In this study, we compared the fixed and the adaptive
bandwidth-based sRRF in their ability to detect ‘risk
areas’ for the occurrence of different cancer types. We
observed that the fixed sRRF oversmoothes the risk in
urban regions probably due to a too large bandwidth
while the fixed estimator behaves conversely in rural
settings. Because in our study design most risk areas
were located in urban areas (due to a biased source
population estimation), the fixed sRRF shows mostly a
conservative behavior with reduced sensitivity but increased
specificity, compared to the adaptive risk estimator that
shows increased sensitivity in these urban areas at the cost
of a lower specificity. Our results indicate that in situa-
tions where the risk was more concentrated in rural
regions (e.g. due to sparse data) compared to the fixed
sRRF, the adaptive risk estimator benefits from variance
stabilization. Furthermore, the automatically selected band-
width sizes used for the adaptive sRRF appear only sub-
optimal, which highlights the need for optimizing existing,
and investigating new bandwidth selection methods,
in particular for global bandwidth.
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