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Abstract 

Background: Sunburn is the strongest risk factor for melanoma and non-melanoma skin cancers. Adolescent sun-
burns are related to higher risk of developing melanoma later in life. Little is known about the association of sunburns 
and shade, particularly tree cover, around adolescent homes and schools. This linkage study assessed associations of 
adolescent self-reported sunburns with ambient ultraviolet radiation (UV) and tree cover.

Methods: We analyzed a U.S. national sample of parent–child dyads (n = 1333) from the 2014 Family Life, Activity, 
Sun, Health, and Eating (FLASHE) study conducted by the National Cancer Institute. The outcome was adolescent 
sunburns reported for the previous 12 months. GIS buffers around geocoded home and school addresses were used 
to summarize UV and tree cover. A sensitivity analysis assessed different UV measures and tree cover buffer distances. 
Logistic regression models estimated the adjusted odds of any sunburns for five models: (1) no environmental vari-
ables; (2) spatial variables of latitude and longitude; (3) UV; (4) tree cover; and, (5) a combined model with UV and tree 
cover. Covariates included common sunburn-related items such as sun protective behaviors, socio-demographics, 
and latitude. Model residuals were assessed for spatial dependency and clustering.

Results: Overall, 44% of adolescents reported any sunburns in the previous 12 months. For the bivariate associa-
tions, lower categories of UV were associated with any reported sunburns (p-trend = 0.002). Home tree cover was not 
associated with any reported sunburns (p-trend = 0.08), whereas schools with lower categories of tree cover were 
associated with sunburns (p-trend = 0.008). The adjusted odds of any sunburns by UV tertiles, as a linear tread, was 
0.89 (0.76–1.05) (p = 0.17); school tree cover was: 0.91 (0.78–1.07) (p = 0.25). Neither UV nor tree cover, in a combined 
model, were significant. Sensitivity analyses resulted in the optimal buffer size of 200 m for summarizing tree cover. 
Spatial dependence of residuals was not significant and clustering was significant for about 6% or less of the sample 
in each model.

Conclusions: We did not find significant relationships between UV or tree cover and adolescent sunburns, when 
adjusted by sunburn-related covariates. Better contextual data about where sunburns occurred is needed to identify 
environmental correlates of sunburn.
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Background
Reducing exposure to ultraviolet radiation (UV) across 
the life course could reduce the risk of melanoma and 
non-melanoma skin cancers [1–3]. Sunburn, caused by 
over-exposure to UV, is the most clinically-relevant risk 
factor for melanoma, with those experiencing more sun-
burns having higher risk of melanoma [4]. Adolescence 
is an important life stage to study sunburns, as sunburns 
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during this age are related to higher risk of developing 
melanoma later in life [4] and the majority of lifetime UV 
exposure occurs before the age of twenty [5].

Globally, the possible role of shade in reducing UV 
exposure and potentially sunburns is not well under-
stood. Shade is one attribute of the environment that 
may reduce daily UV exposure [6–8]. Previous research 
has found that in addition to ambient UV, other environ-
mental characteristics such as lower latitude, less daily 
rainfall and summer season were predictors of increased 
daily personal UV exposure [9–11]. Similar correlations 
have not yet been assessed for environmental shade and 
sunburns.

Health behaviors related to sun exposure are also asso-
ciated with sunburns. For example, individuals with 
higher levels of physical activity in Australia and the U.S. 
are associated with increased odds of sunburns [12–14]. 
These associations are likely because physical activity 
often occurs outdoors. However, few studies have meas-
ured time spent outdoors, physical activity and sunburn 
risk concurrently. Walking, the most common physi-
cal activity in the U.S., was not generally associated with 
sunburns [15]. One sun protective behavior, using sun-
screen, is associated with increased odds of sunburns 
[13], whereas other sun protective behaviors, such as 
seeking shade, wearing a hat, and sun protective cloth-
ing, are associated with decreased risk of sunburns [16]. 
Knowledge of how physical activity and sun protective 
behaviors interact to influence sunburn risk is an evolv-
ing and active research area [17].

The prevalence of adolescent sunburns, defined as one 
or more sunburn in the past summer, is consistently high 
in developed countries, for example: in the U.S., 72% [18], 
in Denmark, 61% [19] and in Australia, 66% [20]. Pro-
spectively, as children age into adolescence, prevalence 
of sunburns remains unchanged, but the proportion 
who use sunscreen decreases [21]. Prior research indi-
cates adolescent sun protective behaviors associated with 
fewer sunburns include staying inside and staying in the 
shade [20].

Existing research on presence of shade and adolescents 
has primarily examined school grounds [22]. Separately 
in New Zealand [23], Australia [24] and Germany [25], 
researchers found that the majority of school grounds 
or play equipment areas did not have shade and one 
recommendation was to plant trees with heavy foli-
age to increase shade. An examination of a built shade 
intervention on school grounds found that adolescents 
used the new shade provision in a sample of secondary 
schools in Australia [26]. In the U.S., it has been reported 
that lower socio-economic status schools have less play-
ground shade than higher socio-economic status schools 
[27]. Past research has not examined how the availability 

of shade on school grounds may be associated with 
reported adolescent sunburns.

Previous studies have reported adolescent sunburns 
association with sun protective behaviors or have exam-
ined shade and potential UV exposure; yet, none so far 
have assessed these environmental factors (availability 
of shade cover and ambient UV) and individual behav-
iors with reported sunburns. In this study, we used 
measures of ambient UV as a proxy for adolescent UV 
exposure and we used measures of tree cover as a proxy 
for shade. The overall goal of this study was to quantify 
whether ambient UV and tree cover at adolescents’ home 
and school was associated with sunburns. Aim 1 was to 
examine adolescent sunburns, covariates and behaviors. 
Aim 2 was to assess the adolescent sunburns, covari-
ates, behaviors and additionally the environmental vari-
ables of ambient UV and tree cover. A sub-aim of Aim 
2 was sensitivity analyses to examine how ambient UV 
measures and tree cover buffer sizes were associated with 
sunburns. It is included online in Additional file 1. Aim 3 
was to examine how the environmental variables varied 
across space with spatial analyses of model residuals.

Methods
Sample
We analyzed the publicly available U.S. National Can-
cer Institute’s (NCI) Family Life, Activity, Sun, Health, 
and Eating Study (FLASHE). FLASHE was a national 
web-based Ipsos Consumer Opinion Panel sample con-
ducted in 2014 and fully enrolled 1945 parent–child 
dyads (a participation rate of 38.7%) from a total of 5027 
dyads screened for eligibility [28]. Respondents provided 
information about demographics, such as age (aged 
12–17 years), gender, race/ethnicity, employment; health 
behaviors; details of physical activity and sedentary time; 
and sunburns and sun protective behaviors [29].1 The 

1 Coding of covariates was as follows: Weight status was recoded from five 
categories to three: very underweight or a little underweight; just right; and, 
very overweight or a little overweight. The sun protective behavior measure 
was a composite of three different questions on frequency during summer 
on a warm sunny day. The three behaviors included: 1) wearing a shirt with 
sleeves covering shoulders; 2) wearing a hat; and 3) seeking shade or using 
an umbrella. The sun protective behavior measure was coded as yes if the 
respondent answered always or often to any of the questions and was coded 
as no otherwise. Sunscreen was not combined with these behaviors, because 
previous research has found a positive association with sunburns [13]. Sun-
screen was recoded as yes if response was often or always and no if response 
was sometimes; rarely; or, never. Intentional sun exposure (spending time in 
the sun in order to get a tan), was recoded as yes if the response was often or 
always and recoded as no if response was sometimes; rarely; or, never. Any 
tanning booth or bed use in the past 12 months was recoded as yes if response 
was ≥ 1 time or no (0 times). Physical activity was measured with a question 
on typical weekly physical activity level and recoded to three categories none; 
sometimes/often; and, quite/very often. A separate question on frequency 
of days walking or biking to school or other locations in the past week was 
recoded to any, ≥ 1 time, or none.
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sample for this study was adolescents who completed 
the physical activity survey, which included questions on 
sunburns and sun protective behaviors (n = 1661) [28]. 
Respondents missing responses to age (n = 37), gender 
(n = 5), race/ethnicity (n = 17), self-reported weight sta-
tus (n = 7), sunburns (n = 6), any sun protective behav-
iors or tanning (n = 45), or typical physical activity, bike 
or walk to/from school or places (n = 20) were excluded. 
Those missing geocoded locations for home (n = 66) or 
school (n = 122) were also excluded. Finally, those miss-
ing environmental data (n = 2) or school neighborhood 
poverty data (n = 1) were excluded. After these exclu-
sions, the analytic sample included 1333 adolescents. 
Participant geocoded home and school addresses were 
accessed in a restricted use and secure computing envi-
ronment with Westat, Inc. to maintain confidentiality of 
participants’ information.

Measures
Environmental measures
The environmental measures were ambient UV and tree 
cover. Ambient UV was measured by erythemal daily 
dose (EDD) and erythemally weighted irradiance (EDR). 
EDD represents the total amount of UV radiation that 
can cause sunburn over the course of a day [30]. EDR 
describes the amount of UV that can cause sunburn dur-
ing midday; it is measured around noon when intensity 
is likely strongest [30]. These were daily measures at 
the county-level for the year 2014, from the Center for 
Disease Control and Prevention’s (CDC) Population-
Weighted Ultraviolet Irradiance, 2004–2015 dataset 
[31]. The UV data were created by Emory University’s 
Environmental Remote Sensing Group using the Ozone 
Monitoring Instrument aboard the NASA Aura Space-
craft [30]. As adolescents likely have different UV expo-
sure based on time of year, we subset the ambient UV by 
summer months (in the U.S.: June, July, and August) and 
non-summer months (in the U.S.: September to May), 
the latter roughly corresponding to the academic school 
year. We compared whether ambient UV during summer 
months or non-summer months was more strongly asso-
ciated with sunburns, compared to complete year sum-
mary measures. Shade was approximated using the tree 
cover percentage analytical product, created by the U.S. 
Forest Service as part of the 2011 National Land Cover 
Database (NLCD) [32]. Percent tree cover is a measure 
of local tree density and was derived from 30 m Landsat 
imagery [32]. Percent tree cover was measured as con-
tinuous, 0%–100%. Tree cover was assessed for home 
and school geocoded locations separately. UV was sum-
marized for home geocoded locations, as UV measures 
were nearly identical between home and school locations 
because of their geographic proximity.

Additional environmental measures were latitude, lon-
gitude, and school neighborhood poverty level. Latitude 
and longitude were from the geographic coordinates of 
the geocoded home point (decimal degrees; geographic 
coordinate system and datum: WGS 1984). School neigh-
borhood poverty level was used to control for neighbor-
hood socio-economic status around schools that may be 
associated with tree cover, based on a study in one urban 
area [27]. While it is unknown whether the school neigh-
borhood poverty level and tree cover is a generalizable 
relationship [33], we include it to test whether it is signifi-
cant with a national sample. School neighborhood pov-
erty was defined as the percent of persons living below 
the federal poverty line from the American Community 
Survey 2010–2014. It was measured by the intersection 
of a 400  m buffer around the school geocoded location 
with Census tracts to produce a tract area weighted aver-
age of percentage poverty [34].

Outcome variable
The outcome variable was number of adolescent sun-
burns reported for the last 12  months; it was dichoto-
mized to any or none, as is commonly done in sunburn 
research and to produce comparable results [13, 35]. The 
location of sunburns was not known.

Data analysis
Geographic data processing
Environmental variables were assessed with Geographic 
Information System (GIS) buffers around home and 
school locations. Home and school locations were geo-
coded by Westat, Inc. using ArcGIS 10.4.1 with data from 
Esri’s StreetMap Premium 2015, version 1 [34].2

Statistical analysis
We reported unadjusted frequencies of any sunburns by 
covariates, behaviors, and environmental variables. We 
assessed unadjusted linear trends in the ordinal envi-
ronmental variables using Cochran-Armitage two-sided 
trend tests. For covariate-adjusted models, only those 
covariates or behaviors that had significant bivariate 
associations with any sunburns were included. This was 
done to ensure we had reasonable power given our mod-
est sample size and number of independent covariates. 
Age, sun protection behaviors, walk or bike to school or 

2 Geocoded home locations resulted in primarily point locations (73%) or 
street addresses (18%) [34]. Some participants chose not to report their home 
locations (8%). The rest were geocoded to an intersection (0.3%), street name 
(0.7%), or ZIP code (0.1%). Geocoded school locations resulted in mainly 
street intersections (78%), as the survey asked about the nearest cross streets 
of the adolescents’ school [34]. The rest were street name (0.2%), ZIP code 
(3.8%), or not reported or refused (18%). We excluded those with missing or 
not reported geocodes.
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other locations, and home tree cover were not included 
in the adjusted analyses. Logistic regression3 was used 
to assess five models of association between the adjusted 
odds of any sunburns with: (1) covariates, behaviors, and 
no spatial variables; (2) covariates, behaviors, latitude and 
longitude; (3) covariates, behaviors, ambient UV, and lon-
gitude; (4) covariates, behaviors, tree cover, latitude and 
longitude; and (5) covariates, behaviors, ambient UV, tree 
cover, and longitude.4 We did not use a spatially explicit 
model form, but modeled potential spatial dependence in 
sunburns using latitude and longitude as continuous pre-
dictors.5 P < 0.05 was used to determine statistical signifi-
cance and SAS 9.4 (SAS Institute, Cary, NC, USA) was 
used for all statistical models and ArcGIS 10.7.1 (Esri, 
Redlands, CA, USA) was used for the geographic data 
operations and the spatial analysis of model residuals.

Assessment of model fit
Relative model fit was assessed with Akaike information 
criterion (AIC), where a lower relative score was equated 
with a better model fit and/or lower complexity [38]. 
Area under the curve (AUC) was used to compare model 
prediction quality. We assessed the models’ Receiver 
Operator Curve (ROC) estimates contrasted with the 
base model (model 1) ROC estimate using Chi-square 
tests.

Testing Spatial Dependence
Overall spatial dependence in the models’ error terms 
was tested with Global Moran’s I on the standardized 

deviance residuals at the home addresses [39, 40].6 We 
tested positive spatial autocorrelation of the standard-
ized deviance residuals with Local Moran’s I, which 
indicates clusters of participants where the model over- 
(negative clusters) or under-predicted (positive clusters) 
sunburns. Due to confidentiality of the data, we did not 
present point-level maps of the Local Moran’s I results 
but reported the counts of participants in the negative 
and positive clusters for each model. We mapped the 
counts of participants within clusters as percentages of 
total participants for each Census division. This allowed 
us to identify overall and for regions of the country where 
there may be issues with model assumptions and fit.

Results
Sample characteristics
In the FLASHE sample, 44% of adolescents reported 
any sunburns in the past 12 months, with more females 
reporting sunburns (48.9%), compared to males (39.1%) 
(p = 0.0003) (Table  1). Those who reported any tanning 
bed use were more likely to report any sunburns (81.3%), 
compared to those who did not use tanning beds (43.0%) 
(p < 0.0001). A higher frequency of those who always or 
often used sunscreen reported more sunburns (50.1%) 
compared to those who sometimes, rarely, or never used 
sunscreen (41.1%) (p = 0.002). Lower categories of ambi-
ent UV were associated with sunburns (p-trend = 0.002). 
There was not a significant difference between home 
tree cover and reported sunburns (p-trend = 0.08), 
whereas lower categories of tree cover at school were 
associated with higher frequency of reported sunburns 
(p-trend = 0.008).

Table  2 shows the average and standard deviations 
of sample age and home address latitude and longitude 
by any adolescent reported sunburns. Age was not sig-
nificantly associated with sunburns (p = 0.33). On aver-
age, there was about one degree of latitude difference 
between adolescents who reported any sunburns (38.7 
degrees (SD = 4.6)) compared to those who reported no 
sunburns (37.6 degrees (SD = 4.8)) (p < 0.0001). Those 
who reported sunburns lived about 122 km [42] further 
north than those who reported no sunburns, on average 
across the U.S. Results of the sensitivity analysis are avail-
able online as Additional File 1: Sensitivity Analysis.

6 Spatial dependence of the residuals was important to assess, as this may lead 
to biased variance estimates, tests of coefficient significance and model fit 
statistics [40]. Global assessment of spatial dependence of residuals may over-
look local areas of spatial autocorrelation among residuals. If there are signifi-
cant local clustering of residuals, that is an indicator of model instability over 
space, that is the relationships between variables change over space [41].

3 We also assessed another model form, the negative binomial generalized lin-
ear model, in which the sunburns dependent variable was modeled as a count 
variable. This yielded qualitatively similar results to the logistic regression 
models (Supplemental File 2- Model Comparison).
4 Latitude was not included in models with ambient UV, because when 
tested for multicollinearity in a linear regression model, the variance infla-
tion factor (VIF) was greater than 5. This is one recommended cut-off point 
where inclusion of correlated covariates can become problematic due to 
poor coefficient estimates [36]. We did not examine an adjusted model of 
tree cover around home with sunburns because the bivariate association 
was not significant. Longitude was included as a measure of continuous 
spatial variation in the adjusted models, even though the bivariate associa-
tion with sunburns was not significant.
5 We fit a Geographically Weighted General Linear Model (GWGLM) 
with these data [37], but did not include the results. There were two main 
reasons why this model specification was unsuitable. First, the number of 
neighbors that was required for the best fitting GWGLM, based on mini-
mizing the AICc, was a model where each local regression required 200 of 
the nearest neighbors. That is, 15% of the total observations were required 
to estimate the local regression models for each observation. We believed 
that this was a rather large amount of the sample and did not represent a 
feasible neighborhood for a local regression model. Second, the spatial 
neighborhood that these 200 neighbors spanned was many states for some 
observations. Again, the spatially sparse sample resulted in large geographic 
neighborhoods for the local regression models, and the addition of such 
spatially distant information is not likely to be informative for the local 
regression models.
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Adjusted analyses
Table 3 presents the adjusted odds ratios of any reported 
sunburns for all covariates and the environmental vari-
ables of interest for the five models. To address Aim 1, 
model 1 included no spatial variables, only covariates and 
behaviors. The adjusted odds ratios (ORs) for sunburns 
were strongest for those who were non-Hispanic Black 
or African American, 0.09 (0.06–0.15) (p < 0.0001), those 
with any tanning bed use, 5.46 (2.03–14.64) (p = 0.0008) 
and those with any intentional sun exposure 1.78 (1.26–
2.52) (p = 0.001).

The subsequent models 2 through 5 addressed Aim 2 
and assessed adolescent sunburns, covariates and behav-
iors and additionally ambient UV and tree cover. Model 
2 added the spatial variables latitude and longitude to 
the covariates and behaviors in Model 1. Longitude was 
significant, with an adjusted OR of 0.99 (0.98–1.00) 
(p = 0.04), however, latitude was not significant, 1.03 
(1.00–1.05) (p = 0.06). A one decimal degree increase in 
longitude, which corresponds to moving east, is associ-
ated with a 1% reduction in reported sunburns. Model 

Table 1 Frequencies of  covariates by  any sunburns 
in the past 12 months, FLASHE 2014

n Any sunburns (%) p

Yes (n = 586) No (n = 747)

Overall 1333 44.0 56.0

 Male 673 39.1 60.9 0.0003e

 Female 660 48.9 51.1

Race/ethnicitya

 Hispanic 139 33.1 66.9  < 0.0001e

 NH Black 214 10.3 89.7

 NH White 859 56.7 43.3

 NH Other 121 25.6 74.4

Physical activity level in past 7 days

 None 132 34.1 65.9 0.04e

 Sometimes/often 761 45.9 54.1

 Quite/very often 440 43.6 56.4

Self-rated weight

 Very/a little under 145 46.9 53.1 0.009e

 Just right 820 40.7 59.3

 Little/very over 368 50.0 50.0

Any tanning bed use

 No 1301 43.0 57.0  < 0.0001e

 Yes 32 81.3 18.8

Sunscreen use

 Never/rarely/some-
times

908 41.1 58.9 0.002e

 Often/always 425 50.1 49.9

Sun protection (sleeves covering shoulders, hat, or seek shade)

 Never/rarely/some-
times

375 48.0 52.0 0.06e

 Often/always 958 42.4 57.6

Intentional sun exposure

 Never/rarely/some-
times

1131 40.3 59.7  < 0.0001e

 Often/always 202 64.4 35.6

Walk/bike to/from  schoolb

 Any 281 44.1 55.9 0.95e

 None 1052 43.9 56.1

Home tree cover

 Low 444 46.2 53.8 0.08f

 Medium 445 45.4 54.6

 High 444 40.3 59.7

School tree cover

 Low 444 47.1 52.9 0.008f

 Medium 445 46.5 53.5

 High 444 38.3 61.7

UVc

 Low 444 49.1 50.9 0.002f

 Medium 445 44.5 55.5

 High 444 38.5 61.5

Table 1 (continued)

n Any sunburns (%) p

Yes (n = 586) No (n = 747)

School  povertyd

 Low 457 45.5 54.5 0.008f

 Medium 419 50.1 49.9

 High 457 36.8 63.2

NH non-Hispanic
a Other race is American Indian or Alaskan Native, Asian, or multiple races
b For adolescents not in school, this is walk/bike to/from a place, such as a job 
or friend’s house
c UV is the average daily EDR (mW m-2) for the academic year (September to 
May) for the county of participant residence
d School poverty was defined as the percent of persons living below the federal 
poverty line from the American Community Survey 2010–2014. It was measured 
by the intersection of a 400 m buffer around the school geocoded location with 
Census tracts to produce an area weighted average
e p-values are from Chi-square tests
f p-values are from Cochran-Armitage two-sided trend tests

Table 2 Unadjusted means and  standard deviations 
of continuous variables by any sunburns

p-values are from ANOVA F-tests

Any sunburns p

Yes (n = 586) No (n = 747)

Age (years) 14.5 (1.6) 14.4 (1.6) 0.35

Latitude (decimal degrees 
north)

38.7 (4.6) 37.6 (4.8)  < 0.0001

Longitude (decimal degrees 
west)

− 90.4 (14.2) − 89.3 (14.0) 0.14



Page 6 of 14Tribby et al. Int J Health Geogr           (2020) 19:59 

3 added the average ambient UV (EDR) during the aca-
demic year (September to May) categorized into tertiles 
and longitude. The adjusted linear association between 
ambient UV tertiles and any adolescent sunburns was 
not significant, with an OR of 0.89 (0.76–1.05) (p = 0.17). 
Model 4 added tree cover, latitude and longitude. The 
adjusted linear association between tree cover tertiles 
and any adolescent sunburns was not significant, with an 
OR of 0.91 (0.78–1.07) (p = 0.25). The final model, model 
5, added ambient UV, tree cover and longitude; neither 
ambient UV nor tree cover were significantly associated 
with sunburns.

Model fit
Table  4 presents assessments of model fit, predictive 
quality, and spatial analysis of the residuals. Model 2 
has the lowest AIC, indicating that the tradeoff between 
model fit and/or lower complexity is the least, compared 
to the other models. The AUC estimates and Chi-square 
tests showed no significant difference in the predictive 
quality between the models 2–5 and model 1.

Aim 3 was to examine how  the environmental con-
text variables varied across space with an examination of 
model residuals. This aim was assessed with the overall 
Global and Local Moran’s I statistics and with the results 
presented in the next section. The Global Moran’s I test 
for spatial dependence of the standardized deviance 
residuals at the home locations was not significant for all 
models, indicating no significant spatial dependence in 
the models. The counts and percentages of participants 
in significant (p < 0.05) Local Moran’s I positive and nega-
tive clusters indicated that model 2 had the fewest total 
participants in clusters  (Table  4). Therefore, based on 
the AIC and Local Moran’s I statistics, model 2 appeared 
to be the preferred model for these data, relative to the 
other models.

Spatial analyses
Figure 1a illustrates the spatial distribution of unadjusted 
sunburns in the sample and there was a significant overall 
difference when stratified by Census divisions (p = 0.007). 
The Mountain division (n = 68), which consists of the 
states Arizona, New Mexico, Colorado, Wyoming, 
Utah, Montana, Idaho, and Nevada, had the lowest rate 
of sunburns at 29.4%. The West North Central division 
(n = 127), consisting of North Dakota, South Dakota, 
Nebraska, Kansas, Missouri, Iowa, and Minnesota, had 
the highest rate of sunburns at 55.9%. Figure 1b presents 
the average predicted probabilities of sunburn by Census 
divisions. The predicted probabilities were from model 
2, which were adjusted for gender, race/ethnicity, typi-
cal weekly physical activity, weight status, sunscreen use, 
other sun protection behaviors, intentional sun exposure, 

tanning bed use, school neighborhood poverty, latitude 
and longitude. The predicted sunburns were similar to 
the observed sunburns in the East North Central (pre-
dicted: 47.4%; observed: 47.8%) and the South Atlantic 
(predicted: 36.6%; observed: 36.5%) divisions.

To address Aim 3 in further detail, Fig. 2 presents maps 
of the significant (p < 0.05) positive Local Moran’s I clus-
ters based on the standardized deviance residuals for 
each model. It shows the percent of observations in each 
Census division that were in negative clusters, which rep-
resented where there was spatial clustering in the models 
over-predicting sunburns. The negative clusters were sig-
nificant, positive spatial autocorrelation of the negative 
model residuals. Conversely, the positive clusters were 
significant, positive spatial autocorrelation of positive 
residuals, and showed where there was spatial clustering 
in where the models were under-predicting sunburns.

Discussion
This paper did not find significant relationships 
between UV or tree cover and adolescent sunburns, 
when adjusted by sunburn-related covariates. Nev-
ertheless, UV exposure does cause sunburn and bet-
ter data are needed to evaluate the extent to which 
tree cover can reduce the risk of sunburn. Specifically, 
individual-level data on UV exposure, activity spaces, 
and school and neighborhood environments may pro-
vide an appropriate scale to assess the relationships. 
Our measure of UV exposure was approximated with 
ambient UV measures and our measure of shade was 
approximated with tree cover. We found that a signifi-
cant negative bivariate association between ambient 
UV and sunburns, but the adjusted association was not 
significant. Previous research in U.S. adults from the 
1999 Behavioral Risk Factor Surveillance System data 
found that the highest rates of sunburn in were in more 
northernly states, such as Wisconsin, Utah, Wyoming, 
Washington, DC, Indiana, Michigan, and Iowa [43]. 
Our results suggest that such associations may differ 
in different parts of the U.S. For Aim 1, we confirmed 
known associations between sunburn and gender, race/
ethnicity, tanning bed use and intentional sun expo-
sure. These items were more strongly associated with 
sunburns than the ambient UV summarized during 
the school year and tree cover on school grounds. For 
Aim 2, there was no association between adolescent 
sunburns, ambient UV and home or school tree cover, 
when adjusted by covariates. We did detect significant 
bivariate associations between any sunburns and lower 
average ambient UV during the months of the school 
year and higher tree cover around the school grounds. 
The sub-aim of Aim 2 (results in Additional file 1), the 
sensitivity analysis found that for ambient UV, there 
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were four similar measures that discriminated sun-
burns. The tree cover estimates for the 200  m buffer 
distance around schools had the strongest association 
with sunburns. Conceptually, this distance was also the 
closest to approximating the area of school grounds.

Aim 3 of this study was to examine how the envi-
ronmental variables varied across space, which was 
assessed with spatial analyses of the  residuals. For 
regions with 0% in negative or positive clusters, this is 
what we would expect based on model assumptions: 
that the error terms of nearby participants were com-
pletely independent. It is important to note that these 
maps may differ from the overall average observed and 
predicted sunburns in Census divisions (Fig. 1) because 
the maps of residual clusters represent only a maxi-
mum of 12.8% of participants in negative clusters and 
8.7% of participants in positive clusters in the divisions. 
What Fig. 2 instead highlights is that there were regions 
of the country where the model relationships may be 
unstable or where other explanatory factors that were 
not included in the models may be associated with sun-
burns. However, for the overall models, the extent of 
the correlation of the residuals were actually quite lim-
ited: concordant residuals range from 1.9% (n = 25) of 
total observations in model 2 within significant positive 
clusters to 4.4% (n = 58) of total observations in model 
1 within significant negative clusters (Table  4). This 
indicates that a small percentage of observations may 
be subject to violation of the assumption of independ-
ence. Due to the small percentage of the total sample 
these represent, we conclude that this was a minimal 
amount of correlation and likely does not meaning-
fully violate the assumption of independence among 
the residuals or bias these models. Future research may 
explore parameters related to examining the spatial 

autocorrelation of model residuals for modeling sun-
burns, such as the geographic weighting function or 
size of the bandwidth.

The results from Aim 3 highlight the potential spatial 
variation in the associations between sunburns, covari-
ates, behaviors and environments. Recent research 
reported adolescent sunscreen use, sun protective cloth-
ing use, and intentional sun exposure varied between 
three U.S. states [44]. For example, adolescents in Hawaii 
reported using sunscreen less frequently than those in 
California or Colorado [44]. Sun protective behaviors 
and sunburns also varied between urban and rural areas 
in Texas adults, with rural residents more likely to report 
using sunscreen with a higher sun protection factor 
(SPF), yet also report having had more sunburns during 
adolescence compared to urban residents [45]. We docu-
mented significant clustering of model residuals that may 
suggest some of the coefficient variance and significance 
tests may be biased. However, these results also suggest 
that there may be omitted explanatory variables that may 
explain regional clusters in sunburns, which would pro-
vide additional context beyond the spatial coordinates, 
ambient UV, and tree cover we included. Some explana-
tory variables may be urban or rural residence or prox-
imity to a beach. This may be addressed with spatially 
explicit geographic data (e.g., geocoded locations or 
Global Positioning System (GPS) receivers to track indi-
viduals’ UV exposure) and detailed participant-reported 
contexts (such as at pool or beach) to more accurately 
model the relationship between sunburns, behaviors, and 
environments.

The characterization of shade for each school grounds 
was a challenge. First, this required an accurate defi-
nition of school grounds area in which to assess shade. 
To do so would have required obtaining parcel data for 

Table 4 Model fit, residual spatial dependence, and residual spatial autocorrelation comparisons

1 p-values are from Chi-square tests for differences in model Receiver Operator Curves (ROC) with Model 1 ROC
2 Global Moran’s I test statistic based on the standardized deviance residuals at home addresses
3 p-values are from z-scores based on a standard normal distribution of standardized deviance residuals
4 Positive clusters represent significant (p < 0.05), positive clusters of home addresses with positive standardized deviance residuals (where the observed sunburn was 
higher than predicted)
5 Negative clusters were significant (p < 0.05), positive clusters of home addresses with negative standardized deviance residuals (where the observed sunburn was 
lower than predicted)

AIC Area Under Curve 
(AUC)

p1 Global Moran’s I2 p3 Count (%) of participants in significant, 
positive Local Moran’s I clusters

Positive4 Negative5 Total

Model 1 1603.897 0.736 Ref 0.0033 0.71 27 (2.0%) 58 (4.4%) 85 (6.4%)

Model 2 1600.689 0.742 0.14 -0.0028 0.85 25 (1.9%) 31 (2.3%) 56 (4.2%)

Model 3 1602.285 0.742 0.14 -0.0017 0.93 30 (2.3%) 42 (3.2%) 72 (5.4%)

Model 4 1601.381 0.744 0.09 -0.0033 0.81 28 (2.1%) 29 (2.2%) 57 (4.3%)

Model 5 1602.770 0.743 0.09 -0.0023 0.89 27 (2.0%) 34 (2.6%) 61 (4.6%)
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Fig. 1 Unadjusted and number of participants (a) and adjusted (b) any adolescent reported sunburns in past 12 months by U.S. Census divisions, 
FLASHE 2014
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each school and these data are held by counties for tax 
collection purposes. This data acquisition work would 
have required contacting hundreds of counties and com-
bining their data to identify the school grounds for the 
schools in this sample. Second, identifying natural and 
built shade on school grounds would have required using 
Google Earth [27] or other aerial imagery, in addition 
with ground truthing, to accurately identify the variety 
of trees and built shade structures on school grounds. 
Unfortunately, we did not have the resources to address 
either of these issues, which is why we used estimates of 
tree cover summarized with buffers. The accuracy of the 
nationwide estimates of tree cover from the NLCD var-
ied. The 2011 percent tree cover was predicted using a 
random forests models, which used aerial imagery, 2001 
NLCD tree cover predictions, elevation, and Landsat data 
as predictors. The aerial imagery training data were from 
5 areas in Georgia, Michigan, Kansas, Oregon and Utah, 
where researchers used photo-interpretation to classify 

each of the 105 points, per sample location, as either “tree 
canopy” or “no tree canopy” using the National Agricul-
ture Imagery Program (NAIP) imagery [32]. The pseudo-
R2 for models in these regions ranged from 0.53 to 0.90; 
however, the standard errors of predicted tree cover 
were higher for urban areas [32]. Additionally, the NLCD 
estimates of tree cover we used will likely differ from 
estimates made in  situ or from 0.5 m or 5 m resolution 
imagery [46]. This likely led to some misclassification of 
the tree cover percentage at home and school locations, 
which was one reason why we classified the percentages 
into tertiles. The direction of this potential misclassifica-
tion of tree cover is likely to be non-differential and the 
bias in the relative associations with sunburns would be 
towards the result of a null association; that is, not a sta-
tistically significant association [47]. However, further 
conditions must hold for the assumption of the bias to be 
towards the null association, such as the condition that 
the misclassification probabilities are exactly non-differ-
ential; exposure misclassification errors are assumed to 
be independent of errors in other variables in the analy-
sis; and, for the associations to be towards the null also 
assume absence of interactions with other sources of 
systematic error, such as selection bias and confound-
ing [48]. Finally, the temporal match between the 2011 
NLCD tree cover product and the 2014 FLASHE survey, 
which asked about sunburns the previous 12  months, 
which covered part of 2013 was not a perfect match. The 
next more recent tree cover product is the 2016 NLCD. 
So, there was not a perfect match temporally from either 
data product, however we feel the 2011 product was a 
reasonable approximation of the tree cover in 2013 and 
2014. Future research may seek to model tree cover at 
yearly intervals to allow a better temporal match with 
health surveys.

Environmental and policy interventions to promote 
reduction of UV exposure among adolescents require 
consideration of context. In general, the Community 
Preventive Services Taskforce has found sufficient evi-
dence to recommend environmental and policy supports 
to minimize UV exposure for the contexts of childcare 
settings [49] and primary and middle schools [50]. At 
childcare and these two school settings, environmental 
and policy interventions include increasing the availabil-
ity of sun-protective items (e.g., sunscreen or protective 
clothing), employing policies (e.g., protective clothing 
guidelines or restrictions on outdoor activities during 
peak UV hours) and increasing sun-protective features 
of the physical environment (e.g., shade) [49, 50]. The 
provision of shade interventions to reduce UV exposure 
among adolescents at schools is possible through built 
structures, such as portable shade tents or permanent 
solid roof or fabric installations, or natural features, such 

Fig. 2 Percent of sample within Census division exhibiting spatial 
autocorrelation of residuals, based on significant, positive Local 
Moran’s I clusters
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as trees [6–8, 22, 51, 52]. In addition to school grounds, 
school-associated activities, such as athletic sporting 
events, are recommended to provide shade through envi-
ronmental supports to reduce adolescent UV exposure, 
as other sun protective behaviors among participants 
and spectators are minimal [53]. Finally, more evidence is 
required to evaluate the effectiveness of the above inter-
ventions for high school and college settings [54].

Strengths and limitations
One strength of this study was a national sample, 
although not nationally representative. The national sam-
ple allowed variation in environmental contexts, socio-
demographics, and behaviors. For example, adolescent 
sun protective behaviors vary between some U.S. states 
[44], so using a national sample allowed for more gener-
alizable results than a study located in a specific city, state 
or region. Another strength was the geocoded home and 
school locations, which allowed estimates of local tree 
cover. Few other studies have assessed sunburns and tree 
cover with this level of detail, with most assessing either 
sunburns and behaviors [18, 19, 21, 44] or tree cover and 
potential UV exposure [6, 23, 25–27]. While our meas-
ure of sunburns was broad (over previous 12 months), we 
leveraged ambient UV, important sun protective behav-
iors, and other covariates to explore the role of tree cover 
with sunburns.

This paper had three main limitations. First, it lacked 
information on skin sensitivity to the sun, which has a 
more nuanced association with sunburns than race/eth-
nicity alone [13]. This limitation may have resulted in 
the odds ratio estimates for race/ethnicity to be stronger 
than if skin sensitivity was included as well. Second, the 
measure of sunburns was broad: any sunburns in the past 
12  months. These sunburns could have occurred at any 
time during those months or at any location, such as on 
vacation or at the local pool, and therefore measures of 
ambient UV and tree cover around home and schools 
may not have captured the environments of these other 
sunburn contexts. This finding represents an example of 
the uncertain geographic context problem, where there 
may be a spatial mismatch between measurements of 
the behavior and putative environmental influences [55]. 
This spatial mismatch may influence the results by either 
overstating the role of the environment associated with 
behaviors or by not capturing the role of environment 
associated with behaviors. Third, the use of tree cover as 
the measure of shade did not include built environment 
shade, which may have resulted in an under-estimate of 
the shade environments of schools. More comprehen-
sive data, such as combining participant worn GPS with 
UV dosimeters and participant reported outcomes (i.e., 
sunburns, sun protective behaviors) may allow better 

modeling of the relationships between ambient UV, tree 
cover, and adolescent sunburns to guide future interven-
tions. Finally, while we explored different representations 
of UV and tree cover, such as continuous or ordinal ter-
tiles, we did not find a qualitative difference in associa-
tions with sunburns. Future research may explore other 
means of representing UV and tree cover for explaining 
variations in sunburns.

Conclusions
The relationships between ambient UV, tree cover, and 
adolescent sunburns, as an important life stage to study 
a key risk factor for melanoma, is an area that needs fur-
ther research in the U.S. and internationally. Currently, 
there is an absence of nationwide studies to examine 
adolescent sunburns and the environment. This analy-
sis is one of the first studies to assess ambient UV, tree 
cover, and adolescent sunburns using a national sample. 
This study did not find significant associations between 
adolescent sunburns and environmental measures. These 
results, which did not support our hypotheses and the 
spatial analysis of the residuals, suggest two recommen-
dations for future research. First, that more comprehen-
sive data on the environmental and activity contexts of 
adolescent sunburns are necessary. And second, more 
accurate measures of shade, that includes both built and 
natural shade are needed. These improved data may allow 
a better accounting of the costs and benefits of environ-
mental shade interventions to inform policies to reduce 
adolescent UV exposure and sunburns for skin cancer 
prevention.
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