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Abstract

Background: There are many applications for spatial cluster detection and more detection methods have been
proposed in recent years. Most cluster detection methods are efficient in detecting circular (or circular-like) clusters,
but the methods which can detect irregular-shaped clusters usually require a lot of computing time.

Methods: We propose a new spatial detection algorithm for lattice data. The proposed method can be separated
into two stages: the first stage determines the significant cells with unusual occurrences (i.e., individual clustering) by
applying the Choynowski’s test, and the second stage determines if there are clusters based on the information of the
first stage by a binomial approximate method. We first use computer simulation to evaluate the performance of the
proposed method and compare it with the scan statistics. Furthermore, we take the Taiwan Cancer data in 2000 to
illustrate the detection results of the scan statistics and the proposed method.

Results: The simulation results support using the proposed method when the population sizes are large and the
study regions are irregular. However, in general, the scan statistics still have better power in detecting clusters,
especially when the population sizes are not large. For the analysis of cancer data, the scan statistics tend to spot
more clusters, and the clusters’ shapes are close to circular (or elliptic). On the other hand, the proposed methods only
find one cluster and cannot detect small-sized clusters.

Conclusions: In brief, the proposed methods can detect both circular and non-circular clusters well when the
significant cells are correctly detected by the Choynowski’s method. In addition, the binomial-based method can
handle the problem of multiple testing and save the computing time. On the other hand, both the circular and
elliptical scan statistics have good power in detecting clusters, but tend to detect more clusters and have lower
accuracy in detecting non-circular clusters.

Keywords: Spatial cluster detection method, Choynowski’s test, Binomial approximate method, Permutation test,
Spatial scan statistic

Background
Spatial patterns of diseases are of interest to both epidemi-
ologists and the general public because they often link
the incidence of disease with suspected agents or envi-
ronment factors. The intent of epidemiologists, then, is
usually to investigate whether the clusters occur in spe-
cific areas at certain times. A local cluster is defined as
the area with unusual higher or lower intensity caused by
some unobserved effects [1]. The definition of the local
cluster, further, are categorized into global clustering and
cluster detection methods [2].
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The spatial cluster detection methods are concerned
with the locations of the detected spatial clusters. Ini-
tially, the geographical analysis machine (GAM) [3] was
proposed to determine the spatial clusters via circular
windows. Based on this idea, the population size and the
number of cases were used to determine the significance
of clusters [1,4]. Most methods encounter the multiple
testing problem because their algorithms construct many
elective regions to be tested. The Kulldorff ’s spatial scan
statistic constructs a series of circular scan windows to
detect the most likely cluster and uses a Monte Carlo
approach to evaluate the significance of the located cluster
to avoid the multiple testing problem [5].
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In these methods, disease clusters are usually assumed
to be circular, and thus most spatial cluster detec-
tion methods use circular windows or expand circularly
to detect clusters. This assumption, however, does not
always reflect the actual pattern of diseases which do
not always radiate out in a circular form. Clusters may
appear along a river because water is a vehicle for the
transmission of some infectious diseases; for example, the
mosquito larval habitat mainly located around the river
and was a major cause of West Nile Virus [6]. Besides,
the clusters may be affected by the wind direction; for
example, the vibrio cholera dissemination was related to
this [7]. The circular windows look especially awkward
in Taiwan, since the Taiwan island and most of its coun-
ties are not rectangular or alike-circular. For example, the
clusters of epidemics in Taiwan were likely to take a sin-
uous or long shape, rather than a circular one [8,9]. Some
reports also mentioned that the cancer incidence rate and
the cancer mortality rate in Taiwan were generally higher
in the mountain and downstream river areas [10]. The
male bladder cancer mortality rates on average showed
that highermortality rates (i.e., hot spots) appear along the
downstream rivers, which is an irregularly long-shaped
cluster in Taiwan’s west plain from 1992 to 2001.
Several modifications of cluster detection have been

proposed to deal with irregularly shaped clusters. The
upper-level set scan statistic [11] collected the connected
components of all upper level sets to be the suspected
clusters. The flexible scan statistic (FleXScan) [12] also
proposed a connection algorithm to detect irregular clus-
ters. A minimum spanning tree algorithm [13] was devel-
oped to construct the possibly irregular-shaped clusters
and then to test them. The spatial scan statistic (SaTScan)
with elliptic version [14], and the trajectory method [15]
are also well-known methods for detecting clusters of
irregular shape. Many studies, meanwhile, compared the
power and accuracy of cluster detection methods [16-20].
These modified methods generally obtain better results
in detecting irregularly shaped clusters. However, most
of these methods also adopt the Monte Carlo testing
procedure, but this procedure of the irregular detection
methods will cost more computing time than that of cir-
cular methods. This seems inefficient in practice. Thus,
we propose a two-stage approach for identifying irregular
clusters without spending too much computing time.
Note that the proposed detection method is designed

to deal with non-circular clusters for aggregate data.
Unlike the previous modifications, however, the proposed
method transforms the data into a binary form and com-
putes the significance via an approximate binomial dis-
tribution. This computing procedure can save computing
time without using a Monte Carlo procedure. The devel-
oped two-stage approach can reduce the suspected clus-
ters and computation time for determining the locations

of clusters. In addition to the theoretical development,
we compare the proposed method with Kulldorff ’s circu-
lar and elliptical scan statistics (SaTScan), whose software
is presented on their web-sites and is open to access,
and explore whether the proposed method offers better
performance in detecting irregularly shaped clusters.

Methods
The goal of this study is to determine if there exists local
clusters, that is, regions with higher relative risks or dis-
ease incidence rates in the study area. In particular, the
focus is on developing a method which can identify irreg-
ularly shaped clusters. Also, the proposed method should
be suitable to deal with aggregate data or lattice data,
because most data in many countries are collected at the
county level or the township level and rarely appear in the
format of an individual level.
It should be noted that the neighborhood structure is

one of the key features of the lattice data, and that it usu-
ally contains important information of spatial data. The
proposed method will take the neighborhood informa-
tion into account for identifying clusters. Basically, we use
the adjacent neighborhood information to connect cells.
Based on the number of connected neighbors, a binomial-
based method can be embedded in the proposed method,
and it can significantly reduce the computing time. We
shall first define the notations to facilitate the description
of the proposed method.

Notations
Suppose the study area, S, is divided into kmutually exclu-
sive cells, such as counties, townships, or census tracts.
Let Si be the ith location, and Z(Si) be the interested
quantity, such as the disease incidence rate in lattice data.
Besides, if one attempts to study the disease incidence,
the observed number of cases and the number of at-risk
individuals (or at-risk population size), defined as Ti and
Ni, respectively, must be taken into account. Meanwhile,
let the total number of cases be T+ and total number of
individuals at risk be N+. Under the null hypothesis of no
clustering, the number of observed cases Ti in location
Si is assumed to be independent of those in other loca-
tions and to follow a Poisson distribution. Also, suppose
E(Ti) = λNi, i = 1, 2, . . . , k, where λ is the overall disease
incidence rate or the overall mortality rate, which can be
estimated as the overall mean of the observations,T+/N+.

The binomial approximate method
The proposed method can be separated into two stages:
the first stage determines the significant cells with unusual
occurrences (i.e., individual clustering), and the second
stage determines if there are clusters based on the infor-
mation supplied by the first stage. Because most existing
methods evaluate many elective regions (i.e., suspected
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clusters), they take lots of computing time to identify clus-
ters and may not be empirically efficient. The two-stage
design of the proposed method can reduce the num-
ber of elective clusters to be tested via approximating a
binomial-based probability of the connected regions.
This method does not require information regarding

cluster shapes or locations. Basically, it can be used to
detect single and multiple clusters. Also, since the pro-
posed approach is a two-stage design, we need to define
two significance levels (namely, α1 and α2) to determine
the clusters. Later, we shall give a more detailed discussion
about these two parameters.

Stage 1. Clustering test of individual cell (Choynowski’s
test)
The first stage of the proposedmethod is to check whether
there are cells containing unusually large numbers of
occurrences. This idea is adopted from the Choynowski’s
test [21] to test whether there are clustering patterns for
each lattice cell. The steps of testing are as follows:

1. Estimate the overall disease incidence rate or
mortality rate λ, by λ̂ = T+/N+.

2. Estimate the expected number of disease cases in cell
Si, ei, by êi = λ̂Ni.

3. Suppose Z(Si) denoted the number of disease cases
in cell Si to be a random variable. Under the null
hypothesis of no clustering, Z(Si) is assumed to
follow the Poisson distribution with the mean êi
defined above. We can then calculate the p-value of
cell Si of the first stage, i.e.,

p(1)
i = Pr(Z(Si) ≥ z(Si)) =

∑
Z(Si)≥z(Si)

exp(−êi)êZ(Si)
i

Z(Si)!
.

(1)

4. Record the cells with unusually high occurrences, i.e.,
with p-value smaller than a predetermined
significance level α1, to be the significant cells.

Stage 2. Cluster detection
In this stage, the significant cells identified in the first
stage are treated as the centers of suspected clusters and
then we determine if these suspected clusters are the real
clusters by evaluating the “connected probabilities”, which
will be defined later. Although we are interested in meth-
ods which can detect arbitrarily shaped clusters, we also
understand that circular clusters is a popular choice in
practice. Thus, we shall evaluate if the proposed method
is efficient in detecting circular clusters.
In addition, the neighborhood information (the default

setting is adjacent neighbors) is an important element
in the proposed algorithm. Suppose the significant cells
identified in the first stage are treated as “black” cells.

Then, the second stage is used to decide whether these
“black” cells can connect into real clusters. For each
“black” cell i, we check if its neighbors are also “black”,
and record the number of “black” neighbors as Bi1.
The number of “black” neighbors can be treated as
a random variable following a binomial distribution,
Bin(n = ℵi, p = α1), in which the parameter ‘ℵi’ is the
number of neighbors, and the success probability ‘α1’ is
equivalent to the significance level of the first stage. Then,
the probability of observing the number of “black” neigh-
bors of cell Si with the size bi1 under the null hypothesis
can be expressed as

Pr(Bi1 ≥ bi1|H0) = 1 − Pr(Bi1 ≤ (bi1 − 1)|H0)

= 1 −
bi1−1∑
Bi1=0

( ℵi
Bi1

)
α
Bi1
1 (1 − α1)

ℵi−Bi1 .

(2)

This is the first step to evaluate the probability of forming
a possible cluster from Si to its significant neighbors.
In the second step, the same algorithm as the first step is

applied to evaluate if the cluster with center Si can expand
to a wider region. To avoid the cells to be counted twice or
more, we only compute the new involved cells, that is, the
cells connected with the new significant neighbors which
are expanded from Si but not connected with other clus-
tered cells. Thus, we can define a new binomial random
variable Bi2, and then keep on computing the same pro-
cedures till no significant neighbors can be included as
the clustered cells. Under the null hypothesis that all cells
are independent, let Mi as the steps of forming the con-
necting region from Si, and the approximate probability of
observing such aMi step pattern is

p(2)
i =

mi∏
j=1

Pr(Bij ≥ bij|H0), (3)

where mi is the connected steps from Si. This probability
is defined as the “connected probability” of Si.
It should be noted that the number of diseases in a cell

follows a discrete distribution, and thus the p-value of
the critical point is not necessarily equal to α1, unless a
randomized test is adopted. Also, every cell has a differ-
ent critical point, and it would be inefficient to calculate
all critical points. Instead, we use the equation (3) to
approximate the true probability, although the approxi-
mate probability may be larger. Of course, the randomized
test can be used to confine the equation (3) such that its
significance level is exactly equal to α1.
After the first stage, all cells lost their original infor-

mation (e.g., population size) and are transformed into
binary data (black and white). Still, we can determine clus-
ters based on the binary data by introducing a “expanding
probability.” The expanding probability, similar to the type
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II error, is computed for diagnosing if there is any possi-
ble expansion, and it is the probability that no additional
neighbored cells of the cluster can be included in the clus-
ter given that they are parts of clusters (the alternative
hypothesis). This probability can also be computed via a
binomial distribution,

Pr(no neighbors are significant|H1) =
∏

Sj∈δi\Ci

Pr(Z(Sj)

< C(0)
j |H1),

(4)

where δi is the neighbor set of the cluster with the center
Si, Ci is the clustered cells of the cluster with the center
Si, Sj is an element of δi \ Ci, where ‘\’ is the set sub-
tracted operator, and C(0)

j is its critical point under the
null hypothesis H0. If the expanding probability is lower
than a predetermined value β , the algorithm stops and
reports the connected probability of the suspected clus-
ter with the center Si. Otherwise, the suspected cluster
will include the neighbor of the suspected cluster with
the lowest p-value, and we call this neighbor as a “junc-
tion” point. Then, we add the events and population of
the “junction” point into its neighbors, and treat them as
new elective clustered cells. The process of expanding the
clusters continues until reaching the stopping criterion.
The binomial approximate method also suffers the mul-

tiple testing problem. However, it can be adjusted by
the Bonferroni correction because all the suspected clus-
ters are independent under the null hypothesis. Thus, a
suspected cluster will be treated as real one when the con-
nected probability of it is smaller than α2/B, where B is the
number of total suspected clusters. It should be noted that
a single significant cell can not be treated as a suspected
cluster since it is impossible to compute the connected
probability.
We shall also give some comments about the proposed

approach. First, it is possible that more than two centers
form the same cluster, but the connected probabilities of
them are different. We would choose the one with the
highest connected probability. Second,a suspected clus-
ter with more neighbors will have a lower probability to
expand when there are no significant neighbors. Finally,
the binomial approximation would become less reliable
when there are more significant cells, since the indepen-
dent assumption between cells is less likely to be true.
We should introduce a permutation test as a possible
alternative to the binomial approximation.

Permutation test
If there are a lot of significant cells identified in the first
stage, the preceding approximation would be not feasi-
ble in practice. Then, we can use permutation test to find

the potential clusters. The idea is to check whether the
suspected cluster with the maximum connected “black”
number is significant or not. Although we only consider
the case of one cluster, the permutation test can easily be
modified to detect multiple clusters. The testing p-value
is obtained by the following procedures.
Suppose there are b significant cells out of n cells from

the first stage, and the maximum elective cluster con-
sists of M connected cells. The permutation test in the
following procedures is used to check if the number of
maximum connected significant region, M, is unusually
large.

1. Randomly permute b significant cells out of the total
n cells for G times (999 or 9,999). That is, suppose
the permutation data are (X1,X2, . . . ,Xk). Each Xi is
randomly assigned a binary value (0 or 1) and is
confined by

∑k
i=1 Xi = b. For each simulation run,

compute and record the maximum number of
connected cells as the largest cluster.

2. Suppose the maximum number of connected cells in
the gth permutation is Lg . Then, the permutation
p-value for testing under there are no clusters is
obtained as

Pr(Lb ≥ M) = #{Lg ≥ M}Gg=1 + 1
G + 1

If the p-value is smaller than or equal to the pre-decided
significance level α2, then we conclude that the suspected
cluster with M connected cells is indeed a cluster.

Example
Let the study region be a squared grid with 10 × 10
squares, and each cell follows a binomial distribution with
n = 10, 000 and p = 0.001 (approximate to a Poisson dis-
tribution with λ = 10) except the specified 2 × 2 cluster
located in the center of the study area with a higher expec-
tation λ = 20 (p = 0.002) (Figure 1). In this example,
the equal population case is used to simply illustrate the
computing procedure.
Following the procedures of stage 1, we first com-

pute the estimated overall disease incidence rate,
λ̂ = 103/10000 = 0.0103. After estimating all êi, we can
identify the significant cells via a predetermined α1 = 0.1.
As shown in Figure 1, there are 9 significant cells (the cells
of value 15 are just on the significant boundary at α = 0.1,
so we include them as significant cells), the “black” cells,
under the significant level α1 = 0.1. We see that the val-
ues {18, 22, 18, 18} in the central area are identified as a
significant cluster.
According to the procedures of stage 2, it needs two

steps to form the full connection. The probability of the
first step for expanding from one center to it’s significant
neighbors is 0.0523 (a center with 4 neighbors and 2 of
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Figure 1 The image plot for the counts of disease. The image plot
shows the counts of disease in each location. The ** represents the
p-value is smaller than 0.05, and the * represents that is smaller than
0.1 under the null hypothesis λ = 10.

them are significant at α = 0.1). Similarly, the probabil-
ity of the second step is 0.4095 (a clustered region with 5
new neighbors and 1 of them is significant at α = 0.1).
Thus, the “connected probability” is 0.0214 (there is only
one suspected cluster and the Bonferroni correction is
not required) and the expanding probability is very small
(<0.0001). Other than these values, no other significant
cells are connected, and thus we only have to determine if
the region with connected “**” cells is a cluster.
On the other hand, we execute the permutation test

for 999 runs, that is, randomly permute the 9 significant
cells out of 100 cells. In this permutation result, there is
only one run in which the cluster size is larger or equal
to 4. Thus, the p-value via the permutation test is 0.039.
Obviously, these two probabilities are not the same.
Similar to the binomial approximation, we found that

the single significant cell can not be a cluster using the
permutation test. Nonetheless, the proposed approach
still benefits from imposing fewer constraints. For exam-
ple, most detection methods require certain assumptions,
such as the size of cases, the range of distance, and the
shape of cluster. However, the proposed method relies
heavily on the testing results of first stage. This is the rea-
son why we proposed the expanding probability, which
makes the binomial approximate method more flexible
and can be used to detect non-circular clusters. In the
following subsection, we use computer simulation to eval-
uate the proposed method and compare it with the scan
statistics.

Evaluate the proposedmethods and the SaTScan
In this part, two computer simulation studies are con-
ducted to evaluate the proposed methods: one with
cells of equal population in a regular grid area and the
other with actual population (i.e., unequal population) in
Taiwan island. The detailed settings of these simulations
are mentioned later.
Usually, both the type-I error and the power are used

to evaluate a test. However, since the power provides
little information regarding the locations and sizes of
the clusters, we will use other measurements to evaluate
the accuracy of cluster detection. We shall first define the
terms of true positive, false positive, true negative, and
false negative. True positive (TP) cells are the true clus-
tered cells which are correctly detected as clusters; false
positive (FP) cells are the non-clustered cells which are
incorrectly detected as clusters; true negative (TN) cells
are the non-clustered cells which are not identified as
clusters; false negative (FN) cells are the true clustered
cells which are not identified as clusters. The sensitivity,
defined as TP/(TP+FN), is used to measure the propor-
tion of identified clustered cells among all true clustered
cells. In addition, we suggest using the error rate, which is
defined as

ER = FP + FN
TP + FP + FN

, (5)

to evaluate the false detection rate.

Simulation 1: equal population casewith 20by 20 regular grid
The first simulation study addresses a grid area with 20
by 20 squared cells in which each cell has identical at-
risk population (10,000). There are two scenarios: one is
a no-cluster case for checking the type-I error and the
other is an one-cluster case for evaluating the power and
the detection accuracy of the proposed methods. For the
no-cluster case, we assume that each cell has the same
incidence rate of disease. For the one-cluster case, the
cells within the cluster have a higher disease incidence
rate of disease than those outside the cluster. In addition,
the cluster is either circular-shaped, long-shaped, or Y-
shaped, and every cluster is of size 9, as shown in the left
panel of Figure 2.

No-cluster model
The goal in the no-cluster case is to check if the proposed
method can achieve the predetermined significance level.
Both the binomial approximate method and the permu-
tation test will be evaluated. Let two significance levels
α1 and α2 in stage 1 and stage 2 be 0.01, 0.05, or 0.10.
The stopping criterion of the expanding probability for the
binomial approximation is suggested to be conservative
and is 0.001 in this study.
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Figure 2 Synthetic clusters in the two study areas. (a) Regular 20 by 20 grid and (b) Taiwan Map. The darker areas are the locations of the
synthetic clusters.

For the no-cluster case, we assume the disease incidence
rate is 0.001 and the population size is 10,000 in each cell.
The results of 1,000 simulation runs for a no-cluster case
are shown in Table 1. For the permutation method, the
results indicate that the four combinations of α1 and α2,
i.e., α1 = 0.05 or 0.10 vs. α2 = 0.05 or 0.10, provide good
approximate to the predetermined significance level, α2,
but no combinations of α1 = 0.01 or combinations of
α2 = 0.01 give satisfactory results. On the other hand, the
binomial method produces close approximations to the
predetermined significance level at α1 = 0.05 or 0.10 vs.
α2 = 0.05.
In general, for both the binomial approximate method

and the permutation test, we recommend using α1 = 0.05
and α2 = 0.05. Nevertheless, if it is difficult to detect
clusters, for example, when the relative risk (RR: the dis-
ease incidence ratio of cluster cells to non-cluster cells)
is low (fewer significant cells), we recommend using the

Table 1 Type I error of proposedmethods

Binomial* Permutation

α2 α2

α1 0.1 0.05 0.01 0.1 0.05 0.01

0.1 0.119 0.073 0.025 0.108 0.059 0.009

0.05 0.098 0.061 0.024 0.113 0.055 0.014

0.01 0.035 0.021 0.009 0.073 0.039 0.007

* The expanding probability is 0.001 and the Bonferroni criterion is used to
modify the multiple testing problem.

combination of α1 = 0.1 and α2 = 0.05 to accumu-
late enough significant cells for the testing. Note that the
setting α1 = 0.05 vs. α2 = 0.05 will be used as the default
setting in the rest of this study.

One-cluster model
According to the previous results, the proposed meth-
ods achieve the predetermined type I error. To further
check the performance of cluster detection by the pro-
posed methods, the cluster set in the 20 by 20 grid area
consists of 9 cells, and it can be of the circular shape (3
by 3), long shape (1 by 9), or Y-shaped. The left panel of
Figure 2 shows shapes and their corresponding locations
in the 20 by 20 grid area. Each cell in this area is with
equally background intensity rate 0.001 and equal popu-
lation size 10,000. In addition, the relative risk (RR) of the
clusters ranges from 1.5 to 3 steps by 0.5.
Figure 3 shows the powers of the binomial approxi-

mate method and the permutation test, and generally
both methods have higher powers as the RR becomes
higher. Because the binomial approximate method has an
adjustment of junction cell, it has higher power than the
permutation method and thus higher type I error as well
(Table 1). Both methods have lower powers on detecting
long cluster and higher powers on detecting the circular
one. The power of both methods is almost 1 when the RR
is at least 2.
Figure 4 shows the sensitivity and the error rates for the

proposed methods. For the sensitivity, both the binomial
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Figure 3 Power curves of the proposedmethods in the 20 by 20 grid area. Power curves of the proposed methods with different RRs and
cluster shapes in the 20 by 20 grid area. Note that the value represents the type I error when RR = 1.
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approximation and permutation test perform well when
the RR is big (e.g., 2.5 and 3), but not as good when the RR
is low (1.5 and 2.0). On average, the binomial approximate
method has the better sensitivity than the permutation
test. On the contrary, the error rates show the opposite
results. The permutation test has lower error rates espe-
cially for the case of larger RR, due to the fact that the
binomial approximate method might include extra junc-
tion (not clustered) cells, and might result in a wider
expansion of the detected cluster (or higher false positive
probability).

Simulation 2: Unequal population case in Taiwan island
For the sake of practical considerations, we also consider
the one-cluster case with the actual population’s distribu-
tion according to the townships in Taiwan. Like what we
did in “simulation 1”, we intend to add three different levels
of the population for the three different clustered types,
low, median, and large. However, it would be too lengthy
to discuss all combinations. In addition, we found the sim-
ulation results are very similar to the regular case for some
combinations. Thus, we present only the cases which can
show the differences between the proposed method and
SaTScan. In specific, we choose the three clusters whose
regions resemble Taiwan’s township structure to be the
synthetic clusters with unequal population.
We take the observed HIV prevalence rate of adults

(15–49 years old), which was estimated as 0.0003 in
Taiwan 2003 [22], to be the background disease incidence
rate, and the adult proportion is approximately 60% of
total population.
There are 350 townships in Taiwan, close to 400 cells in

regular grid data, but the characteristics of each township
(e.g., shape, population size, and neighborhood struc-
ture) are dramatically varied. Like in many countries, the
population sizes are very different in rural and urban
counties. In Taiwan, the maximal and minimal popula-
tion sizes are 1,745 and 523,850, respectively. In addi-
tion, because Taiwan is an island country, the shape
and the number of neighboring townships of each town-
ship vary a lot. The smallest township is only 5.9 square
kilometers, while the largest is 1641.8 square kilome-
ters. We want to explore if the detection results would
be influenced by the geographic attributes of Taiwan
townships.
We will only show the results of one-cluster case, since

the efficiency of cluster detection is of interest. The sim-
ulated clusters can be seen in the right panel of Figure 2.
The first cluster is set to be circular and its popula-
tion size is twice as large as the average population size
(the average size of ages 15-49 in 350 Taiwan town-
ships is about 37,588.). The second cluster is set to be
long and its population size (about 21,677) is approxi-
mately equal to the median of all townships. The third

cluster is set to be Y-shaped and has the lowest population
size (just 6,498).
We use the same RR setting as those in the 20 by

20 grid case, except that the background intensity rate
is chosen as the average prevalence rate of HIV (about
0.0003). Compared to the case of 20 by 20 grid, the sim-
ulation results in the case of imposing real populations
show that population sizes play an important role in clus-
ter detection. If the population size is 6,498 (Cluster 3
with Y-shaped), neither the power (Figure 5), sensitivity,
nor error rate (Figure 6) show satisfactory results even
when the RR reaches 3. Because the expected numbers of
cases just approximate to 2 in the clustered cells under the
null hypothesis, the expected numbers of observed cases
are just 6 even when the RR is 3. These numbers might
not be large enough to be identified as significant in the
probability regime. Other than the small population case,
the proposed methods have good powers and small error
rates in the other two cases, similar to those in the 20
by 20 grid case.

Power comparisons with the scan statistics
The scan statistic (SaTScan) [23] is one of the pop-
ular methods to detect spatial clusters. It is a kind
of likelihood ratio test and is especially powerful in
detecting circular clusters. It sets multiple scanning
windows, constructed from centers of cells with grad-
ually increasing radius, and tests if the interested vari-
able in the selected window is significantly different
from that outside the window. The test statistic can be
expressed as

λ = supZ∈Z ,p>q L(Z, p, q)
supp=q L(Z, p, q)

= L(Ẑ)

L0
, (6)

where Z is the selected window, p is the intensity rate in
the region Z, and q is the intensity rate outside Z. The
testing procedure is based on the Monte Carlo method.
For each simulation run, the disease cases are randomly
distributed into the study region according to the popu-
lation size. Other than the original circular window, an
elliptical method was also proposed to construct elective
windows [24]. In this study, both the original (i.e., circu-
lar) and elliptical windows of SaTScan are considered. The
SaTScan software can be downloaded from http://www.
satscan.org.
We shall use the simulation to compare the proposed

methods with the SaTScan. The focus is on the perfor-
mance of cluster detection. Again, we apply the same
simulation settings on the 20 by 20 grid and the Taiwan
synthetic data.
We add the detection results of the scan statistics into

Figures 3, 4, 5 and 6 to see the differences among them.
First, by observing the power comparisons in the case
of 20 by 20 grid area (Figure 7), the SaTScan methods

http://www.satscan.org
http://www.satscan.org
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Figure 5 Power curves of the proposedmethods in Taiwan geographical region. Power curves of the proposed methods with different RRs
and cluster shapes in Taiwan geographical region.
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Figure 6 Sensitivity and error rate curves of the proposedmethods in Taiwan geographical region. Sensitivity and error rate curves of the
proposed methods with different RRs and cluster shapes in Taiwan geographical region.
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Figure 7 Power comparisons in the 20 by 20 grid area. Power comparisons of the proposed methods and the SaTScan methods with different
RRs and cluster shapes in the 20 by 20 grid area.

have better power than the proposed methods, and the
elliptical SaTScan has the best power among them, espe-
cially in detecting the long cluster. Figure 8 clearly shows
the differences among these methods. Although the pow-
ers of the elliptical and circular SaTScan are better than
the proposed methods, the proposed methods have the
better sensitivity and lower error rates in the case of
detecting the Y-shaped cluster. The elliptical and circu-
lar SaTScan also have obvious differences; the elliptical
SaTScan is especially good in detecting the long cluster,
and the circular SaTScan is the best to detect the circular
cluster.

Similar to Figure 6, we can also evaluate the detection
performance of the SaTScan methods for different popu-
lation sizes. As shown in Figure 9, these fourmethods have
almost the same power in detecting the circular cluster,
but the proposed methods have significant drops when
the population size is fewer (Cluster 3). On the other
hand, the SaTScan methods are more consistent even the
population size is very small. In Figure 10, the sensitivity
and the error rates are also used to evaluate the perfor-
mances among these methods. The proposed methods
have the better error rates and sensitivity in detecting
clusters except for the fewer population case. This result
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Figure 8 Sensitivity and error rate comparisons in the 20 by 20 grid area. Sensitivity and error rate comparisons of the proposed methods and
the SaTScan methods with different RRs and cluster shapes in the 20 by 20 grid area.
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Figure 9 Power comparisons in Taiwan geographical region. Power comparisons of the proposed methods and the SaTScan methods with
different RRs and cluster shapes in Taiwan geographical region.
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Figure 10 Sensitivity and error rate comparisons in Taiwan geographical region. Sensitivity and error rate comparisons of the proposed
methods and the SaTScan methods with different RRs and cluster shapes in Taiwan geographical region.
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is interesting since the circular and elliptical SaTScan are
designed to detect circular and long clusters.
The simulation study shows diverse results and no single

detection method can outperform other methods. Nev-
ertheless, we would give the following suggestions. If the
population sizes are large and the study regions are irreg-
ular, the proposed methods is a better choice than the
SaTScan. In addition, if computation time is a major con-
cern, the binomial method is preferred because it does
not require the Monte Carlo procedure. If there is little
information about the shapes of clusters or the population
of them, the SaTScan methods are recommended due to
their good testing powers.

Application: Taiwan cancer data
In addition to computer simulation, we also use real
data to evaluate the proposed methods. In particular, the
Taiwan cancer data (death records) in year 2000 are used,
since cancer is the top cause in Taiwan for more than 25
years. Since the cancer related mortality rates increase as
people become older, we shall focus on the population of
the elderly (ages 65 and over). Also, we shall separately
explore whether there are clusters for the elderly groups of
male, female, and both-sex combined. The cancer mortal-
ity data were from the Ministry of Interior (MOI), Taiwan
government. The mortality records are maintained by
the MOI and are available to the academic institutes

(including universities and research organizations), after
removing personal information.
We first consider the cancer mortality rates for each

township (Figure 11). A darker color represents a higher
mortality rate. Apparently, the northern coast and the
middle western areas have higher mortality rates, no mat-
ter for the male, female, and both-sex.
Other than the female elderly, the proposed methods

do not find any significant clusters. For the female elderly
case (Figure 12), two proposed methods detect identical
cluster, at the same location and with the same size. Using
the proposed binomial approximate method, the p-value
of the cluster is 0.0002 with 5 multiple comparisons, com-
paring to the p-value 0.002 of the permutation method
using 999 permutations. The cluster contains 6 cells and
its shape is not close to circular. The female cancer mor-
tality rate in the clustered region is 0.0116 (the relative
risk is approximately 1.706) and average female popula-
tion of each cell is 2,274. These clustered cells locate in
Tainan County and Chiayi County, two agricultural coun-
ties. Also, the proportions of the elderly are higher in the
clustered area, which is 0.1370, comparing to 0.0845 for
Taiwan’s average in 2000. It seems that inside the cluster,
the population structure and cancer mortality rate of the
elderly are quite different from those outside the cluster.
For comparison, we also apply the SaTScan methods

to these data. Unlike the proposed method, the SaTScan
methods detect more than one cluster, but we show only

under 0.01

0.01 − 0.012

0.012 − 0.014

over 0.014

under 0.005

0.005 − 0.007

0.007 − 0.008

over 0.008

under 0.008

0.008 − 0.009

0.009 − 0.011

over 0.011

Figure 11 The mortality rates of Taiwan elderly in 2000. From left to right: male, female, and both for the Taiwan elderly.
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Usual cell

Cluster

Figure 12 The cluster detected by the proposedmethod. The cluster with higher caner mortality rate detected by the proposed method for
Taiwan female elderly in 2000.

the first significant clusters for comparison. On the other
hand, the circular SaTScan and elliptical SaTScan usu-
ally detect different clusters, which can be seen from
Figures 13 and 14. Basically, clusters detected by these two
methods have overlaps, but the circular SaTScan tends to
detect round clusters while the elliptical SaTScan detects
long clusters.
From the analysis of cancer data, we can see more dif-

ferences between the proposed methods and SaTScan.
As expected, the SaTScan is more powerful in detecting
clusters. Thus, it tends to spot more clusters and is also
more likely to commit error in finding false positive cells.
Also, the SaTScan uses scanning windows to detect clus-
ters and their shapes would be close to circular (or elliptic).

On the other hand, the proposedmethods rely on the con-
necting probability to spot clusters and therefore cannot
detect small-sized clusters. For example, the cluster spot-
ted by the SaTScan in both-sex elderly group consists only
2 cells, even its relative risk is fairly large (around 2).

Discussion
Although the proposed method performs better at detect-
ing irregularly shaped clusters in our simulations, it still
has some drawbacks. For example, the accuracy of detec-
tion heavily depends on the significant cells determined
in the first stage. If the RR of the potential cluster is not
very large or it has a small population size, the proposed
method might misjudge the true clusters. For example, if
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(a) Male (b) Female (c) Total

Figure 13 The first clusters detected by the circular SaTScan. The first clusters with higher caner mortality rate detected by the circular SaTScan
method for Taiwan elderly in 2000.

a center cell of a long cluster is misjudged as insignificant,
the true cluster will be broken into two pieces. There-
fore, if a cell is significant, then its neighbor cells must
be treated with extra care. This is the reason why we
set a flexible junction point. Another possible modifica-
tion is to consider reducing the threshold of the signifi-
cance level for a cell in the first stage. However, this can
result in a higher type I error and too many significant
cells from the first stage might distort the binomial
approximation.

Another limitation of the proposed method is that a
cluster is determined by its size (i.e., the number of con-
nected significant cells). A set of a larger number of
connected cells is more likely to be treated as a clus-
ter, and a cluster of small size (e.g., one or two cells) is
barely detectible. This problem can be modified by con-
sidering the weighted case (i.e., the population connected)
instead of counting the number of connected significant
cells. This modification can easily be adopted in the
permutation-based method, but it is more complicated

(a) Male (b) Female (c) Total

Figure 14 The first clusters detected by the elliptical SaTScan. The first clusters with higher caner mortality rate detected by the elliptical
SaTScan method for Taiwan elderly in 2000.
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to embed the modification in the binomial approximate
method.
Note that the permutation method is currently used to

detect if there is one cluster. This can be modified to
detect two or more clusters by removing the first cluster
and its adjacent cells, then repeating another permuta-
tion test. In this manner, the study region will therefore
be changed, and this change would increase the difficulty
of applying the permutation test. Nonetheless, such mod-
ification for detecting multiple clusters seems to be fine
conceptually, and it has been checked by means of sim-
ulation in the case of two clusters. We will continue to
explore whether the proposed approach performs well in
detecting more than two clusters.
In addition, the binomial approximate method can be

expanded to a generalized linear model (GLM). After fit-
ting the model, we can obtain the residuals and determine
which cells are different from others (outliers). Then, we
can adopt the same procedures to compute the connect-
ing probability and identify the clusters. However, if the
data contain clusters, a regular GLM is likely to give biased
estimations depending on the characteristics of these clus-
ters. In other words, it is not easy to separate the effects
of GLM and clusters, and the cluster detection would
become more complicated [25].

Conclusion
In this study, we proposed an approach which can detect
clusters with shape not restricting to circular (or ellip-
tic). The proposed approach is a two-stage method, and is
designed for data at an aggregate level, such as township
data. It uses a traditional Poisson test (Choynowski’s test)
to determine if a cell has a clustering pattern (i.e., con-
tains toomany disease cases) or is an outlier, and then uses
a binomial approximate method to compute a p-value to
check if there are clusters. In addition, we also develop a
permutation-based method to compute the exact p-value
of suspected clusters. Unlike most cluster detection meth-
ods where the scanning windows are applied, using the
two-stage method has the advantage of computational
efficiency.
We use computer simulation and empirical data to

evaluate the proposed methods, and compare them with
the frequently used method, the SaTScan. Overall, the
SaTScan methods detect more and larger clusters than
the proposed methods. The elliptical SaTScan has the
best power and also has lowest error rates in detect-
ing long and circular clusters of the regular grid data.
On the other hand, we found that the proposed meth-
ods have the best error rates and sensitivity in detect-
ing irregularly shaped clusters when the population sizes
are large. In general, the elliptical SaTScan has the best
performance in cluster detection, and this explains why
the SaTScan is very popular. Still, if the clusters tend

to be of irregular shape, we recommend checking the
detection results of proposed methods with those of
SaTScan methods.
We know that there are other detection methods for

irregular shaped clusters. In fact, we did compare the
proposed method with the FleXScan (freeware http://
www.niph.go.jp/soshiki/gijutsu/download/flexscan/), but
the FleXScan takes a lot of computing time in the simu-
lation study. In our experience, the FleXScan can detect
irregularly shaped clusters well when the cluster areas
are small, such as 4 or 5 cells. If the clusters widely
expand, the detecting parameter would be large, resulting
in more computing time. Instead, we include the elliptical
SaTScan, in addition to the original circular SaTScan, to
avoid unfair judgment.
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