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Abstract 

Introduction: In low- and middle-income countries (LMICs), household survey data are a main source of information 
for planning, evaluation, and decision-making. Standard surveys are based on censuses, however, for many LMICs it 
has been more than 10 years since their last census and they face high urban growth rates. Over the last decade, sur-
vey designers have begun to use modelled gridded population estimates as sample frames. We summarize the state 
of the emerging field of gridded population survey sampling, focussing on LMICs.

Methods: We performed a systematic scoping review in Scopus of specific gridded population datasets and "popu-
lation" or "household" "survey" reports, and solicited additional published and unpublished sources from colleagues.

Results: We identified 43 national and sub-national gridded population-based household surveys implemented 
across 29 LMICs. Gridded population surveys used automated and manual approaches to derive clusters from World-
Pop and LandScan gridded population estimates. After sampling, some survey teams interviewed all households 
in each cluster or segment, and others sampled households from larger clusters. Tools to select gridded population 
survey clusters include the GridSample R package, Geo-sampling tool, and GridSample.org. In the field, gridded popu-
lation surveys generally relied on geographically accurate maps based on satellite imagery or OpenStreetMap, and a 
tablet or GPS technology for navigation.

Conclusions: For gridded population survey sampling to be adopted more widely, several strategic questions need 
answering regarding cell-level accuracy and uncertainty of gridded population estimates, the methods used to 
group/split cells into sample frame units, design effects of new sample designs, and feasibility of tools and methods 
to implement surveys across diverse settings.
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Background
Household surveys provide insight into the distribution 
of health, demographics, economics, and behaviours 
of populations, and are a primary resource for deci-
sion-making across low- and middle-income countries 
(LMICs). Household survey data are used to estimate 

more than a quarter of the Sustainable Development Goal 
(SDG) indicators, to generate small area estimates (SAEs) 
of indicators that support decision-making in decentral-
ized health systems [1], and to inform the distribution 
of development funding to, and within, LMICs. Never-
theless, as the use of household surveys has increased 
over the last 40  years, data accuracy has likely decayed 
because survey methods have not changed while popula-
tion characteristics and behaviours have—drastically.

Survey sampling methods have been mature for dec-
ades [2]. The Demographic and Health Surveys (DHS) 
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[3], Multiple Indicator Cluster Surveys (MICS) [4], and 
Living Standards Measurement Surveys (LSMS) [5] have 
collectively supported hundreds of multi-topic surveys in 
over 130 countries since 1980 using essentially the same 
methods. They follow a stratified two-stage cluster design 
in which first- or second-level administrative units (e.g. 
provinces) serve as strata. In stage one, census enumera-
tion areas (EAs) are selected with probability propor-
tionate to population size (PPS), and then a field-based 
mapping-listing activity is conducted in each selected 
cluster to fully list all households. In stage two, house-
holds are sampled from the full listing by an impartial 
central team, and interviewers return to selected house-
holds to administer questionnaires. Rapid needs assess-
ments and public opinion surveys follow a similar design, 
but tend to use a faster, less-rigorous household selection 
protocol during stage two; rather than performing a full 
household listing, interviewers perform a random walk 
from a central point in the cluster and directly sample 
households in the field [6, 7]. This approach is considered 
less rigorous than a full listing because interviewers may 
consciously or sub-consciously avoid undesirable house-
holds; the protocol can result in a “main street” bias, and 
information needed to adjust for household sample prob-
abilities and non-response are, generally, not collected 
[8].

The last 40  years have seen dramatic increases in 
mobility of LMIC populations, urbanisation, and socio-
economic disparities within cities [9]. The urban poorest 
include climate and political refugees, seasonal migrants, 
and rural migrants, as well as multi-generation slum 
dwellers, street-sleepers, and marginalized minorities [9]. 
Concurrently, availability of technologies (e.g., mobile 
phones) and new data (e.g., high-resolution satellite 
imagery) has rapidly increased, though few new technol-
ogies and datasets have been incorporated into standard 
survey practice. This mismatch has resulted in challenges 
to sample frame and field protocol accuracy [10, 11]. Fur-
thermore, the SDGs have increased emphasis on disag-
gregated indicators [12], raising concerns about whether 
current survey designs are ideal for accurate SAEs, which 
we highlight below. To address these emerging issues, 
survey practitioners have begun to use modelled gridded 
population datasets as an alternative to census sample 
frames.

Gridded population datasets are estimates of the 
total population in small grid cells derived with a geo-
statistical model using census or small area population 
counts and a number of other spatial datasets [13]. The 
cells in gridded population estimates range in size from 
30 × 30  m to 1 × 1  km, and many of these datasets are 
free and publicly available. In gridded population sam-
pling, grid cells are often aggregated into clusters of a 

desired population size, and used in place of census EAs. 
To contextualise gridded population sampling, we pro-
vide further background on key reasons that teams have 
turned to gridded population sampling, and provide an 
overview of gridded population datasets.

The objectives of this paper are to provide a system-
atic scoping review of the datasets, tools, and methods 
used in existing gridded population surveys in LMICs, 
and outline a research agenda that would equip survey 
designers to decide when gridded population sampling 
can be viable and preferable to census-based sampling. 
We aim to encourage new research and practices that 
improve the accuracy of survey data and, ultimately, to 
improve accuracy of health and other household survey 
data to better target resources toward mobile and vulner-
able populations.

Reasons for use of gridded population sampling
The main reason that survey practitioners have turned 
to gridded population sampling is lack of a current, 
accurate census sample frame. One in four LMICs has 
not had a census in the last 10 years [14]. High rates of 
urban growth and mobility in LMICs mean that megaci-
ties in Asia, and soon Africa, grow by 1000 people per 
day [15]. Since 2000, the average household survey sam-
ple frame in LMICs was 7 years old, with some surveys 
using 15 (Pakistan) and 30 (DR Congo) year old sample 
frames [16]. Vulnerable populations are most likely to be 
excluded from surveys with an outdated sample frame 
because population growth is greater among lower-
income households, and they are more likely to be under-
counted in censuses [11].

The second reason for choosing gridded population 
sampling is that standard survey methods, largely devel-
oped for rural settings 40  years ago, struggle to sample 
mobile and vulnerable households accurately [17]. Even 
if the census sample frame is complete and updated, a 
time gap between the household mapping-listing activity 
and interviews in DHS, MICS, LSMS, and similar surveys 
means that mobile and vulnerable households are more 
likely to be counted as non-responders or to be under-
listed during survey fieldwork. Furthermore, the map-
pers-listers who are responsible for generating the final 
household sample in the DHS, MICS, LSMS, and simi-
lar surveys frame have short interactions (e.g. 5–15 min) 
with residents. With limited rapport, residents may be 
unwilling to describe informal households in the dwelling 
(living space, e.g. apartment), and/or the mapping-list-
ing team assumes one household occupies each dwell-
ing which is simply not the case in modern LMIC cities 
[16, 17]. In LMICs that do not have geocoded census 
EA boundaries, mapping-listing activities rely on hand-
sketched paper maps and subjective descriptions of EA 
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boundaries by local leaders, leading to further potential 
biases.

A third reason for choosing gridded population sam-
pling is to produce improved small area estimates. In 
recent years, funders and decision-makers have pushed 
for important health outcomes to be measured at smaller 
administrative scales (e.g., district) for policy planning 
and evaluation [1, 12]. Increased availability of satellite 
imagery has enabled survey outcomes to be modelled at 
fine-scale using geostatistical SAE techniques [18]. How-
ever, SAEs based on the stratified two-stage PPS design 
tend to have large uncertainty in sparsely-sampled rural 
areas and in heterogeneous urban settings [19–21]. 
Gridded population estimates can provide more up-
to-date and detailed population counts than outdated 
census frames, permit new survey designs such as area-
microcensus sampling to eliminate the time lag between 
mapping-listing and interviews, and facilitate spatial 
oversampling to improve survey-based SAEs.

Gridded population data
A number of gridded population datasets are available 
across LMICs (Table  1). “Top-down” datasets disaggre-
gate census counts to grid cells, while “bottom-up” esti-
mates are based on micro-census population counts [22]. 
Currently, nine sources of “top-down” estimates are avail-
able for multiple LMICs, and two sources of “bottom-up” 
estimates are in production for multiple LMICs [13].

Top‑down gridded population estimates
Nearly all gridded population datasets available at the 
time of this writing were derived from “top-down” mod-
els which disaggregate census or other full-coverage 
population counts into small grid cells. These models 
produce “pycnophylactic” estimates such that the cell-
level counts re-aggregate to the counts of input admin-
istrative data [23]. Generally input population counts are 
adjusted to UN population projections before modelling 
[24], however, this still means that countries with the 
greatest need for improved sample frames have the least 
accurate top-down gridded population datasets. Addi-
tional factors influence the accuracy of top-down mod-
elled population estimates, namely the aggregation scale 
of the input census data, modelling approach, and area of 
the output grid cell.

Scale of input data The most important factor for top-
down gridded population accuracy is the aggregation 
scale of the model input population data (e.g., census) 
[25]. This is intuitive; the more detailed and accurate the 
input dataset, the more precise and certain the output 
estimates will be in small grid squares.

Modelling approach The simplest top-down models 
assume that the population is spread evenly across grid 
cells within administrative units (e.g. GPWv4 [26, 27]) 
or are weighted by land cover types (GHS-POP [28, 29]; 
HRSL [30]; ESRI WPE [31]; WorldPop-Land Cover [32, 
33]). These modelling techniques are more mechani-
cal than statistical, and thus do not result in estimates of 
model error. These models produce reasonably accurate 
cell-level estimates if a highly accurate dataset of built-up 
areas is used to mask unpopulated areas, and the input 
population data is both disaggregated and recent [25], all 
of which are rare in LMICs.

Complex modelling techniques using multiple Earth 
Observation-, government-, and crowd-sourced spa-
tial covariates (e.g., WorldPop-Random Forest [34, 
35], WorldPop-Global [34, 35], LandScan-Global [36], 
Demobase [37]) are employed to produce substantially 
more accurate gridded population estimates. WorldPop-
Random Forest and WorldPop-Global are 100 × 100  m 
datasets of the residential (night-time) population based 
on a regression tree machine-learning method, and are 
accompanied by prediction errors at the scale of the input 
population data [34]. Neither WorldPop-Random Forest 
nor WorldPop-Global datasets mask built-up areas, thus 
they produce small, non-zero population predictions in 
deserts, savannahs, and forests (e.g., 0.0001 persons per 
cell). WorldPop-Global incorporates changes to urban 
extents over time, and is modelled from a reduced set 
of covariates that are available globally. Demobase is a 
free 100 × 100  m dataset of the residential (night-time) 
population in three countries based on semi-automated 
classification of high- and medium-resolution satellite 
imagery, with prediction errors at the scale of the input 
population data [37]. LandScan-Global is an annual 
1 × 1  km dataset of the “ambient” population; a 24-h 
average of daytime commuter population and night-time 
residential population [36]. This dataset is derived with a 
smart interpolation approach and model error estimates 
are not provided [36].

A common issue across all top-down gridded popula-
tion datasets is that they sometimes allocate population 
to airports, universities, factories, and government build-
ings, affecting cell-level accuracy in urban areas. This 
misallocation may be reduced by including covariates 
associated with variation in urban density (e.g. building 
footprints), and/or covariates that represent points of 
interest and infrastructure where people tend not to live.

Area of  output grid cells The geographic size of the 
output cells influences estimated population accuracy at 
the cell-level. Generally, estimates in smaller cells have 
greater uncertainty, and accuracy improves with cell size. 
For household survey sampling, however, cell-level accu-
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Table 1 Summary of gridded population datasets available for LMICs

† Residential = night-time population, Ambient = 24 h average population
‡ Currently available to US Federal Government and mission partners to include anyone working on US Government funded work. Expected to be fully available in 
Autumn 2020

Approach Name Coverage Population† Constrained 
to settlements

Producer Resolution Years Statistical 
error

Available

Top-down Gridded 
Popula-
tion of the 
World v4 
(GPWv4) 
[26, 27]

Global Residential No Columbia 
Univer-
sity—
Center for 
Interna-
tional Earth 
Science 
Informa-
tion 
Network 
(CIESIN)

 ~ 1 × 1 km 2000, 2005, 
2010, 
2015, 2020

No Yes—free

Global 
Human 
Settlement 
Population 
(GHS-POP) 
[28, 29]

Global Residential Yes Europe 
Commis-
sion—Joint 
Research 
Centre 
(JRC)

250 × 250 m 1975, 1990, 
2000, 2015

No Yes—free

High Resolu-
tion Settle-
ment Layer 
(HRSL) [30]

140 coun-
tries

Residential Yes Facebook & 
CIESIN

 ~ 30 × 30 m Various 
2015–2019

No Yes—free

World 
Population 
Estimate 
(WPE) [31]

Global Residential Yes ESRI 150 × 150 m 2016 No–but 
confidence 
level 
ranked

Yes—paid

LandScan-
Global [36]

Global Ambient Yes Oak Ridge 
National 
Laboratory

 ~ 1 × 1 km Annually 
2000–2017

No Yes—paid

Demobase 
[37]

3 countries Residential Yes United States 
Census 
Bureau

 ~ 100 × 100 m Various 
2003–2013

Yes—at scale 
of input 
pop

Yes—free

WorldPop-
Land Cover 
[32, 33]

57 countries Residential No WorldPop 
Project

 ~ 100 × 100 m Various 
2010–2015

No Yes—free

WorldPop-
Random 
Forest [34, 
35]

69 countries Residential No WorldPop 
Project

 ~ 100 × 100 m 2010, 2015, 
2020

Yes—at scale 
of input 
pop

Yes—free

WorldPop-
Global [34, 
35]

Global Residential No WorldPop 
Project

 ~ 100 × 100 m Annually 
2000–2020

Yes—at scale 
of input 
pop

Yes—free

Bottom-up LandScan HD 
[39]

23 countries Day-time, 
residential, & 
ambient

Yes Oak Ridge 
National 
Laboratory

 ~ 100 × 100 m varying Yes—by cell Yes—by 
request‡

GRID3 [40] 10 countries Residential Yes WorldPop 
Project, 
Flow-
minder 
Founda-
tion, 
CIESIN, UN 
Popula-
tion Fund 
(UNFPA)

 ~ 100 × 100 m varying Yes—by cell Yes—free
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racy must be balanced against feasibility of cell size for 
fieldwork; in dense urban contexts, a 100 × 100  m grid 
cell might contain 1000 s of people. Gridded population 
datasets with small cells are easy to aggregate into larger 
units, however, complex methods are required by users 
to disaggregate cells that are too populous for survey field 
work [38].

Bottom‑up gridded population datasets
To generate gridded population estimates in countries 
without a recent or accurate census, “bottom-up” mod-
els are under development to estimate population counts 
based on recent micro-census samples rather than full 
censuses [22]. These models draw on geo-statistical 
relationships between population density in a micro-
census unit and settlement type, as well as other spatial 
covariates to predict population counts in un-sampled 
areas of the country. These census-independent grid-
ded population estimates are produced by the GRID3 
and LandScan-HD projects for multiple LMICs, and 
have the benefit of being constrained to settled areas [39, 
40]. Other projects have resulted in a bottom-up grid-
ded population estimate for a single country (e.g. Sierra 
Leone [41], Afghanistan [42]).

Gridded population sample frame attributes
Gridded population datasets are not provided with 
urban/rural classes, administrative unit names, or esti-
mates of sub-populations because they are designed to 
be aggregated into any desired spatial unit. Publicly avail-
able datasets can be used to classify a gridded popula-
tion dataset within a geographic information system 
(GIS) (e.g., ArcGIS, QGIS) or statistical program (e.g., R, 
Python). Urban/rural datasets include the Global Urban 
Footprint (GUF) [43] dataset of 85 × 85 m grid cells clas-
sified as built-up or not built-up, and the Global Human 
Settlement GHS-SMOD [28] dataset of 1 × 1  km grid 
cells classified as high-dense urban, low-dense urban, 
rural, and unsettled based on the GHS-POP population 
density and GHS-BUILT-UP datasets. Administrative 
boundaries are available as shapefiles through a number 
of initiatives including GADM [44], UN-SALB [45], and 
MapLibrary [46].

Methods
We conducted a systematic scoping review in Scopus 
using the terms: (“gridded” OR “landscan” OR “world-
pop” OR “gpw” OR “ghs-pop” OR “hrsl” OR “wpe” 
OR “demobase”) AND (“population” OR “household”) 
AND “survey”. No limits were placed on the search (e.g. 
year or status of publication). Article abstracts were 
independently screened by co-authors DRT and DAR 
and retained if they referred to sampling of human 

populations. We additionally solicited reports, websites, 
and articles from colleagues. DRT performed a full-text 
review of all screened articles and reports, and retained 
those that described a method, tool, or survey based on 
gridded population data. Retained publications were 
reviewed for gridded population survey details including 
sample frame, sample design, sample size, target popu-
lation, tools, and protocols used. This review followed 
PRISMA-ScR guidelines (see Additional file 1). A strate-
gic gridded population survey research agenda was itera-
tively developed among co-authors with feedback from 
survey experts in a 2 day workshop and via email.

Results
The review in Scopus identified 65 articles describing a 
gridded population survey, tool, or method. Solicitation 
of documents from colleagues resulted in seven addi-
tional publicly available resources, and awareness of five 
additional survey teams who described to us their unpub-
lished gridded population surveys (Fig.  1). Although we 
did not restrict our search by geography, nearly all identi-
fied gridded population surveys were located in LMICs 
and were motivated by an outdated or unavailable cen-
sus. This literature review resulted in 43 gridded popu-
lation surveys across 29 LMICs: Bangladesh [16, 47, 48], 
Brazil [48], Burkina Faso, Cameroon, Colombia [48], 
Cote D’Ivoire, DR Congo [49, 50], Ghana [48], Guatemala 
[48], India [48], Indonesia, Iraq [51], Kenya [48], Mali, 
Mozambique [50], Myanmar [52], Nepal [16, 17, 47, 50], 
Niger, Nigeria [48], Rwanda [48], Somalia [53, 54], Tanza-
nia, Thailand [48], Togo, Uganda [48], Uruguay, and Viet-
nam [16, 47] (Table  2). Additional gridded population 
surveys were conducted in Greece, Italy, and Slovenia, 
but excluded from this analysis (personal communica-
tion, S. Nichols, Gallup, 14 Jan 2020). Three resources 
described tools or methods for selecting gridded popula-
tion survey clusters [38, 55, 56].

Most sample frames in early gridded population  sur-
veys were derived from LandScan-Global 1 × 1 km esti-
mates [48, 49, 51, 52], while most recent surveys derived 
sample frames from WorldPop 100 × 100  m estimates 
(Table 2) [16, 17, 47, 50, 53]. The final selection of house-
holds followed two approaches. First, all eligible house-
holds in a cluster or segment were interviewed (called 
area-microcensus hereafter). Second, households were 
sampled within clusters or segments before interview-
ing (called two-stage hereafter). We note whether 
household sampling was conducted with a robust prob-
ability method (i.e., complete mapping-listing of house-
holds before sampling households), or a non-probability 
method (e.g., random-walk or spin-the-pen) [8].

Thirty-two of the 43 surveys (74%) had national cover-
age with 1000–4000 households each (Table 2). Nineteen 
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surveys (47%) followed an area-microcensus design 
(Table  2) for one of four reasons. First, area-microcen-
sus sampling saved time and costs by eliminating, or 
reducing, the mapping-listing activity [47, 50]. Second, 
it restricted fieldwork to one visit in insecure or hard-
to-reach areas [50, 51]. Third, it provided a simple field 
protocol and required less training of interviewers which 
was assumed to ensure higher data quality [49]. Fourth, 
in complex, dynamic urban environments, it removed 
the time lag between mapping-listing and interview-
ing, guarding against under-listing of mobile or vulner-
able households, and placed responsibility for household 
identification with interviewers rather than mapper-lis-
ters [17, 47].

One survey compared area-microcensus and two-stage 
gridded population sampling in Kathmandu, Nepal, and 
found that when interviewers (area-microcensus) rather 
than the mapper-listers (two-stage) performed the house-
hold listing, non-family and single-adult households were 
more likely to be identified because interviewers spent 
substantially more time building rapport with residents 

in area-microcensus clusters during the interview pro-
cess [16]. This study also found lower design effects for 
socio-economic indicators in the area-microcensus 
design, suggesting better identification of heterogeneous 
“hidden” households, though household response rates 
were also lower in the area-microcensus sample [16].

Four tools and numerous ad-hoc geographic infor-
mation system (GIS) approaches were described to 
select gridded population survey clusters (Table 3), and 
resulted in various forms of a gridded population sam-
ple frame, visualized in Fig. 2. The first gridded popula-
tion sampling tool was the open-source GridSample R 
package, released by Thomson and colleagues in 2016 
[55] and used in six sub-national surveys [17, 47, 50]. 
The GridSample R algorithm treats the gridded popula-
tion dataset as the sample frame and selects grid cells 
with PPS allowing for stratification, oversampling in 
urban/rural domains, and spatial oversampling [55]. 
The algorithm runs on a personal computer and is lim-
ited by the computer’s memory. All datasets must be 
pre-processed and specified by the user, allowing use of 

Fig. 1 Systematic scoping review selection criteria
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Table 2 Summary of gridded population surveys including their designs

Country & year Design: coverage, strata, 
stages

Cluster & household 
sample size

Gridded population 
dataset

Target population, main 
topic(s)

DR Congo 2010 [49] Idjwi Island, no strata, area-
microcensus

50 clusters, 2078 HHs 2001 LandScan-Global All women age 18–50, mater-
nal and child health

Myanmar 2010 [52] Chin state, urban/rural strata, 
multi-stage (spin-the-pen)

90 clusters, 720 HHs 2005 LandScan-Global (rural 
only)

Household head age 18 + , 
health and human rights

Iraq 2011 [51] National, governorates strata, 
multi-stage (random-walk)

100 clusters, 1960 HHs 2008 LandScan-Global Household head age 18 + , 
mortality

Bangladesh 2014–15 [48] National, division × 
urbanicity strata, area-
microcensus

148 clusters, 3296 HHs 2012–2016 LandScan-Global Adult age 18 + , topics not 
reported

Brazil 2014–15 [48] National, region × poverty 
strata, area-microcensus

149 clusters, 3652 HHs

Colombia 2014–15 [48] National, region × poverty 
strata, area-microcensus

152 clusters, 2706 HHs

Colombia 2014–15 [48] National, region × poverty 
strata, area-microcensus

152 clusters, 3037 HHs

Ghana 2014–15 [48] National, region × poverty 
× urbanicity strata, area-
microcensus

151 clusters, 3113 HHs

Guatemala 2014–15 [48] National, department × 
urbanicity strata, area-
microcensus

211 clusters, 3057 HHs

India 2014–15 [48] Three states, district × 
urbanicity strata, area-
microcensus

467 clusters, 10,824 HHs

Kenya 2014–15 [48] National, province × poverty 
strata, area-microcensus

143 clusters, 3364 HHs

Nigeria 2014–15 [48] National, region × poverty 
strata, area-microcensus

147 clusters, 3042 HHs

Rwanda 2014–15 [48] National, province × poverty 
strata, area-microcensus

150 clusters, 3096 HHs

Thailand 2014–15 [48] National, region × poverty 
strata, area-microcensus

150 clusters, 3136 HHs

Thailand 2014–15 [48] National, region × poverty 
strata, area-microcensus

150 clusters, 3275 HHs

Uganda 2014–15 [48] National, region strata, area-
microcensus

146 clusters, 3075 HHs

Nepal 2015 [17] Kathmandu Valley, no strata, 
multi-stage

90 clusters, 1,310 HHs 
(planned)

2014 WorldPop-RF Woman age 18 + , maternal 
and child health

Mozambique 2017 [50] Six districts, district strata, 
area-microcensus

234 clusters, 4998 HHs 2017 WorldPop-RF Caregiver of child age 12–18, 
child health

DR Congo 2017 [50] Kinshasa, communes strata, 
area-microcensus

210 clusters, 1,850 HHs Bespoke derived from 
administrative records

Household head, food 
insecurity

Somalia 2017 [53, 54] National, region × urbanicity, 
multi-stage

405 clusters, 6,284 HHs Modified 2015 WorldPop-LC Household head, economic

Nepal 2017 [16, 47, 50] Kathmandu valley, no geo-
graphic strata, area-micro-
census & multi-stage

60 clusters, 1200 HHs 2017 WorldPop-RF Adult age 18 + , eco-
nomic and non-communi-
cable disease

Bangladesh 2018 [16, 47] Two communities, com-
munity strata, area-micro-
census

20 clusters, 400 HHs 2020 WorldPop-RF

Vietnam 2018 [16, 47] Long Bien District, no strata, 
area-microcensus

20 clusters, 400 HHs
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any gridded population but also requiring GIS and/or 
R programming skills. The algorithm enables optional 
“growth” of clusters to a minimum population size or 
maximum area by randomly adding neighbouring cells 

after selection of “seed” cells with PPS. While this pro-
cess results in clusters with roughly consistent popula-
tion size for improved fieldwork, the population counts 
in the “grown” clusters do not reflect the population 

Table 2 (continued)

Country & year Design: coverage, strata, 
stages

Cluster & household 
sample size

Gridded population 
dataset

Target population, main 
topic(s)

Colombia  2017a National, region × urbanicity, 
two-stage (random walk)

125 clusters, 1000 HHs 2015 WorldPop-RF Adults age 15 + , topics not 
reported

Tanzania  2017a,* National, region × urbanicity, 
three-stage (random walk)

400 clusters, 4000 HHs 2015 WorldPop-RF

Uganda  2018a National, region × urbanicity, 
two-stage (random walk)

200 clusters, 2000 HHs 2020 WorldPop-RF

Nigeria  2018a National, region × urbanicity, 
two-stage (random walk)

300 clusters, 3000 HHs 2020 WorldPop-RF

Indonesia  2018a National, region × urbanicity, 
two-stage (random walk)

400 clusters, 4000 HHs 2015 WorldPop-RF

Colombia  2018a National, region × urbanicity, 
two-stage (random walk)

400 clusters, 4000 HHs 2020 WorldPop-RF

Kenya  2018a National, region × urbanicity, 
two-stage (random walk)

200 clusters, 2000 HHs 2015 WorldPop-RF

Ghana  2019a National, region × urbanicity, 
two-stage (random walk)

100 clusters, 1000 HHs 2020 WorldPop-RF

Togo  2019a National, region × urbanicity, 
two-stage (random walk)

100 clusters, 1000 HHs 2020 WorldPop-RF

Cote D’Ivoire  2019a National, region × urbanicity, 
two-stage (random walk)

100 clusters, 1000 HHs 2020 WorldPop-RF

India  2019b Uttar Pradesh state, no strata, 
five-stage

110 clusters, 1,026 HHs 2015 WorldPop-RF Adult age 18 + , social and 
political attitudes

Uruguay  2019c National, region × urbanicity, 
two-stage (random walk)

100 clusters, 995 HHs 2019 WorldPop-Global Adults age 18 + , public 
opinion

Niger 2019–2020d National, region × urbanicity, 
two-stage (random walk)

244 clusters, 2386 HHs 2019 WorldPop-Global (con-
strained to settled areas)

Adults age 18 + , daily 
routines and economic/
political opinionsMali  2020d National, region × urbanicity, 

two-stage (random walk)
230 clusters, 2152 HHs

Mauritania  2020d National, region × urbanicity, 
two-stage (random walk)

340 clusters, 3359 HHs

Cameroon 2019–2020d National, region × urbanicity, 
two-stage (random walk)

279 clusters, 2866 HHs

Burkina Faso  2020d National, region × urbanicity, 
two-stage (random walk)

326 clusters, 2942 HHs

Senegal  2020d National, region × urbanicity, 
two-stage (random walk)

371 clusters, 3580 HHs

Nigeria  2020d National, region × urbanicity, 
two-stage (random walk)

354 clusters, 3632 HHs

Nigeria  2020e Kaduna state, urbanicity, 
two-stage

36 clusters, 720 HHs 2020 WorldPop-Global Adults age 15 + , nutrition, 
maternal and child health

*Gridded population sample frame used in second or third stage of sampling
a Personal communication, S. Nichols, Gallup, 14 Jan 2020
b Personal communication, J. Cajka, RTI, 9 Apr 2020
c Personal communication, S. Staveteig Ford and M. Kirwin, US Department of State, 10 Apr 2020
d Personal communication, C. Carter and Y. Dudaronak, ORB International, 9 Apr 2020
e Personal communication, R. Bhattarai, Flowminder Foundation and M. Imohi, Nigeria National Bureau of Statistics, 10 Dec 2019
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counts used for sample selection, and may skew sample 
weights [55]. The output is a shapefile of cluster bound-
aries, with attributes of estimated population counts.

Second, the Geo-sampling survey tool was created 
by RTI and used in 14 national and sub-national sur-
veys [48] (personal communication, J. Cajka, RTI, 9 Apr 
2020). The Geo-sampling tool is designed for use with 
large grid cells (e.g. 1 × 1  km), and supports a multi-
stage stratified sampling approach. Clients are provided 
with a shapefile of the final cluster boundaries and pop-
ulation counts. In 13 surveys conducted in 2014–15, 
administrative units were sampled with PPS, and then 
1 × 1  km LandScan-Global cells were sampled with 
PPS. To improve fieldwork, 1 × 1  km cells with fewer 
than 250 persons were excluded, potentially biasing the 
sample toward higher-density populations. The sam-
pled 1 × 1  km cells were partitioned into 150, 100 or 
50 m grid cells depending on population density. Next, 
a deep-learning residential scene classification model 
was used to identify and exclude small cells without 
settlement, and disaggregate the 1 × 1  km population 
to remaining small cells. Finally, three of the small cells 
were selected at random for an area-microcensus sam-
ple [38]. In a 2019 RTI survey, WorldPop-Random For-
est estimates were aggregated to 400 × 400 m cells and 
used in place of 1 × 1 km cells, and a machine-learning 
building feature extraction algorithm was used to sam-
ple structures in the final stage of sampling (personal 
communication, J. Cajka, RTI, 9 Apr 2020).

Third, many gridded population surveys have devel-
oped ad-hoc approaches to sampling using GIS soft-
ware, such as ArcGIS. Galway and colleagues sampled 
1 × 1  km cells with PPS, then randomly selected one 
household in one building and performed a random 
walk [51]. Thomson and colleagues converted 1 × 1 km 
population counts to random points, selected points 
at random, manually delineated clusters within cells 
around selected points, and performed an area-micro-
census sample [49]. Muñoz and Langeraar proposed 

an approach for 1 × 1  km cells, though it is unclear if 
a survey followed [56]. In this approach, 1 × 1 km cells 
are aggregated to 3 × 3 km grid cells and sampled with 
PPS. Then 1 × 1  km grid cells are combined within 
selected 3 × 3  km cells to achieve a minimum popula-
tion and sampled with PPS. Next, they select a 1 × 1 km 
(or larger) area and manually delineate segments of 
approximately 100 households each. One segment is 
randomly selected, households are listed via a map-
ping-listing activity, and finally a sample of households 
is selected [56]. Sollom and colleagues joined 1 × 1 km 
gridded population estimates to rural village point loca-
tions and sampled points with PPS, and then used spin-
the-pen to sample households in the field [52]. Qader 
and colleagues used gridded population estimates 
to update census EA counts in urban areas where EA 
boundaries were available, and used a quadtree method 
to create different sized grid cells with approximately 
the same population each in rural areas [53]. The com-
bined frame was sampled with PPS before manually 
segmenting and randomly selecting one household 
per segment [53]. Finally, Gallup polling teams aggre-
gated 100 × 100 m WorldPop-Random Forest grid cells 
into larger units (e.g. 200 or 500 m cells) depending on 
local population density, sampled aggregated grid cells 
with PPS, and used satellite imagery to choose a central 
location from which to start a random walk (personal 
communication, S. Nichols, Gallup, 14 Jan 2020).

Fourth, GridSample.org is a free web-based tool 
released in late 2019 that runs the open-source Grid-
Sample2.0 algorithm developed by Flowminder Founda-
tion. It provides a point-and-click interface, preloaded 
datasets, and guidance to enter parameters and select 
clusters for a gridded population survey. It also lever-
ages gridEZ, a publicly-available algorithm, to group 
cells into clusters before sampling. Preloaded datasets 
include WorldPop-Global 100 × 100  m gridded popula-
tion estimates, a bespoke version of WorldPop-Global 
100 × 100  m estimates constrained to settled areas, 

Table 3 Comparison of tools for gridded population sampling

Feature GridSample R Geo-sampling Ad-hoc GIS GridSample2.0 GridSample.org

Public Yes No Yes Yes Yes

Free Yes No Some Yes Yes

Skill level required Advanced Advanced Advanced Advanced Basic

User selects the sample Yes No Yes Yes Yes

Gridded pop Any LandScan-Global Any Any WorldPop-Global

Preloaded/ provided data No Yes Some No Yes

Pre-forms clusters No Yes Some Yes Yes

Citations [16, 17, 47, 50, 55] [38, 48] [49, 51–53, 56] github.com/Flowminder/
GridSample2.0

GridSample.org
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GADM administrative boundaries, and GHS-SMOD 
urban/rural boundaries. All surveys are implicitly strati-
fied by level of urbanicity; stratification and spatial over-
sampling are supported; and custom coverage, strata, or 
sample frame boundaries can be uploaded by users. Grid-
Sample.org is designed for low-bandwidth settings, run-
ning sample selection remotely on a super-computer. The 
user is emailed a shapefile of cluster boundaries, popula-
tion estimates to calculate sample weights, and a report. 

The US Department of State (USDS) (personal commu-
nication, S. Staveteig Ford and M. Kirwin of USDS, 10 
Apr 2020), ORB International (personal communica-
tion, C. Carter and Y. Dudaronak of ORB International, 
9 Apr 2020), and the Nigerian Government (personal 
communication, R. Bhattarai of Flowminder Foundation 
and M. Imohi of the Nigeria National Bureau of Statis-
tics, 10 Dec 2019) used GridSample.org to select national 
or state-level household surveys. USDS in Uruguay and 

Fig. 2 Visualisation of approaches to derive a gridded population sample frame
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the Nigerian Government used GridSample.org and 
WorldPop-Global 100 × 100 m grid cells to create a sam-
ple frame of “medium” gridEZ units (clusters) of approxi-
mately 500 people each, while ORB International used 
the tool to define “large” gridEZ units (clusters) of up to 
1,200 people in a maximum area of 5 × 5  km in seven 
Sahel countries characterized by vast unsettled areas 
and low-density population. The USDS and ORB Inter-
national survey used a random-walk method to sample 
households in the field, while the Nigerian Government 
performed a full listing in sampled clusters before sam-
pling and interviewing households.

A range of simple-to-advanced tools have been used 
to implement gridded population surveys. Lower-tech 
field tools include use of paper maps displaying cluster 
boundaries over satellite imagery in Google Earth, and 
paper listing forms and questionnaires [49–51]. Higher-
tech field tools include tablet-based applications for navi-
gation [16, 48], paper field maps designed in GIS [16, 17, 
50, 51, 53], and tablet-based household listing and/or 
questionnaires [7, 16, 17, 48, 50]. Satellite imagery was 
essential to all gridded populations surveys to manually 
segment along roads, rivers, and other features [47, 49, 
56], and as a field map base layer [48–51, 53]. In some 
surveys, satellite imagery was used to digitize building 
footprints and roads in OpenStreetMap which was then 
displayed as a field map base layer [17, 47]. Many teams 
included points of interest from OpenStreetMap or GPS 
coordinates of recognizable intersections/structures on 
field maps to aid navigation [17, 47, 49, 53].

Discussion
The successful implementation of more than 40 grid-
ded population sample surveys across a variety of set-
tings bodes well for this emerging field. Due to the use 
of English language search terms in this review, focus on 
academic literature, and use of gridded population sam-
pling by some practitioners who do not publicly describe 
their survey methods, the number of gridded population 
surveys implemented is likely larger. The possibility that 
gridded population sampling might improve accuracy 
of data about vulnerable and mobile populations, espe-
cially in settings with outdated or inaccurate census data, 
is appealing to researchers and practitioners who work 
on health and social inequities in LMICs [47]. However, 
a survey statistician considering whether to recommend 
an outdated census-based frame or a gridded population 
frame is faced with questions about sample frame accu-
racy, methods to form and select sample frame units, 
and optimal survey designs. Next, we outline a research 
agenda to equip survey designers to identify situations 
where gridded population sampling can be a feasible and 

trustworthy option. The agenda shows key stages of a 
gridded population survey and available options (Fig. 3).

Choose gridded population
Top-down gridded population datasets that restrict esti-
mates to settled areas (e.g. LandScan-Global) are likely 
to underestimate rural, and overestimate urban, popula-
tions because small settlements are often undetected in 
the settlement layer. Conversely, datasets that estimate 
population in all landmasses (e.g. WorldPop-Global) 
likely overestimate rural, and underestimate urban, pop-
ulation because fractions of the population are allocated 
to unsettled cells. Factors that affect survey accuracy 
include the gridded population model accuracy, aggre-
gation of the gridded population model input dataset, 
whether residential or ambient population is modelled, 
accuracy and type of covariates, and area of the cell in 
which population is estimated [13].

A major gap is that cell-level accuracy is not known 
for any top-down gridded population datasets. To assess 
accuracy, a recent census disaggregated to household 
locations would be needed, though this is rarely, if ever, 
available. The next best option is comparison of modelled 
gridded population estimates with micro-census counts 
from a sample of areas. Household listings from a recent 
geo-located household survey aggregated to cells might 
serve this purpose, but to our knowledge, data sharing 
agreements for such work have not been investigated or 
defined. Simulated household-level datasets are a third 
option [57].

Furthermore, survey designers will want to consider 
how uncertainty estimates might be used to improve 
sample designs or sample size calculations. Pres-
ently, some top-down datasets (e.g. WorldPop-Global, 
Demobase) include model prediction errors at the scale 
of the input population dataset based on internal vali-
dation, and new bottom-up datasets include cell-level 
uncertainty estimates. A clear understanding of cell-level 
accuracy is not only important to assess whether grid-
ded population datasets are technically fit for purpose in 
practical applications that effects the public’s health and 
wellbeing [13]; this transparency is also a critical com-
ponent of fostering political buy-in [58]. DHS, MICS, 
LSMS, and other surveys are distributed via national 
statistical offices, and thus their sample frames are often 
mandated to come from official sources. Processes are 
needed for national statistical agencies to engage with 
gridded population dataset production so that official 
endorsements might be made [40].

Choose sample design
Area-microcensus sample designs in small clusters (e.g. 
10–20 households) may prove to be faster and cheaper 
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than two-stage designs in larger clusters (e.g. 100–300 
households), and more accurately sample vulnerable 
urban populations; however, there can be a counter-
balancing detriment of higher survey design effects due 
to variable numbers of respondents per cluster, greater 
within-cluster homogeneity, and lower response rates. 

For survey designers to assess these trade-offs and to 
select a sample size that will meet stakeholders’ goals 
for budget, timeline, and statistical precision, they need 
reliable projections of likely design effects in area-micro-
census samples. The current limited evidence is mixed. A 
simulation study of a rural population in Namibia found 

Fig. 3 Strategic research agenda to determine when to use gridded population sampling
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that nearly twice as many area-microcensus clusters 
would be needed to achieve the same precision as a two-
stage survey, holding constant the number of respond-
ents per cluster [59]. While a study in urban Nepal found 
higher design effects for demographic indicators and 
lower design effects for socio-economic indicators in an 
area-microcensus design versus a two-stage design [16].

Also, as urban settlement classification becomes 
increasingly possible [60], survey designers need to 
understand how within-urban stratification affects the 
various sample designs used in gridded population, and 
other, surveys. With no way to stratify urban popula-
tions, all surveys are at risk of under-sampling or omit-
ting slums and other vulnerable populations [61, 62]. 
This threat to survey accuracy and social equity will only 
grow as LMIC urban population continue to expand in 
the coming decades. In addition, research is needed to 
balance survey designs that can support both precise 
design-based estimation of outcomes and precise SAEs 
of indicators at fine geographic scales to support local 
decision-making, SDGs, and other initiatives requiring 
spatially disaggregated data [63].

Create sample frame
Existing gridded population sample frame approaches 
result in squared-off, arbitrary cluster boundaries that are 
not recognizable on the ground. Improved methods are 
needed to use natural features such as rivers and roads 
to delineate cluster boundaries from gridded population 
data. To date, nearly all spatial feature datasets for LMICs 
have been produced by governments or volunteers 
(e.g. OpenStreetMap), neither of which are sufficiently 
detailed, complete, or spatially precise to support deline-
ation of “natural” cluster boundaries across many LMICs, 
especially those with vast sparsely populated areas [64]. 
However, this is rapidly changing with new availability of 
very high resolution imagery and supercomputing facili-
ties (e.g. Maxar’s building footprint and road data in 51 
African countries) which might lead to new approaches 
to delineating “natural” cluster boundaries for gridded 
population data [58]. As the field continues to evolve, 
survey designers need to be confident that clusters will 
yield the right number of eligible respondents and have a 
geographic area that can be canvassed by a field team in 
the time budgeted for fieldwork.

Draw sample
Several gridded population sampling tools and 
approaches are available, and their feasibility is influ-
enced by cost, transparency of the methods, clarity of 
documentation, and usability by survey design profes-
sionals in government agencies and organizations who 
may not have advanced programming and GIS skills. 

The GridSample R algorithm does not scale to large geo-
graphic areas nor does include an optimal method to cre-
ate clusters from grid cells, and is thus not suitable for 
routine national surveys. GridSample.org is free, offers 
ease of use and clear documentation, but currently can-
not be adapted for in-house (private) use by national sta-
tistical agencies without manipulation of the underlying 
GridSample2.0 algorithm. Use of the Geo-sampling tool 
requires the hiring and support of an external company, 
which prohibits widespread use.

Conduct fieldwork
The emerging field of gridded population survey sam-
pling should recommend tools and protocols for both 
lower- and higher-tech settings. For example, a common 
protocol should be described to deal with arbitrary grid-
ded population boundaries that intersect buildings (e.g. 
include buildings in north and east boundaries, exclude 
buildings on south and west boundaries). Uniquely, grid-
ded population surveys rely on access to up-to-date high-
resolution satellite imagery (0.5 m) for fieldwork. This is 
less of a challenge in urban areas worldwide thanks to 
Google Earth, Bing, and other free websites. However, 
imagery resolution in rural areas of LMICs is quite vari-
able, with images sometimes being several years old. As a 
result, it would be difficult to implement gridded popu-
lation surveys in areas of heavy forest or cloud cover. 
Furthermore, tools for implementing surveys (e.g. Sur-
vey123, OpenMapKit) tend to focus on questionnaires 
and often lack integration with satellite imagery, visuali-
sation of cluster boundaries, and geo-location services in 
offline environments which means that multiple tools are 
often needed to conduct gridded survey field activities 
[16].

Conclusion
Organizations with skills in GIS and digital tools can 
successfully implement surveys with gridded popula-
tion sample frames, which have the potential to yield 
samples that are more representative of mobile and 
vulnerable respondents than outdated census-based 
frames. However, census-based frames are likely to 
be considered a safe choice by many survey design-
ers because censuses have long been the standard and 
their limitations are commonly accepted. To recom-
mend a gridded population frame would involve risks 
and rewards that are currently difficult to quantify. 
New tools are needed to evaluate gridded population 
datasets and frames in specific country contexts, and to 
facilitate low-burden survey implementation. There are 
opportunities to develop tools for nearly every stage of 
survey planning and implementation, which ultimately 
will improve the accuracy of survey data.
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