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Abstract

Background: Many sub-Saharan countries are confronted with persistently high levels of infant mortality because
of the impact of a range of biological and social determinants. In particular, infant mortality has increased in sub-
Saharan Africa in recent decades due to the HIV/AIDS epidemic. The geographic distribution of health problems
and their relationship to potential risk factors can be invaluable for cost effective intervention planning. The
objective of this paper is to determine and map the spatial nature of infant mortality in South Africa at a sub
district level in order to inform policy intervention. In particular, the paper identifies and maps high risk clusters of
infant mortality, as well as examines the impact of a range of determinants on infant mortality. A Bayesian
approach is used to quantify the spatial risk of infant mortality, as well as significant associations (given spatial
correlation between neighbouring areas) between infant mortality and a range of determinants. The most
attributable determinants in each sub-district are calculated based on a combination of prevalence and model risk
factor coefficient estimates. This integrated small area approach can be adapted and applied in other high burden
settings to assist intervention planning and targeting.

Results: Infant mortality remains high in South Africa with seemingly little reduction since previous estimates in
the early 2000’s. Results showed marked geographical differences in infant mortality risk between provinces as well
as within provinces as well as significantly higher risk in specific sub-districts and provinces. A number of
determinants were found to have a significant adverse influence on infant mortality at the sub-district level.
Following multivariable adjustment increasing maternal mortality, antenatal HIV prevalence, previous sibling
mortality and male infant gender remained significantly associated with increased infant mortality risk. Of these
antenatal HIV sero-prevalence, previous sibling mortality and maternal mortality were found to be the most
attributable respectively.

Conclusions: This study demonstrates the usefulness of advanced spatial analysis to both quantify excess infant
mortality risk at the lowest administrative unit, as well as the use of Bayesian modelling to quantify determinant
significance given spatial correlation. The “novel” integration of determinant prevalence at the sub-district and
coefficient estimates to estimate attributable fractions further elucidates the “high impact” factors in particular areas
and has considerable potential to be applied in other locations. The usefulness of the paper, therefore, not only
suggests where to intervene geographically, but also what specific interventions policy makers should prioritize in
order to reduce the infant mortality burden in specific administration areas.

Keywords: infant mortality, HIV, spatial analysis, social determinants, attributable fractions, policy implications, Baye-
sian analysis
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Background
Despite the Millennium Development Project’s aims to
reduce infant and child mortality, this problem remains
a challenge in sub-Saharan Africa. The infant mortality
rate (IMR), moreover, has worsened in many of these
countries reversing the gains achieved in the previous
century [1][2][3][4][5]. In 1990, for example, there was a
20-fold difference (180 versus 9 deaths per 1000 live
births) in IMR between sub-Saharan African and indus-
trialized countries. By 2000, this difference had
increased to 29-fold with IMR’s of 175 and 6 per 1000
respectively [6] largely as a result of the prevalence of
HIV/AIDS in sub-Saharan Africa [7]. Southern Africa,
in particular, has been significantly compromised by the
HIV/AIDS epidemic both directly through vertical HIV
transmission, and indirectly, through maternal death
and the absence of a primary care giver [8][9].
Material deprivation is widespread in many sub-

Saharan countries. In recent times, the combined effect
of material deprivation and HIV/AIDS has negatively
impacted on infant mortality. The interactive relationship
between HIV/AIDS and material deprivation is illustrated
by a combination of increased healthcare costs and a
reduced ability to generate income [10]. Furthermore, a
wide range of socio-economic variables influence mate-
rial deprivation including ethnicity, female literacy,
maternal mortality and household size. In addition, a lack
of social support, unemployment, poor nutrition, access
to water, transport and the distance to the nearest health-
care facility are aggravating factors [1][3][9][11][12][13]
[14][15]. An important variable that measures relative
material deprivation in terms of income inequality,
namely, the Gini-Coefficient, has also been established as
a key determinant of infant mortality [16].
Reducing infant mortality requires a range of invest-

ments that include increased health sector spending,
improving health systems functioning, and “through
socioeconomic progress to improve nutrition, housing,
hygiene, education, gender equality, and human rights”
[14]. However which investment to make, given resource
constraints is not clear. Not only is it not clear which
interventions to prioritise, but also whom or where to
target the interventions. Reliable statistics on mortality,
its causes and trends are in high demand for assessing
the global and regional health situation. Reliable mortal-
ity data are a prerequisite for planning health interven-
tions, yet such data are often not available in developing
countries, particularly in sub-Saharan Africa (SSA). In
the absence of such data, alternate data sources need to
be utilized to address these gaps and inform progress
towards the Millennium Development Goals.
The geographic distribution of health problems such

as mortality is also not uniformly distributed and aggre-
gated poverty and health statistics do often not describe

the variations in mortality experienced within regions of
countries [17][18][19][20]. The IMR, in particular, can
vary significantly between geographic locations, as well
as across the urban rural divide [21][22]. In South
Africa, the incidence of infant mortality differs widely
across race groups and provinces [23]. The differential
IMR rate is also reflected in unequal socioeconomic sta-
tus (SES) and access to services and facilities that vary
widely across the nine provinces [24].
Population- wide interventions are costly to imple-

ment and it is often necessary to target high risk areas
[25]. Investigating the distribution and determinants of
adverse health outcomes, therefore, can usefully inform
more focused and cost effective interventions. In parti-
cular, the targeting of high risk health clusters or sub-
districts can inform policy planning [1]. Spatial analysis
is an important tool in epidemiology to detect possible
sources of heterogeneity, spatial incidence or patterns
[26]. The potential of spatial analysis is reinforced by
the increasing availability of geographically indexed
population level data such as mortality, as well as
advances in computation methods using GIS systems.
Spatial analysis, moreover, can be applied to health data
in small area studies [27], as well as to imperfect data,
often the case in Africa, through the use of space and
time geo-statistics [28].
The objective of this paper is to determine and map

the spatial nature of infant mortality in South Africa at
a sub district level in order to identify high risk areas
and inform policy interventions. In particular, we iden-
tify and map high risk clusters of infant mortality, as
well as examine the impact of a range of social determi-
nants of infant mortality including maternal health, pro-
vincial antenatal HIV sero-prevalence, socio-economic
inequality and access to services and facilities at the
sub-district level.
In South Africa, little research has focused on spatial

differences in mortality at the municipal/sub district
level. The identification, targeting and quantification of
factors contributing to sub-district level mortality can
contribute to more focused public health interventions
in South Africa, as well as many other developing coun-
tries confronted with similar problems [29]. This paper
makes a primary contribution in the health domain by
developing a more integrated argument for the determi-
nants of infant mortality in a developing country context
[3][4][5]. The paper also makes a contribution by using
Bayesian spatial modelling to determine infant mortality
at the sub-district or small area level thus extending the
conclusions of advanced spatial modelling for public
health intervention [30] to interface with service delivery
and other indicators. Finally, the paper contributes to
the public sector domain by suggesting the use of an
infant mortality indicator which can be used as a proxy
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for the delivery of basic services that influence material
deprivation.

Results
The infant mortality proportions by district (with 95%
confidence intervals), illustrated in Figure 1, indicate
which districts (n = 53) were significantly above or
below the national average (namely a standardized
mortality ratio (SMR) of one) using difference tests. It
is evident that Kwazulu Natal generally remains the
province with the highest infant mortality burden, with
3 of its 11 districts having significantly elevated infant
mortality. It is also evident that distinct pockets of
excess infant mortality were found in other provinces
bordering Kwazulu Natal such as Mpumalanga, Free
State and Gauteng. Conversely, all the districts of the
Western Cape had significantly lower infant mortality
proportions when compared to the overall incidence.
We further tried to identify districts which were not
significantly different from an SMR of one but that
were not equivalent to one, using an equivalency

testing approach, as those districts close to a reference
value (but not equivalent) are also critical to policy
and planning. Those which were not significantly dif-
ferent from one on the positive side (i.e. more than
expected infant deaths) but that were not significantly
equivalent to one are further highlighted using upward
triangles for point estimates in Figure 1. Many of these
‘close but not equivalent’ sub-districts were identified
in Kwazulu Natal (4 districts), already identified as a
high risk province based on the difference tests (dis-
cussed above).
Figure 2 depicts the smoothed standardised mortality

ratio (SMR) for infant mortality at the sub-district level
(n = 248) using a Bayesian zero-inflated spatial Poisson
model. Sub-districts with a SMR significantly above 1
(based on exceedance probabilities from the Bayesian
kriging model) are highlighted with asterisk. Areas at
lower risk were generally concentrated in sub-districts
towards the Western Cape. A band of significant excess
infant mortality can be observed stretching across Kwa-
zulu Natal, Mpumalanga and Gauteng with pockets of
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Figure 1 District level infant mortality rates with 95% confidence intervals and significant high or low districts, South Africa, 2007.
Dashed line represents the national average i.e. SMR = 1; upward triangles represent sub-districts which are not significantly different from SMR
= 1 but that are not equivalent based on an equivalency test using a critical SMR range of 0.8-1.25; ISRDP = rural development district; Metro =
metropolitan; province abbreviations: EC (Eastern Cape), FS (Free State), GT (Gauteng), KZ (Kwa-Zulu Natal), LI (Limpopo), MPU (Mpumalanga), NW
(North West), NC (Northern Cape), WC (Western Cape).
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significant excess mortality in Eastern Cape, Northern
Mpumalanga and south-eastern Limpopo (Figure 2).
Indicators were restructured so that increasing level

indicates worsening condition. Significant univariate
associations between indicators and infant mortality are
shown in Table 1. In order to test the multivariable
association between infant mortality and its predictors
at the sub-district level, various modelling approaches
were tested and an augmented Bayesian zero-inflated
spatial model proved best. Following multivariable
adjustment, maternal mortality had the highest signifi-
cant adjusted measure of association with infant mortal-
ity (IRR = 1.034, p = 0.025). Thus for one unit increase
in the proportion scale of maternal mortality we expect
a 3.4% increase in infant mortality risk. Antenatal HIV
sero-prevalence in 2007 had the next strongest and sig-
nificant association with infant mortality, followed by
increasing ratio of male to female infants (Table 1). Pre-
viously sibling mortality was marginally significant fol-
lowing multivariable adjustment (IRR = 1.032, p =
0.088). This is however significantly correlated with
antenatal HIV sero-prevalence (r = 0.3, p < 0.05) and

may partly explain its loss of significance in the final
multivariable model. Following multivariate adjustment
increasing income inequality and lack of combined ser-
vice delivery (lack of water, sanitation, refuse and female
schooling) were no longer significantly associated with
infant mortality.
Significant high-high spatial autocorrelation (Moran’s I)

of low service delivery ( for example no refuse disposal, no
water service, living more than one kilometre from the
nearest water supply), as well as maternal and previous
sibling mortality is observed (mostly) in Kwazulu Natal
and also in the bordering sub-districts of northern Eastern
Cape. High-high spatial autocorrelation of mother death
in Northern Mpumalanga and Limpopo is also seen.
High-high spatial autocorrelation of households with no
income was observed in the North West and Eastern
Cape. Conversely, for most indicators a concentration of
low-low spatial association can be seen in the Western
Cape which had the lowest infant mortality risk.
We also used our final multivariable ZIP model to

predict the number of infant deaths for those sub-dis-
tricts with zero infant deaths sampled (n = 51) based on
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their indicator profile and estimated a total of 2133
potentially missed infant deaths in this community sur-
vey. This potentially revises the total IMR for 2007 from
59.3 to 61.5 per 1000 infant population.
Furthermore, we combined the degree of association of

each predictor with its sub-district level prevalence (attri-
butable fraction) in high infant mortality sub-districts (n =
98) to assess the relative importance of the predictors in a
given sub-district. In other words a predictor may have a
strong association with infant mortality but have a low
sub-district level prevalence and thus not adequately
explain the burden of infant mortality in that sub-district
from a public health or policy point of view. Figure 3 dis-
plays the most attributable predictors (highest impact) in
the high risk infant mortality sub-districts. We found that
antenatal HIV sero-prevalence in 2007 appears to have the
largest attributable impact (98 of 98 high risk sub-dis-
tricts). At a secondary level (attributable risk) the propor-
tion of lastborn that died appears to have had the highest
impact (86/98) followed by proportion of maternal deaths
(12/98). For the tertiary attributable estimates maternal
mortality was the most attributable indicator (86/94) fol-
lowed by previous sibling mortality (12/94). Finally, pri-
mary level attributes (HIV sero-prevalence) accounted for
34% of infant mortality on average in the high risk sub-dis-
tricts, followed by 14% for secondary (previous sibling
mortality; maternal mortality) and 4% for tertiary (mater-
nal mortality; previous sibling mortality).

Discussion
The results confirm that infant mortality remains a pro-
blem in South Africa and that it has been escalated by

the impact of the HIV/AIDS epidemic, confirming simi-
lar findings in sub-Saharan Africa that are contrary to
improving trends in most other parts of the world [3][5]
[31][32]. Previous research by Nannan et al [33] showed
a rise in infant mortality in South Africa from 39 per
1000 in 1992 to 56 per 1000 in 1997. Garrib et al. [8]
also estimated the infant mortality ratio over the period
2000 to 2002 at 59.6 per 1000 live births. The HIV epi-
demic has had a pronounced impact on infant mortality
in South Africa because it effects infant survival directly
(mother to child transmission), as well as indirectly as a
result of maternal (and paternal) mortality and the loss
of working adults [9][10][34]. The results estimate an
infant mortality rate of 59 per 1000 in 2007 thus con-
firming that the levels observed in the late 1990’s and
early 2000’s have seemingly not reduced by 2007. This
is despite national anti-retroviral therapy (ART) rollout
starting in 2004 which should presumably improve both
maternal survival and strengthen prevention of mother-
to-child transmission programmes (PMTCT) using
highly active anti-retroviral therapy (HAART). Further-
more, the results show that the risk of infant mortality
is not uniformly distributed and a band of significant
excess infant mortality is observed stretching from the
Eastern Cape, through Kwazulu Natal and north into
parts of Mpumalanga and Gauteng. In particular, infant
mortality in rural areas was high and lower mortality
was observed in the 6 metropolitans (district level
equivalent area). Conversely significantly lower infant
mortality was observed in most of the Western Cape
thus confirming the findings of earlier studies in South
Africa [23].

Table 1 Univariate and Bayesian multivariable infant mortality risk factor analysis, South Africa, 2007

Indicator Univariate analysis Multivariable analysis

Zero-inflated Poisson
model

Zero-inflated convolution CAR i spatial
Poisson model

IRR (95% CI) p-value IRR (95% BCI ii) p-value

Proportion of previous siblings that have died 1.135 (1.13,1.141) <0.001 1.032 (0.989,1.081) 0.088

Proportion of mothers that have died 1.108 (1.104,1.113) <0.001 1.034 (1,1.073) 0.025

HIV antenatal sero-prevalence iii in 2007 1.035 (1.034,1.037) <0.001 1.017 (1,1.037) 0.022

Ratio of male to female infants 1.042 (1.041,1.043) <0.001 1.021 (1.013,1.029) <0.001

Gini-coefficient for income inequality 1.017 (1.016,1.019) <0.001 1.003 (0.994,1.014) 0.266

Proportion of females with no schooling 1.031 (1.03,1.032) <0.001 v —

Poor basic service delivery iv 1.009 (1.009,1.009) <0.001 v —

Combined lack of female schooling and basic service delivery indicators 1.012 (1.011,1.012) <0.001 1.003 (0.993,1.002) 0.912

Constant (b0) — — -1.198 (-1.664,-0.727) —

s2ε (unstructured sub-district heterogeneity) — — 0.446 (0.352,0.552) —

s2� (spatially structured heterogeneity) — — 0.015 (0,0.142) —

i: Incorporated an unstructured sub-district random effect and a structured normal CAR spatial random effect;ii: Bayesian credibility interval; iii: District level; iv:
includes lack of basic service (water, toilet and rubbish disposal) and increasing ratio of infants to clinics within the sub-district

v: in multivariable model we have combined lack of female schooling with poor basic service delivery as they are strongly correlated (r = 0.5633, p < 0.01)
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Contrary to other sub-Saharan countries, South Afri-
ca’s high infant mortality rate has occurred against a
backdrop of sustained economic growth between 1994
and early 2010. Economic growth (GDP), however, dif-
fers markedly across its nine provinces and the results
show high levels of income inequality (Gini-Coefficient)
thus confirming the earlier findings of Booysen et al.
[35]. As with other developing countries [17][18][20]
programs are more readily accessed by wealthier house-
holds. Poorer households are excluded because of com-
paratively higher direct and indirect costs to access
facilities [36], especially in an environment of rising

costs [37]. Furthermore, the development of the national
economy has, in most instances, been centred around
the major urban metropolis at the expense of rural
South Africa where 70 per cent of South Africa’s poor
live [38,39]. Rural South Africa, therefore, not only
experiences high levels of poverty and income inequal-
ity, but also less access to services and facilities. These
facilities include infrastructure, clinics, water and sanita-
tion that vary widely across the rural urban divide, as
well as across the nine provinces. The risk of infant
mortality, therefore, appears to be increased by a mate-
rial deprivation squeeze that combines income

Most attributable     Second most attributable 

Third most attributable 

Antenatal HIV seroprevalence   
Previous sibling outcome
Maternal outcome

Figure 3 Risk indicators with highest attributable fractions (impact) in significantly high risk infant mortality sub-districts, South
Africa, 2007.
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inequality on the one hand with the unequal distribution
of disease and other services. The results reflect the
findings in a number of other developing countries [12].
The results suggest a complex and highly correlated

array of determinants that influence infant mortality in
South Africa. As mentioned maternal death emerged as a
prominent risk factor for infant mortality in this study and
has been shown previously [9]. A higher proportion of
male than female infants within a given sub-district
remained a risk following multivariable adjustment. Expla-
nations for this gender difference in infant mortality are
dominated by biological factors [40] and form part of core
analytical frameworks for assessing infant survival [41].
The death of the previous sibling as a predictor of current
infant outcome has been shown previously [42,43] and
might suggest that the current infant would have had a
survival disadvantage given certain unfavourable endogen-
ous and exogenous factors (i.e. high risk women, families
or households) faced by the previous sibling. Women who
have experienced prior child deaths should be given spe-
cial care in prenatal clinics and these sub-districts should
be targeted [43]. Given these complexities, however, the
direct and indirect impacts of HIV are evident and
improving prevention of vertical transmission of HIV, as
well as ensuring maternal survival in identified high risk
sub-districts, is key to reducing infant mortality in these
hotspots. Strategies include the prevention of HIV infec-
tion, expanded antenatal testing, prevention of mother-to-
child transmission, improved access to ART and correct
breastfeeding practices [9]. Increasing proportion of
females within the sub-district with no schooling was
found to be a risk based on the univariate analysis. This
conforms with similar findings between sub-district educa-
tion attainment (in this case female) and infant (and child)
survival [44,45], as well as underlining the need for multi-
ple parallel interventions. In this regard, education has a
direct impact on health related behaviour and choices [4]
and educated households are more likely to access prena-
tal care and health services [46], as well as adopt better
hygiene practices [45,47]. Of those with no schooling, the
vast majority were African that had a significantly higher
proportion of mothers and fathers that were dead. A lack
of schooling was also significantly linked to the higher fer-
tility (parity) or number of children, as well as a higher
unemployment proportion. In parallel to HIV programme,
interventions should be accompanied by programs to rel-
ive material deprivation because a lack of basic services
(like power, water and refuse removal), improve education
and potentially poor access to health care was found to be
significantly linked to the increased risk of infant mortality
[3,5,23].
The results thus confirm the complex and relative

ecological contribution of various social and biological
determinants on infant mortality.

Conclusions
This paper has demonstrated the potential of advanced
spatial techniques and Bayesian modelling to identify
administrative areas at sub-district level with signifi-
cantly higher infant mortality than the national norm.
The paper highlights the multitude of key social and
biological determinants of infant mortality using a mul-
tivariable Bayesian modelling approach to adjust for
inherent correlation between neighbouring sub-districts.
Combining determinant prevalence at the sub-district
level with multivariable risk factor estimates has not
been widely used to identify the most attributable fac-
tors. This more integrated estimate will assist policy
makers in countries with high infant and child mortality
burden.
The usefulness of these results is that they investigate

a more complex interplay of variables that explains why,
even in areas where there is economic growth, infant
mortality can still be an intractable problem because of
high levels of income inequality. The use of Bayesian
hierarchical modelling also best deals with the problems
posed by small area studies such as absent data as dis-
cussed earlier. The usefulness of these results is further
enhanced by the use of advanced GIS mapping of infant
mortality risk and the associated predictor distributions
at the smallest administrative unit. These spatial maps
are able to pinpoint areas within a country with higher
levels of mortality, as well as explain the most likely rea-
sons for this persistent problem based on attributable
fractions. This study underscores the need for explora-
tory and advanced approaches to assess within-country
geographic patterns of all-cause infant mortality using
national sub-district level ecological data.
Addressing the infant mortality in South Africa

requires a multifaceted and targeted approach. The
results can be potentially useful to government planners
for policy intervention purposes within specific sub-dis-
tricts. What is also clear is that policy development will
need to coordinate a wide range of government depart-
ments in order to reduce infant mortality. These depart-
ments or sectors include planning and coordination,
health, education, finance, public works and industry
because of the wide range of social determinants. Finally,
the results are useful because infant mortality and its
social determinants can be a useful proxy to monitor the
efficiency of service delivery at sub-district level.
This study is limited by the data that were included in

the community survey. Thus, variables not included may
have a significant impact on our model. The consistency
of our findings with international trends would suggest
that our model is reliable and based on the same kind
of data. Given the ecological (aggregated) nature of the
data caution should therefore be taken with interpreta-
tion of the direct causal inferences found in our
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multivariable analysis. The data were extracted down to
the smallest administrative areal unit available (namely
local municipality or sub-district) which we believe
reduces the ecological effect in part. Sampling error may
also affect our findings, however, we did use the weights
provided by Statistics South Africa which would in part
compensate for this potential bias.
Current government commitments in South Africa

suggest increasing and improving HIV services, as well
as improved access to education and service delivery.
Given these changes, as well as the limitations of our
paper, we propose that this study is replicated using
future Statistics South Africa data, as well as in other
African settings.

Methods
The study area
South Africa is administratively divided into nine pro-
vinces responsible for health service delivery (Figure 4),
and further divided into 53 districts [47 district munici-
palities and 6 metropolitan districts. These districts are
then disaggregated into 248 local municipalities. Service
delivery for water and sanitation is a municipal function
in most instances.
The nine provinces vary in a number of ways. The

Western Cape has the highest human development
index (HDI) 1 followed by Gauteng [48], while the ten
most deprived districts in 2007/2008 were located in
Kwazulu Natal (6), Eastern Cape (3) and Limpopo (1)
that are all classified as rural development districts [49].
Conversely all the districts within the Western Cape
were classified as the least deprived as were three of the
six metros, namely the City of Cape Town and the Nel-
son Mandela metro (Eastern Cape) and the City of
Johannesburg (Gauteng).

The data
The data were drawn from the community survey run
by Statistics South Africa in 2007. These data included
information regarding demographic indicators (fertility,
mortality and migration) and socio-economic data that
included poverty indicators, access to facilities and ser-
vices and levels of unemployment [50]. The 2007 Com-
munity Survey randomly sampled enumeration areas
(EA) and then dwelling units within each EA. An enu-
meration area is defined as the smallest geographical
unit (piece of land) into which the country is divided for
enumeration purposes. Enumeration areas contain
between 100 to 250 households. The survey indicted
80,787 EA’s countrywide and 1,321 were excluded as
they were designated as institutions or recreational
areas. The EA’s within each municipality were ordered
by land use and human settlement type and selection
was done using systematic random sampling. The

second level of the sampling frame consisted of re-list-
ing the dwelling units (which could potentially contain
one or more households) within the selected EA’s. Ran-
dom selection of dwelling units was based on a fixed
proportion of 10% of the total listed dwellings in an EA.
The survey sample covered 274 348 dwelling units
across all the provinces and attained a response rate of
93.9% [51]. In this regard, the recalculation of person
weights to address sampling errors was applied to pro-
vide more credible estimates of the population at
national and provincial levels. Data based on these
weights were used in the analysis in this paper.
The South African Statistics Council [52] found the

reported demographic data (fertility and mortality pro-
portions) to be entirely plausible when compared to
other censuses. Certain limitations and potential errors
were identified by Statistics SA and the South African
Statistical Council when reviewing the survey. The fol-
lowing systematic errors were observed in the data:
-Underestimate of men relative to women;
-Underestimate of children younger than 10 years;
-Excess of people aged 10-24 in Western Cape and

Gauteng; and
-Deficit of women aged 20-34 in Free State, KwaZulu-

Natal and Limpopo.
The following aggregated (ecological) sub-district level

data were extracted (Nesstar) from the primary Com-
munity Survey 2007 database: infant population and
deaths; maternal (deaths, fertility, and if a previous sib-
ling(s) to the current infant had died); paternal (deaths);
sub-district education level, employment status and
household income; household services (access to water,
water type and distance to nearest water source; house-
hold toilet facilities; household refuse removal). We also
calculated Gini-coefficient, a commonly used measure of
inequality, for each of the sub-districts based on the dis-
persion of annual household income within that sub-dis-
trict. Additional data regarding district level antenatal
HIV sero-prevalence in 2007 were extracted from the
District Health Barometer for 2007/2008 [49]. Other
data sources: additional district level data on HIV
antenatal seroprevalence and the number of clinics in
each distract are taken from District Health Barometer
for 2007/2008 [49].
Finally, a national shape file containing all 248 sub-

districts was imported into MapInfo Professional 9.5 to
create the necessary areal and geospatial data. Centroids
of each sub-district, as well as an adjacency matrix of all
neighbouring sub-district combinations were extracted
using functions within this software package. These cen-
troids and the adjacency matrix were needed for the
various spatial and multivariable analyses (autocorrela-
tion, clustering and Bayesian conditional autoregressive
approaches) described in detail below.
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District infant mortality proportions
The infant mortality proportions were calculated for
each district by dividing the observed number of deaths
by the total population in district i (i = 1,...,52) based on
the weighted 2007 community survey. To identify dis-
tricts in which the mortality proportion was significantly
above average, we constructed the exact 95% confidence
intervals for each rate using the Poisson distribution of
the observed number of deaths [53]. District mortality
was considered significantly above average for that year
if the overall proportion for the given year was below
the lower limit (a = 0.025) of the mortality proportion
for that district [54]. This approach does not allow con-
clusions for districts close to the reference value (SMR
= 1) which are equally crucial to policy makers. The
combined approach of difference and equivalence testing
has recently emerged as a way to improve the interpret-
ability of areal spatial data [55]. Thus for districts which
were not significantly different from the reference value
but that were greater than 1 (SMR>1) we also

performed equivalency testing using a typically used cri-
tical value of Δ = 0.2 [56], which leads to an equivalence
range of (0.8, 1.25). We used the twice-the-smaller-tail
(TST) method [57] which is an computation of the
equivalence test statistic for discrete distributions (i.e.
Poisson in this case).

Spatial analysis
Various spatial analysis techniques and models were
employed in this study to compare and identify signifi-
cant infant mortality “hotspots”, namely Moran’s I spa-
tial autocorrelation coefficient [58], Kulldorff spatial
scan statistic [59], a standard Bayesian convolution con-
ditional autoregressive approach [60] and lastly a Baye-
sian augmented zero-inflated Poisson approach [61,62].
The first three each have inherent strengths and weak-
nesses which are extensively detailed in the literature.
Further detail regarding the Bayesian approaches are
provided in this paper. Given the similarity of the out-
put for infant mortality risk from these various

Figure 4 Map of South Africa, with provinces and neighbouring countries.
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approaches, we only present results for the final Baye-
sian approach (see Appendix 1 for details of model
assessment). We did however use Moran’s I to test both
for significance of values within a sub-district as well as
a measure of the strength of clustering or dispersion of
the various indicator variables [63]. Exceedance prob-
abilities (i.e. smoothed standardised mortality ratio in
given area significantly greater than 1) from the Baye-
sian spatial modelling approach were used to identify
sub-districts with significant excess infant mortality risk
in the attributable fraction analysis. This is further
detailed in Appendix 1.

Bayesian spatial modelling of sub-district infant mortality
In order to address the problems associated with small
area analysis and spatial correlation, we finally used
Bayesian hierarchical modelling. Small area studies have
better interpretability than larger scale studies and are
less susceptible to ecological fallacy or bias. However
the drawbacks include data that may be very sparse with
a large number of event free (zero count) area and over-
dispersion of the data [26]. Correlation or interdepen-
dence of observations in neighbouring or adjoining
areas also poses a problem. Objects (in this case sub-dis-
tricts) in close proximity are often more alike. Conse-
quently, it is important to include the effects of spatial
proximity when performing statistical inference on such
processes. The standard error of the covariates, more-
over, is underestimated if this spatial correlation is not
taken into account, thereby overestimating the signifi-
cance of the risk factors. The estimates of the outcomes,
such as mortality, are also incorrect at the locations
where data are missing. Bayesian areal or geostatistical
models relax the assumption of independence and
assume that spatial correlation is a function of neigh-
bouring locations or distance between locations and also
allows prediction at unsampled locations [64]. Lastly,
measurement errors for both numerators and denomi-
nators also represent a problem associated with small
area studies [27]. Bayesian hierarchical models are the
most commonly used framework to address the pro-
blems posed by small area analysis [65]. Bayesian esti-
mators are also widely used in order to obtain reliable
estimates for the relative risk when there are sub-areas
with small populations and traditional estimates of rela-
tive risk lead to unreliable or unstable results [66].
With the development of Markov Chain Monte Carlo

(MCMC) methods and software such as OpenBUGS,
Bayesian approaches are being increasingly applied to
the analysis of many social and health problems in addi-
tion to disease mapping and modelling. Two different
Bayesian spatial model formulations were tested and
used in this study. These models were based on fitting
spatial Poisson models with two random-effects terms

that took the following into account: (1) sub-district
contiguity [spatial term); and (2) sub-district heterogene-
ity. We firstly used the Besag, York and Molliè [60] or
convolution conditional autoregressive (CAR) model
that is discussed in more technical detail in Appendix 1.
For the spatial risk map we used a formulation of the
above which included no covariates (only a constant and
the convolution conditional autoregressive terms).

Univariate and Bayesian multivariable risk factor analysis
To calculate expected outcomes (Ei), the overall infant
mortality for 2007 was multiplied by each sub-districts
infant population to give the expected number of infant
deaths. The following indicator variables were tested
against infant mortality: maternal mortality; previous
sibling(s) outcome; education, household income and
Gini-coefficient derived from income; household services
(access to water, household toilet facilities; household
refuse removal; ratio of infants to sub-district clinics).
In order to assess the relationship between infant

mortality and the various predictors, preliminary uni-
variate zero inflated Poisson regressions were run in
Stata 10.0 SE. Covariates significant at the 10% level
were then incorporated into the multivariable Bayesian
spatial model. Details of the multivariable model are
provided in Appendix 2.

Attributable fractions
We wanted to assess the degree to which sub-district
exposure to a particular variable (e.g. access to water
and sanitation) impacted on infant mortality. This could
provide an indication for policy makers about what
intervention(s) to prioritise. To do this we linked
together the risk estimates associated with the indicators
in the multivariable model with the actual prevalence of
exposure to those indicators within the various high risk
sub-districts identified through our spatial analysis. The
following standard formula for calculating an attributa-
ble fraction (AF) for each determinant based on its pre-
valence of exposure (pe) in a given sub district, as well
as the model coefficient (IRR) for that determinant was
used:
Finally, the analysis was carried out in STATA 10.0

SE, SaTScan and OpenBUGS. Maps were developed in
Stata 10.0 SE and MapInfo Professional 9.5.

Appendix 1: Bayesian Spatial Modelling
The Besag, York and Molliè [60] or convolution condi-
tional autoregressive (CAR) model is the most widely
used spatial Poisson model (for lattice or areal data) in
epidemiology [for example: [26]) and is formulated as
follows:

Oi ∼ Poisson(Eiλi)
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log(λi) = α + εi + ϕi

where li is the relative risk in area i, Oi is the number
of infant deaths in sub-district i, Ei are the expected
deaths, εi is the sub-district heterogeneity term and �i is
the conditional autoregressive (CAR) spatial term. The
spatially correlated random effect of the ith region (�i)
is based on the sum of the weighted neighbourhood
values. We used an adjacency matrix of common
boundaries of a given sub-district to model this spatial
association. The unstructured sub-district level random
effect was modelled as independent normal distribution
εi ~ N (0,s2

ε) with variance s2
ε. Besag et al argue that

this convolution model is more flexible than assuming a
CAR random effect only, since it allows the data to
decide how much of the residual disease risk is due to
spatially structured variation, and how much is unstruc-
tured over-dispersion [60]. Specifications for these para-
meters are given below in the risk factor analysis
section. The Besag, York and Molliè (BYM) model does
have certain limitations. It is common to find excess
zeros in many count data greater than that expected by
a Poisson distribution. As a result the observed counts
do not follow a Poisson which can lead to inconsistent
estimates.
Secondly, we used a zero-inflated Poisson (ZIP) model

as the data displayed over dispersion and this modelling
allows for the inclusion of a large number of event free
areas [67,68]. These models are constructed as a mix-
ture of a Bernoulli and Poisson distribution and contain
a mixture point mass at zero and an untruncated count
distribution. We used an augmented ZIP model pro-
posed by Rodrigues [61] and Ghosh et al. [62]. It is for-
mulated as follows:

Oi ∼ Poisson(λi)

λi = Ii ∗ μi

log(μi) = log(Ei) + α + εi + ϕi

Ii ∼ Bernouli (p)

p ∼ beta (1, 1)

where I is the indicator to distinguish between excess
zero counts and non-excess zero or non-zero counts (I
= 0 for excess zero counts and I = 1 for non-zero
counts) and p is the probability of non-excess zero
counts [62]. The above two formulations were adopted
as the basic kriging models which include no covariates.
The Deviance Information Criterion (DIC) [69] was

used as the criterion for assessment the goodness of fit

and thus model selection. Based on the deviance infor-
mation criterion (DIC), the lower the DIC the better the
model fit, the zero-inflated spatial Poisson model per-
formed far better than the BYM spatial Poisson model.
Thus results for the ZIP model are presented both for
sub-district relative risk estimation and for the multi-
variable predictor modelling discussed below. The
Vuong test of a zero-inflated Poisson versus a standard
Poisson, run in Stata was also highly significant (p <
0.001) indicating that the zero-inflated model was better.
The results of the ZIP model were plotted on sub-dis-

trict maps that depicted smoothed standardised mortal-
ity ratio (SMR) estimates and the distribution of the
posterior probability that SMR<1 or >1. We used a
modified (more stringent) version of Richardson’s criter-
ion [70], in which probabilities in excess of 0.9 (Richard-
son’s standard criterion is 0.8) were deemed to be
significant.

Appendix 2: Multivariable risk factor analysis
The Bayesian multivariable augmented ZIP model were
simply an extension of the kriging model discussed
above with the inclusion of covariates:

log(μi) = log(Ei) + α + εi + ϕi + Xiβ

where Xi are the vector of covariates and b is the vec-
tor of regression coefficients. We used μi to estimate the
expected number of missed deaths for zero count sub-
districts.
The models were fitted using Markov chain Monte

Carlo simulation methods with non-informative priors
[65]. Vague Normal distributions were used for b, and
inverse gamma priors for the variance parameters. Coef-
ficients for indicators were exponentiated to represent
incidence risk ratios (IRR). Posterior distributions of
parameters were obtained using WinBUGS [71]. MCMC
simulation was applied to fit the models. A two-chain
Markov chain Monte Carlo simulation was used for
parameter estimation. Model convergence was assessed
by visual inspection of the series plot of each parameter,
and using Gelman-Rubin statistics [72]. The final pos-
terior samples obtained after convergence were run
until the Monte Carlo error for each parameter was less
than 5% of the sample standard deviation. We also
assessed convergence by running two separate chains.
The chains were then sampled until a sample size of
10,000 iterations had been attained.

Endnotes
1Composite measure of life expectancy, literacy, educa-
tion and standard of living and is used globally to rank
countries.
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