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Abstract

Background: Drug-resistant tuberculosis (DR-TB) is a major public health problem caused by various factors. It is
essential to systematically investigate the epidemiological and, in particular, the ecological factors of DR-TB for its
prevention and control. Studies of the ecological factors can provide information on etiology, and assist in the
effective prevention and control of disease. So it is of great significance for public health to explore the ecological
factors of DR-TB, which can provide guidance for formulating regional prevention and control strategies.

Methods: Anti-TB drug resistance data were obtained from the World Health Organization/International Union
Against Tuberculosis and Lung Disease (WHO/UNION) Global Project on Anti-Tuberculosis Drug Resistance
Surveillance, and data on ecological factors were collected to explore the ecological factors for DR-TB. Partial least
square path modeling (PLS-PM), in combination with ordinary least squares (OLS) regression, as well as
geographically weighted regression (GWR), were used to build a global and local spatial regression model between
the latent synthetic DR-TB factor ("DR-TB”) and latent synthetic risk factors.

Results: OLS regression and PLS-PM indicated a significant globally linear spatial association between “DR-TB” and
its latent synthetic risk factors. However, the GWR model showed marked spatial variability across the study
regions. The “TB Epidemic”, “Health Service” and “DOTS (directly-observed treatment strategy) Effect” factors were
all positively related to “DR-TB” in most regions of the world, while “Health Expenditure” and “Temperature” factors
were negatively related in most areas of the world, and the “Humidity” factor had a negative influence on “DR-TB”
in all regions of the world.

Conclusions: In summary, the influences of the latent synthetic risk factors on DR-TB presented spatial variability. We
should formulate regional DR-TB monitoring planning and prevention and control strategies, based on the spatial
characteristics of the latent synthetic risk factors and spatial variability of the local relationship between DR-TB and
latent synthetic risk factors.

Keywords: drug-resistant tuberculosis, epidemiology, risk factors, Kriging method, partial least square path model-
ing (PLS-PM), geographical weighted regression (GWR)

Background
Tuberculosis (TB) is a major cause of illness and death
worldwide. The World Health Organization (WHO) esti-
mated that there were 14 million prevalent TB cases
(range, 12 million-16 million), 1.3 million deaths among
HIV-negative people and 0.38 million deaths among
HIV-positive people in 2009 [1]. Recently, drug-resistant
TB (DR-TB), and especially multidrug-resistant TB

(MDR-TB), has emerged as an increasingly important
factor in TB deaths [2]. According to a WHO report,
DR-TB has spread worldwide and has become a serious
public health problem that threatens the success of the
directly-observed treatment strategy (DOTS), a treatment
approach recommended by WHO for the detection and
cure of TB, as well as global TB control [3]. Among TB
patients notified in 2009, an estimated 250,000 had
MDR-TB [1]. DR-TB is caused by various factors, includ-
ing not only factors at individual level (e.g., sex [3],
genetic susceptibility [4], occupation [5], previous treat-
ment [6-11], socioeconomic status [12-14], etc.), but also
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factors at ecological level (i.e., environment factors,
including natural factors and social factors [15]). There-
fore, it is essential to investigate in depth the risk factors
for DR-TB prevention and control, especially the ecologi-
cal factors.
From 1994, WHO, the International Union Against

Tuberculosis and Lung Disease (The Union) and other
partners have launched the Global Project on Anti-
Tuberculosis Drug Resistance Surveillance (the Global
Project) [16]. Since the establishment of the Global
Project, 114 countries (59% of all countries) have been
covered, and data on drug resistance have been sys-
tematically collected and analyzed [2]. The results indi-
cate that Central and Western Europe have the lowest
proportions of resistance to any TB drug and the low-
est MDR-TB, followed by African countries and then
The Americas, with moderate proportions of resistance
in the Eastern Mediterranean and South-East Asia
regions, followed by the Western Pacific region. Pro-
portions of resistance to any TB drug and MDR-TB
are highest globally and for all first-line drugs in East-
ern Europe. Furthermore, important variations exist
within different regions [2]. This suggests that ecologi-
cal causes (specifically, climate and geography, TB epi-
demiological factors and socioeconomic factors, etc.)
for DR-TB vary in different regions. Spatial examina-
tion of these risk factors for DR-TB would play an
essential role in developing regional prevention mea-
sures and control strategies.
However, the variables of climate and geographical

factors, TB epidemiological factors and socioeconomic
factors, etc. usually show spatial autocorrelation and
obvious spatial heterogeneity [17,18], which is difficult
for the traditional multivariable model (e.g. global ordin-
ary least square (OLS) regression [19]) to deal with. We
therefore introduced geographical weighted regression
(GWR) [20] to assess the spatial heterogeneity in the
putative relationships between DR-TB and its risk fac-
tors. As the variables involved in this study presented
characteristics of high-dimension, non-normality, small
sample size and multicollinearity, we first proposed par-
tial least square path modeling (PLS-PM) [21,22] to
extract the latent synthetic DR-TB factors from the DR-
TB vector, and latent synthetic risk factors from the
ecological factors vector; then we constructed the struc-
tural equation model (SEM) to analyze the complex cau-
sal relationship between the latent synthetic DR-TB
factors and latent synthetic risk factors. Furthermore,
the GWR model was employed to analyze the local spa-
tial heterogeneity in the estimated relationships between
the latent synthetic DR-TB factors and latent synthetic
risk factors. All the maps in this study were created by
ArcGIS (v9.0) [23].

Methods
Setting
In 2008, the fourth report [2] of the WHO/UNION Global
Project on Anti-Tuberculosis Drug Resistance Surveillance
was published, which summarized data from 114 countries
between 1994 and 2007. 109 countries (covering 126
regions, Figure 1) reported data on first-line anti-TB drug
resistance among new cases, including prevalence of resis-
tance to isoniazid (H), rifampicin (R), streptomycin (S)
and ethambutol (E). We used mono-drug resistance (resis-
tance to a single drug, H, R, E or S: Mono-rate), multidrug
resistance (resistance to, at least H and R, including HR,
HRE, HRS and HRES: MDR-rate), and poly-drug resis-
tance (resistance to several drugs, excluding combined
resistance to H and R, including HE, HS, RE, RS, ES, HES
and RES: Poly-rate) to reflect the prevalence of drug resis-
tance. The present study was carried out using surveillance
regions as units of analysis.

Data sources
The anti-TB drug resistance data was extracted from the
fourth report, including Mono-rate, MDR-rate and Poly-
rate of DR-TB in 126 regions. A worldwide spatial data-
base on ecological factors was compiled, including climate,
geography, TB epidemic, the effects of DOTS, health
expenditure and health service factors, etc. The climatic
and geographic data (including annual precipitation,
annual atmospheric temperature, temperature climate
zone, geography climatic zone and geography latitude) of
the 126 regions were collected from the World Climate
website, and Table 1 shows the value assignment. The
other ecological factors (Table 2), including TB epidemic,
the effects of DOTS, health expenditure and health
service, etc. were extracted from the Health Resource
Database of the WHO website, the Government websites
of some countries or regions, the internet and relevant
references, etc. Considering the hysteresis quality of drug
resistance, the collected data on ecological factors were
3-5 years earlier than the surveillance time of drug resis-
tance. The anti-TB drug resistance data and ecological fac-
tors data together with their value assignment are
provided as a supplement (see Additional file 1).

Analysis of the complex relationship between DR-TB and
ecological factors
To explore the latent structure of the DR-TB vector and
the ecological risk factors vector, exploratory factor ana-
lysis (EFA) [19] was used to extract the latent synthetic
DR-TB factors and latent synthetic risk factors by SAS9.0
software. Based on the results of EFA, SEM was con-
structed to show the complex relationship between the
latent synthetic DR-TB factors and latent synthetic risk
factors. Because of the non-normal distribution, small
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sample size and multicollinearity of the data, the PLS
algorithm was chosen to set up SEM, named as PLS-PM
[21]. It is a component-based estimation method, which
is an iterative algorithm that separately analyzes the
blocks of the measurement model and then estimates the
path coefficients in the structural model. PLS-PM is
regarded as a “soft modeling” approach, without strong
assumptions for the distributions, the sample size and
the measurement scale, and has been applied extensively,
especially in customer satisfaction studies [22]. Based on
the software review by Temme et al. (2006) [24], the soft-
ware SmartPLS version 2.0M3 [25] was chosen to con-
duct the analysis. SmartPLS supports graphical modeling
and carries out the bootstrapping procedure to generate
significance measures. In this research, the path weight-
ing scheme was implemented for the inner estimate of
the standardized latent variable in PLS analysis, and the
resampling number was specified as 1000 in bootstrap-
ping. Furthermore, the latent synthetic DR-TB factors
and latent synthetic risk factors scores were estimated for
further analysis.

Detection of spatial dependence relationship between
DR-TB and ecological factors
To explore the spatial dependence relationship between
DR-TB and its ecological risk factors, PLS-PM, in com-
bination with OLS regression as well as GWR, was used
to build the global and local spatial regression model

between the latent synthetic DR-TB factors and latent
synthetic risk factors. PLS-PM was firstly used to esti-
mate the latent synthetic DR-TB factors and latent syn-
thetic risk factors for each region as above. Then, the
ordinary Kriging interpolation [26] was used to obtain
the predicated values of the latent synthetic DR-TB fac-
tors and latent synthetic risk factors. Finally, by using
Spatial Analysis software in Macroecology (SAM v4.0)
[27], OLS regression [19] and GWR [20,28,29] were
used to set up the global and local spatial regression
models between the latent synthetic DR-TB factors and
the latent synthetic risk factors, respectively.
As a virtually unbiased method in an interpolation situa-

tion, the Kriging model has several advantages over other
interpolation and smoothing methods, and has been used
to create maps of geographic disease clines in many
studies [30,31]. In this study, after the Kriging maps were
created by ArcGIS, the Natural Breaks (Jenks) method
[32] was used to classify the latent synthetic DR-TB and
risk factor clines. Unlike conventional OLS regression,
which may only produces a single regression equation to
summarize global relationships between DR-TB and eco-
logical synthesis factors, the GWR, whose regression coef-
ficients are allowed to vary spatially, can generate spatial
dependence that express the local spatial variation
between them dynamically. GWR has been successfully
applied in spatial epidemiology [27,33-36] and in spatial
ecology [26,37,38].

Figure 1 Locations of 126 regions for anti-tuberculosis drug resistance surveillance.

Liu et al. International Journal of Health Geographics 2011, 10:50
http://www.ij-healthgeographics.com/content/10/1/50

Page 3 of 10



Results
Latent synthetic risk factors and DR-TB factors
From five climatic and geographic factors (Table 1), two
latent synthetic risk factors were extracted, which could
explain about 87.17% of the total variance for these fac-
tors. The first, named as “Temperature”, was reflected

by annual atmospheric temperature (ATT), temperature
climate zone (TCZ) and geography latitude (GL). The
second, named as “Humidity”, was described by annual
precipitation (AP) and geography climatic zone (GCZ).
Based on the value assignment of the climatic and geo-
graphic factors (Table 1), the larger the “Temperature”,
the hotter the climate; and the larger the “Humidity”,
the wetter the climate.
Four latent synthetic factors were extracted from the TB

epidemic situation, the effects of DOTS, health expendi-
tures, etc., which could explain 86.09% of the total
variance for the twelve ecological risk factors (Table 2).
The first, named as “TB Epidemic”, was reflected by TB
case notification rates (x1), prevalence of tuberculosis (x2),
and TB mortality among HIV-negative people (x3). The
second, named as “Health Service”, consisted of popula-
tion with sustainable access to improved rural sanitation
(x4), 1-year-olds immunized with diphtheria-tetanus-
pertussis (DTP3) (x5), 1-year-olds immunized with menin-
gococcal conjugate vaccine (MCV) (x6) and life expec-
tancy at birth (x7). The third, named as “Health
Expenditure”, was composed of total expenditure on
health as percentage of gross domestic product (x8), per
capita total expenditure on health at average exchange
rate (x9) and per capita government expenditure on health
at average exchange rate (x10). The fourth, named as
“DOTS effect”, was described by new smear-positive TB
treatment success under DOTS (x11) and TB treatment
success under DOTS (x12). Obviously, the larger the “TB
Epidemic”, the more serious the TB epidemic situation;
the larger the “Health Service”, the higher quality the
health service; the larger the “Health Expenditure”, the
greater the health investment; the larger the “DOTS
Effect”, the better the effect of DOTS.
From Mono-rate, MDR-rate and Poly-rate, the latent

synthetic factor named as “DR-TB” was extracted to
reflect the prevalence of drug resistance, which could
explain 70.09% of the total variance. It can be seen that
the larger the “DR-TB”, the more serious the epidemic
situation.

Complex relationship between “DR-TB” and ecological
factors
Figure 2 shows the PLS path model of DR-TB rates with
ecological factors, in which reflective mode was used to
relate the manifest variables (ecological factors) to their
latent variables (latent synthetic risk factors). It can be
seen that the six latent synthetic risk factors could
explain 38% of the total variation of the “DR-TB” factor
(see Figure 2). Among them, the “Humidity” factor had
the largest effect, with a standardized path coefficient
-0.351, i.e., there was a negative relationship between
“Humidity” and “DR-TB”, and the larger the “Humidity”,
the lower the prevalence of DR-TB. Both “Temperature”

Table 1 Value assignment of the climatic and geographic
factors

Geographical climate index Variable Assignment

Annual precipitation (AP) 0 mm ≤ AP < 200 mm 1

200 mm ≤ AP < 500
mm

2

500 mm ≤ AP < 1000
mm

3

1000 mm ≤ AP < 2000
mm

4

2000 mm ≤ AP 5

Annual atmospheric
temperature (AAT)

30°C ≤ AAT 6

20°C ≤AAT < 30°C 5

10°C ≤ AAT < 20°C 4

0°C ≤AAT < 10°C 3

-10°C ≤ AAT < 0°C 2

-20°C ≤ AAT < -10°C 1

Temperature climate zone (TCZ) frigid zone 1

subfrigid zone 2

temperate zone 3

subtropical zone 4

tropical zone 5

Geography climatic zone (GCZ) continental climate 1

transitional climate 2

oceanic climate 3

Geography latitude (GL) 0° ≤ GL < 25° 3

25° ≤ GL < 50° 2

50° ≤ GL < 75° 1

Table 2 Ecological influencing factors

Ecological influencing factors index

x1 TB case notification rates (per 100 000 population)

x2 Prevalence of TB (per 100 000 population)

x3 TB mortality among HIV-negative people (per 100 000 population)

x4 Population with sustainable access to improved rural sanitation
(percent)

x5 1-year-olds immunized with three doses of DTP3 (%)

x6 1-year-olds immunized with MCV (%)

x7 Life expectancy at birth (years)

X8 Total expenditure on health as percentage of gross domestic
product

X9 Per capita total expenditure on health at average exchange rate
(US$)

x10 Per capita government expenditure on health at average
exchange rate (US$)

x11 New smear-positive TB treatment success under DOTS (%)

x12 TB treatment success under DOTS (%)
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and “Health Expenditure” factors had a negative effect
on “DR-TB”, with standardized path coefficients -0.336
and -0.279, respectively. “TB Epidemic”, “DOTS Effect”
and “Health Service” factors all had a positive influence
on “DR-TB”, with standardized path coefficients 0.186,
0.165 and 0.087, respectively. Table 3 and Table 4 show
the bootstrapping test results for outer loading of the
measurement model and path coefficient of the struc-
ture model, which demonstrated that in the measure-
ment model, most loadings of the manifest variables
except x5 and x6 were significant at 0.20 level (P <
0.20); in the structure model, all path coefficients except
“Health Service” were significant at 0.20 level (P < 0.20).
Therefore, the analysis indicated that the latent synthetic
risk factors “TB Epidemic”, “Health Expenditure”,
“DOTS effect”, “Humidity” and “Temperature” had
major effects and played an important role in drug resis-
tance, while “Health Service” had a little effect.

Global spatial dependence between “DR-TB” and latent
synthetic risk factors
The result of OLS regression between “DR-TB” and
latent synthetic risk factors (Table 5) showed that “DR-
TB” was significantly associated with latent synthetic
risk factors (F=19.28, P < 0.0001), and explained about

33.50% of the total variance of “DR-TB” (adjusted R2 =
0.3350). Moreover, the hypothesis test of the partial
regression coefficient (Table 5) demonstrated that the
higher “TB Epidemic” and “DOTS Effect”, and lower
“Health Expenditure”, “Humidity” and “Temperature”,
corresponded with higher “DR-TB"; but the relationship
between “Health Service” and “DR-TB” was not statisti-
cally significant (P = 0.7991). It can be seen that the
OLS regression result was similar to that of the PLS
path modeling, which, to some extent, demonstrated the
fitness and accuracy of Kriging interpolation.

Local spatial dependence between “DR-TB” and latent
synthetic risk factors
Table 6 summarizes the results of GWR between “DR-TB”
and latent synthetic risk factors, and indicated that there
was large spatial variability in the parameter estimates from
different regions’ models. An increase in the adjusted R2

was found, i.e., from 0.335 (OLS) to 0.592 (GWR), which
demonstrated that the GWR model had a much better
explanatory power than the OLS model. In addition, the
result of the F-test (F = 7.0899, P < 0.05) also suggested
that the improvement in model fit using GWR was statisti-
cally significant. Furthermore, based on the evaluation cri-
terion of the GWR model suggested by Fotheringham [20],

Figure 2 PLS path model of DR-TB rates with ecological factors.
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the best model was the one with the smallest AICc value;
and as a rule of thumb, a “serious” difference between two
models is generally regarded as one where the difference in
AICc values between the models is at least 3. In this study,
the AICc of GWR (394.851) was far smaller than in the
OLS (470.952), which illustrated that the GWR model was
better than the OLS model.
Figure 3 shows the contour map of the regression coef-

ficients of six latent synthetic risk factors and their P
values, interpolated by the Kriging method. It is clear
that the regression coefficients varied spatially, and the
local spatial dependence relationship between “DR-TB”
and the six latent synthetic risk factors exhibited a non-
constant mean and variance across the whole world. This
suggests a non-stationary relationship between “DR-TB”
and the latent synthetic risk factors. The standardized

regression coefficient estimates of “TB Epidemic” were
mostly positive (some were not statistically significant),
except in southern South America, eastern and southern
Europe, and central and southern Africa (see Figure 3a1,
a2). In contrast, there was a negative association in
southern South America (Chile, Argentina, Paraguay and
Uruguay), eastern and southern Europe (Ukraine, Roma-
nia, Bulgaria, Slovakia, Czech Republic, Austria, Hungary,
Switzerland, Italy, Greece, etc), and central and southern
Africa (Gabon, Congo, Uganda, Kenya, Tanzania, Angola,
Zambia, Malawi, Mozambique, Zimbabwe, Namibia,
Botswana, Swaziland, Lesotho, South Africa, etc), but
none of these was statistically significant. The standar-
dized regression coefficient estimates of “Health Service”
were mostly positive except in the USA, Mexico, eastern
and southern South America, central and southern

Table 3 Bootstrapping test of outer loadings (Mean, STDEV, T-values)

Manifest variable Original Sample
(O)

Sample Mean
(M)

Standard Deviation
(STDEV)

Standard Error
(STERR)

T Statistics
(|O/STERR|)

x1 <- TB Epidemic 0.6405 0.6152 0.3008 0.3008 2.1296**

x2 <- TB Epidemic 0.8219 0.7174 0.3057 0.3057 2.6888**

x3 <- TB Epidemic 0.8219 0.7161 0.3062 0.3062 2.6846**

x4 <- Health service 0.8626 0.2554 0.6019 0.6019 1.4331*

x5 <- Health service 0.5313 0.5564 0.4203 0.4203 1.2641

x6 <- Health service 0.5313 0.5545 0.4228 0.4228 1.2566

x7 <- Health service 0.5772 0.5699 0.4273 0.4273 1.3509*

x8 <- Health Expenditure 0.8209 0.6921 0.3694 0.3694 2.2220**

x9 <- Health Expenditure 0.9977 0.8866 0.3280 0.3280 3.0418**

x10 <- Health
Expenditure

0.9857 0.8734 0.3400 0.3400 2.8995**

x11 <- DOTS Effect 0.8871 0.8834 0.0545 0.0545 16.2772**

x12 <- DOTS Effect 0.9057 0.9033 0.0467 0.0467 19.4104**

AP <- Humidity 0.8636 0.8586 0.0421 0.0421 20.4883**

GCZ <- Humidity 0.9375 0.9378 0.0137 0.0137 68.4549**

ATT <- Temperature 0.9679 0.9653 0.0626 0.0626 15.4580**

GL <- Tem Temperature 0.9424 0.9377 0.0643 0.0643 14.6578**

TCZ <- Tem Temperature 0.9457 0.9436 0.0618 0.0618 15.2957**

MDR-rate <- DR-TB 0.8960 0.8905 0.0236 0.0236 38.0375**

Mono-rate <- DR-TB 0.6749 0.6855 0.0618 0.0618 10.9152**

Poly-rate <- DR-TB 0.9134 0.9129 0.0205 0.0205 44.4736**

**P < 0.05, *P < 0.20.

Table 4 Bootstrapping test of path coefficients (Mean, STDEV, T-values)

Latent variable Original Sample
(O)

Sample Mean
(M)

Standard Deviation
(STDEV)

Standard Error
(STERR)

T Statistics
(|O/STERR|)

TB Epidemic -> DR-TB 0.1858 0.1455 0.1272 0.1272 1.4606*

Health service -> DR-TB 0.0875 0.0316 0.1918 0.1918 0.4563

Health Expenditure -> DR-
TB

-0.2791 -0.2770 0.2085 0.2085 1.3385*

DOTS Effect -> DR-TB 0.1646 0.1500 0.0741 0.0741 2.2201**

Humidity -> DR-TB -0.3515 -0.3610 0.0830 0.0830 4.2347**

Temperature -> DR-TB -0.3358 -0.3477 0.1120 0.1120 2.9990**

**P < 0.05, *P < 0.20.
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Africa, Australia, and New Zealand (see Figure 3b1, b2).
However, only the regression coefficients of Russia,
Kazakhstan and Mongolia were statistically significant. In
eastern and southern South America (Brazil, Bolivia,
Chile, Argentina, Paraguay, Uruguay) and Namibia, the
standardized regression coefficient estimates of “Health
Expenditure” were positive, and the rest were negative,
indicating a negative association between “DR-TB” and
“Health Expenditure” in most regions of the world, but
some were not statistically significant (see Figure 3c1,
c2). In China, Japan, India, Southeast Asia and central
Africa, the standardized regression coefficients estimates
of the “DOTS Effect” were negative, and the rest were
positive, but some were not statistically significant (see
Figure 3d1, d2). The standardized regression coefficient
estimates of “Humidity” were negative in all regions, but
some were not statistically significant (see Figure 3e1,
e2). A negative association between “DR-TB” and “Tem-
perature” was revealed in most areas of the world (some
were not statistically significant) except in Latin America
(see Figure 3f1, f2).

Discussion
As a serious public health and social problem worldwide,
DR-TB and its effective prevention and control has
become a hot issue. While there are wide areas of devel-
opment in the treatment of DR-TB (drug therapy, immu-
notherapy, gene therapy, etc), it is not an easy problem to
overcome. Therefore, prevention and control measures
should be taken for DR-TB. It is crucial to explore the
risk factors of DR-TB, especially the ecological factors.

Nonetheless, at present, there has been no specialized
research published to explore the ecological factors in
DR-TB. In this study, we conducted such a study using
anti-tuberculosis drug resistance data from the WHO/
UNION Global Project and the collected ecological fac-
tors data. An ecological study often lacks the ability to
control potential confounding factors, and ecological fal-
lacy is inevitable. Therefore, we selected all the anti-
tuberculosis drug resistance countries or regions as study
samples, and implemented strict quality control measures
(including risk factor variable determination and collec-
tion, data sorting and analysis, etc.) to improve the
research quality as far as possible.
Previous studies, such as researches that explored the

ecological factors of TB [4,5,39-44], were all based on
data distribution to construct a linear regression model,
a Poisson regression model or a logistic regression
model directly to estimate the relationship between fac-
tors and TB incidence rate, without considering the
internal relevance and potential structure of the factors.
With the unit of anti-tuberculosis drug resistance moni-
toring countries or regions, we explored the relationship
between ecological factors (TB epidemic, DOTS effect,
health expenditure, climatic geography, etc.) and the
level of DR-TB globally. In order to fully use the data
information and reveal the inner characteristics of risk
factors comprehensively and thoroughly, EFA was used
to find the latent synthetic risk factors, and then PLS
path modeling was constructed to show the complex
ecologic causal relationship between the level of DR-TB
and the latent synthetic risk factors. Finally, six latent

Table 5 Parameter estimates of the OLS regression model

Variable DF Parameter Estimate Standard Error t Value Pr > |t|

Intercept 1 -0.04735 0.04701 -1.01 0.3150

TB Epidemic 1 0.13681 0.08082 1.69 0.0920

Health Service 1 0.01824 0.07159 0.25 0.7991

Health Expenditure 1 -0.18724 0.07877 -2.38 0.0184

DOTS Effect 1 0.19963 0.06700 2.98 0.0032

Humidity 1 -0.36607 0.05559 -6.58 <.0001

Temperature 1 -0.21369 0.05542 -3.86 0.0002

R2 = 0.353, adjusted R2 = 0.335, AICc = 470.952.

Table 6 Parameter estimates of the GWR model

Parameter Minimum 1st Quartile Median 3rd Quartile Maximum

Constant -0.41328 -0.19868 -0.05409 0.14986 0.54743

TB Epidemic -0.08524 0.02247 0.13649 0.26689 0.47369

Health service -0.2734 0.00381 0.05076 0.15266 0.28677

Health Expenditure -0.87021 -0.52551 -0.28754 -0.11999 0.05633

DOTS Effect -1.14011 -0.01533 0.09909 0.14826 0.25874

Humidity -0.88509 -0.51084 -0.3335 -0.2001 -0.00262

Temperature -0.88254 -0.42387 -0.28993 -0.13151 0.22495

R2 = 0.641, adjusted R2 = 0.592, AICc = 394.851.
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factors ("TB Epidemic”, “Health Service”, “Health Expen-
diture”, “DOTS Effect”, “Humidity” and “Temperature”)
were extracted, and “DR-TB” was used to reflect the
level of the DR-TB rate. We found that except the

“Health Service” factor, other factors had a major impact
on “DR-TB”.
According to the predicated values of “DR-TB” and

the latent synthetic risk factors by the Kriging method,

Figure 3 Worldwide geographic clines of six latent synthetic risk factor coefficients. a1-f1: Distribution of “TB Epidemic”, “Health Service”,
“Health Expenditure”, “DOTS Effect”, “Humidity” and “Temperature” factor coefficients, respectively, derived from the GWR model. a2-f2: P-value
distribution of six synthetic latent factor coefficients derived from the GWR model.
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the GWR model was constructed to analyze the local
relationship between latent synthetic risk factors and
“DR-TB”. The parameters of the GWR model in differ-
ent regions reflected the influence of the degree and
direction of association of each latent synthetic factor to
“DR-TB”. The contour map of the regression coeffi-
cients in the GWR model showed that it had significant
spatial variability, which demonstrated that the effect of
latent synthetic risk factors on the level of DR-TB was
different in different regions. The results suggested that
local control and prevention strategies and monitoring
schemes should be formulated according to the spatial
characteristics of the latent synthetic risk factors and the
local association with drug-resistance rates, instead of
roughly establishing global strategies and policies based
only on the results of drug-resistance monitoring.
The GWR model is an expansion of traditional regres-

sion analysis, which allows the parameters to vary with
changes in spatial location. Unlike traditional methods, the
GWR model can adjust the spatial heterogeneity by chan-
ging the sample location of spatial data, and then estimate
the local parameter to reflect the variance of the factor
contribution in different areas, hence its regression results
are much more reasonable [45]. In the present study, the
relationships between “DR-TB” and latent synthetic risk
factors showed spatial variability, thus the GWR model
was chosen for local estimation. The GWR results showed
that the signs of parameter estimates are not all the same
as those in the OLS regression model. Also the average
adjusted R2 (0.592) of the GWR model was larger than the
R2 (0.335) of the OLS model, which reflected the spatial
variability of DR-TB. Meanwhile, the AICc (394.851) of
the GWR model was smaller than that of the OLS model
(470.952), which also demonstrated that the fit of the
GWR model was better than that of the OLS model.

Conclusions
This study found that GWR (local) showed a stronger
relationship between latent synthetic risk factors and the
DR-TB latent factor than OLS (global) regression, and
established the “non-stationary” nature of the local rela-
tionship, i.e., the influence of the latent synthetic risk
factors on DR-TB presented spatial variability. Thus,
monitoring planning and prevention and control strate-
gies for DR-TB should be formulated according to the
spatial characteristics of the latent synthetic risk factors
and the local relationship between “DR-TB” and the
latent synthetic risk factors.
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