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Abstract
Background: Spatial variation in patterns of disease outcomes is often explored with techniques
such as cluster detection analysis. In other types of investigations, geographically varying individual
or community level characteristics are often used as independent predictors in statistical models
which also attempt to explain variation in disease outcomes. However, there is a lack of research
which combines geographically referenced exploratory analysis with multilevel models. We used a
spatial scan statistic approach, in combination with predicted block group-level disease patterns
from multilevel models, to examine geographic variation in prostate cancer grade and stage at
diagnosis.

Results: We examined data from 20928 Maryland men with incident prostate cancer reported to
the Maryland Cancer Registry during 1992–1997. Initial cluster detection analyses, prior to
adjustment, indicated that there were four statistically significant clusters of high and low rates of
each outcome (later stage at diagnosis and higher histologic grade of tumor) for prostate cancer
cases in Maryland during 1992–1997. After adjustment for individual case attributes, including age,
race, year of diagnosis, patterns of clusters changed for both outcomes. Additional adjustment for
Census block group and county-level socioeconomic measures changed the cluster patterns
further.

Conclusions: These findings provide evidence that, in locations where adjustment changed
patterns of clusters, the adjustment factors may be contributing causes of the original clusters. In
addition, clusters identified after adjusting for individual and area-level predictors indicate area of
unexplained variation, and merit further small-area investigations.

Background
Ideally, contextual analysis allows for consideration of
both attributes that are generalizable across multiple set-
tings, and geographically referenced relationships – influ-
ences that occur in context with each other. However, a

tension exists between geographic variation analysis,
which identifies the location and nature of the variation,
and non-spatial analysis, which may identify characteris-
tics of environments or individuals associated with varia-
tion, but does so without spatially specific models.
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Spatial variation in disease characteristics occurs, and
multiple statistical methods have been developed to
determine whether patterns of variation occur by chance
alone, or whether variation is unlikely to have happened
at random[1]. One type of variation analysis is cluster
detection analysis, which specifically examines geo-
graphic clustering – spatial groups of outcomes that are
statistically unlikely to occur by chance alone, given the
overall distribution of the outcome of interest across the
entire space being examined. Examples might be the
occurrence of the disease itself [2,3], or distributions of
factors of interest, such as characteristics of the disease,
intermediate events such as extent of the disease at time of
diagnosis [4] and receipt of certain treatments [5], or out-
comes such as mortality related to the disease [6]. How-
ever, if clustering of an outcome is identified and
determined to occur non-randomly, there is still little
information on which to act, because the reasons for these
clusters remain hidden.

Conversely, conventional non-spatial analysis methods
may be used to identify important influences on individ-
ual or area-level disease variation. For example, hierarchi-
cal or multilevel regression can be used to simultaneously
examine individual and area-level characteristics which
are associated with variation in disease incidence, charac-
teristics, or outcome [7]. However, these methods usually
consider areas as discrete, even when they are contiguous,
without examining relationships between the largest units
of analysis. If areas in analyses are geographically related,
after building multilevel models, it is still necessary to
examine the data for spatial dependence, and to deter-
mine whether the model fully accounts for geographic
patterns, or whether there is remaining unexplained vari-
ation that is spatially dependent – including, but not lim-
ited to, geographic clustering.

The study of disease patterns in prostate cancer, for exam-
ple, can be informed by geographic analyses. Prostate can-
cer is a disease with strong geographic variation, both
internationally and also within individual countries or
regions [8]. Like most cancers, the development of pros-
tate cancer typically occurs over a long period of time.
Both age of onset and disease course vary enormously, but
it has been demonstrated through autopsy study that
most men will develop some degree of prostate cell abnor-
mality in older age. It is likely that many factors contribute
to its development; from inherited genetic risk, to lifestyle
patterns in diet, use of substances such as tobacco and
alcohol, exercise and body size and composition, to envi-
ronmental exposures to a range of protective and detri-
mental agents [9]. Furthermore, although much is still
unknown about prostate cancer etiology and develop-
ment, there is sufficient information to argue that prostate
cancer is most likely caused by a complex combination of

factors, rather than a single explanatory risk. Beyond sim-
ple incidence, outcomes such as stage at diagnosis, tumor
biology and histologic grade, receipt of standard-of-care
treatment, and high quality survivorship are also geo-
graphically patterned.

When considering the utility of a geographic approach to
prostate cancer influences, it may be useful to think of
three broad categories of factors. There are factors which
may be, at first consideration, purely non-geographic in
influence. An example of this might be the influence of
the biological characteristics of the cancer on the disease
course, such as the relationship between histologic grade
of tumor on the stage or extent of disease at diagnosis
[10]. This relationship is considered important and tumor
characteristics such as grade are almost always included
when modeling outcomes. Yet we can consider this influ-
ence to be relatively non-geographic, because we might
speculate that this relationship does not change under
local geographic influences.

Other factors, such as age, might be considered to be
pseudo-geographic in influence. The age distribution of
the male population would vary across almost any geo-
graphic area under consideration, and there is also a
strong age-disease relationship in prostate cancer, with the
risk of the disease increasing with age. However, the age-
disease relationship is not likely to be primarily driven by
geography. Adjusting for the distribution of age within a
population of interest is often desirable, in order to
remove the confounding caused by age, and simulate the
geographic variation we would expect to see if we had
populations with identical age distributions.

A third and more complex category of influences are those
for which geographic context is critical to their causal
pathway, and thus these variables may be only partially
understood outside of their geography. Examples might
be individual social or behavioral characteristics such as
ethnicity or race, income, insurance or education, occupa-
tion, diet or body size.

For example, the consistently greater risk for prostate can-
cer among men of African ancestry compared to all other
ethnic groups in the world suggests fundamental biologic
causes that supersede geographic influences. However,
substantial geographic variation within the US African-
American population, as well as international variation
between African, Afro-Caribbean, and US men of African
ancestry suggests complex multigenerational social and
geographic influences [11].

Even influences that we may confidently classify as so fun-
damental as to be geographically immutable, such as the
relationship between tumor biology and disease
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progression, could be influenced by geographic variation
in access to care or medical practices, dietary, occupa-
tional, or environmental agents, or individual variation in
behaviors such as tobacco use, exercise, or body size.
Therefore, the extent to which any factor's influence on a
cancer outcome varies by context or location offers tre-
mendous insight into the mechanisms of influence.

The purpose of this research was to combine cluster detec-
tion analysis techniques with multilevel modeling of area-
level influences on disease patterns, in order to examine
the relationship between social-environmental influences
and spatial patterning. We used data from the Maryland
Cancer Registry on incident cases of prostate cancer occur-
ring in Maryland from 1992 to 1997, and examined vari-
ation in two disease characteristics which contribute
significantly to overall disease burden: histologic grade of
tumor, and stage of disease at time of diagnosis. The use
of geographic analysis of prostate cancer outcomes of

interest, in combination with modeling of known risk fac-
tors, may prove useful in understanding how much of the
strong geographic patterns in prostate cancer can be
explained by individual and area-level influences, and
how much remains, as of yet, unexplained.

For each of our two outcomes of interest, higher tumor
grade and later stage of disease at diagnosis, we first mod-
eled the "crude" or unadjusted variation in these out-
comes across the entire State. This was done by calculating
a block group-specific expected rate of each outcome,
based simply on the number of cases within the block
group and the overall rate of the outcome across the State,
and comparing the ratio of observed to expected cases
with the given outcome at the block group level. We then
used estimates from multivariate models to refine our
estimates of the expected number of higher grade or later
stage cases, and recalculated, at the blockgroup level, the
ratio of observed to expected cases with the outcome of

Table 1: Characteristics of prostate cancer cases in Maryland, 1992–1997

Registry Population N = 23993 Stage Analysis N = 19223 Grade Analysis N = 18947

Age Group n % n % n %
16–49 403 2 352 2 325 2
50–69 11777 49 10228 53 9868 52
70–79 8739 36 6833 36 6853 36
80–106 3002 13 1810 9 1901 10
Missing 72 1 0 0 0 0

Race/Ethnicity
White 16565 69 14255 74 14114 74
Black 5779 24 4968 26 4833 26
Asian 11 1 0 0 0 0
Native American 12 1 0 0 0 0
Other, Not 
Specified

343 1 0 0 0 0

Missing 1283 5 0 0 0 0

SEER Summary 
Stage at Diagnosis
0 80 1 0 0 0 0
1 15679 65 15233 79 13798 73
2 2250 9 2190 11 2000 10
3 263 1 255 1 220 1
4 170 1 165 1 152 1
5 150 1 145 1 127 1
7 1274 5 1235 7 945 5
Missing 4127 17 0 0 1705 9

Grade at Diagnosis
1 2505 10 2042 10 2289 12
2 13112 55 11301 59 12335 65
3 4425 18 3786 20 4199 22
4 128 1 113 1 124 1
Missing 3823 16 1981 10 0 0
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interest. Throughout each set of three analyses, the
observed number of cases remained the same, and the
expected number (the denominator) varied with each
adjustment. Therefore, if an independent variable in a
regression model was positively associated with excess
risk for the outcome of interest, it increased the regres-
sion-estimated expected number of such cases, and thus
decreased the observed-to-expected ratio in areas where it
was observed. Factors which were negatively associated
with risk for the outcome, when adjusted for, reduced the
number of such cases expected, and, in turn, increased the
observed-to-expected ratio. The methods used are
explained in greater detail in the methods section.

Results
Table 1 describes the overall population of prostate cancer
incident cases reported to the Maryland Cancer Registry
during 1992–1997, as well as the population used for
each analysis. Cases ranged in age from 16 to 106, with a
median age of 69. Among cases retained for analysis, 26%
were African-American. Overall, in Maryland during the
time period 1992–1997, 23% of cases whose record con-
tained histologic grade information had a tumor grade of
3 (poorly differentiated) or 4 (non-differentiated), and
21% staged cases had their disease detected after it had
spread outside the prostate gland (stage 2 through 7).

Figure 1 and table 2 provide information on the four-item
county-level social resource index used in the multilevel
analysis. The six suburban counties surrounding Washing-

ton, D.C. have the highest scores on this index, with Bal-
timore City and the rural areas of western Maryland and
the Eastern Shore of the Chesapeake Bay region having the
lowest scores. Both low and high scoring counties contrib-
ute substantial numbers of African-American cases to the
analysis.

Cluster detection results – higher grade of tumor
Figures 2, 3, and 4, and the related table 3, show the block
group-level patterns of tumor histology across the State.
Of the 3670 Maryland 1990 Census block groups, 3313
(90%) contained cases used in this analysis; the number
of cases per block group ranged from 1 to 99 with a
median of 4.

Figure 2 shows that most block groups vary from the
expected proportion of high grade cases (23%); block
groups with lower proportions of high grade cases are dis-
played in blue, and those with greater than expected rates
of high grade cases are shown in red. (Block groups con-
tributing no cases to the analysis are identified in white on
the maps.) Much of this variation is random, and not sta-
tistically different than we would expect by chance.
Furthermore, because a block group's spatial size is
inversely proportional to population density, large indi-
vidual block group areas of deep color, although striking
to the eye, are unlikely to include a substantial proportion
of the case population, and therefore would not constitute
a statistically significant area of variation on their own.

Maryland counties, ranked by county resource index scoreFigure 1
Maryland counties, ranked by county resource index score. Maryland's 24 counties ranked from lowest (Baltimore 
City) to highest (Howard County), based on combined score on four 1990 US Census population characteristics (table 2).
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However, figure 2 identifies four non-overlapping clusters
with statistically significant (p < .05) higher or lower rates
of aggressive grade.

The most likely cluster is a geographically small densely
populated area in Baltimore City, with a relative risk (RR)
of 1.28 (p = .001). The second most likely non-overlap-
ping cluster is a large area in the center of the Eastern
Shore of the Chesapeake Bay, with a significantly lower
rate of high grade tumors in men with prostate cancer (RR
= 0.69, p = .001). Two small areas of lower rates in the
suburban areas outside of Baltimore City were identified,
one to the north of the City (RR = 0.69, p = .004) and one
to the southwest (RR = 0.52, p = .017).

Figure 3 shows that adjustment for individual case charac-
teristics (older age, black race, and earlier year of diagno-

sis) changes the number and location of statistically
significant clusters of high and low rates of aggressive
grade. The most likely cluster is an area of lower risk for
aggressive grade located between Baltimore City and
Washington DC (RR = 0.74, p = .001); this area overlaps
with the area contained in cluster 3 in figure 2. Similarly,
a large area of the Eastern Shore is again identified as the
second most likely cluster with a lower relative risk for
higher grade tumors (RR = 0.66, p = .003). There are no
longer significant non-overlapping clusters in Baltimore
City or northwestern Baltimore County. However, a previ-
ously non-significant area of excess risk in Anne Arundel
County is now identified, based on the number of cases
expected from individual case risk characteristics, as hav-
ing statistically significant excess risk (RR = 1.56, p =
.013). This cluster was identified but not reported due to

Table 2: County resource index score and subcomponents, Maryland 1990 Census

County County 
Resource Index 

Score1

Index Subcomponents: 1990 Census # Cases % Cases Who 
Are Black

% High School 
Graduate2

% Employed3 % Moved in last 
5 years4

Median 
Household 

Income 
($1000)5

1. Balto. City -1.58 61 91 42 24 3645 61
2. Garrett -1.57 68 93 34 23 109 1
3. Somerset -1.54 61 92 42 23 100 33
4. Allegany -1.48 71 92 36 22 480 1
5. Dorchester -1.41 65 94 38 25 202 33
6. Caroline -1.01 67 96 42 28 161 24
7. Washington -.72 69 96 45 30 517 3
8. Kent -.68 71 97 43 30 104 32
9. Worcester -.57 71 95 50 28 247 21
10. Wicomico -.47 72 95 51 29 300 25
11. Cecil -.37 72 95 45 36 256 7
12. Talbot -.34 77 98 44 32 286 15
13. Queen Anne's -.07 77 96 45 39 199 18
14. Balto. Co. -.06 78 96 43 39 3890 11
15. St. Mary's .11 77 96 51 37 202 21
16. Carroll .11 79 97 43 42 605 4
17. Frederick .36 80 97 49 41 497 7
18. Harford .38 82 97 49 42 760 9
19. Calvert .45 79 97 47 48 197 20
20. Anne Arundel .52 81 97 49 45 1671 13
21. Prince Geo .55 83 96 51 43 2457 52
22. Charles .55 81 97 49 46 350 33
23. Montgomery 1.41 91 97 53 54 3077 11
24. Howard 1.59 91 98 57 54 618 19

1. County resource index scores were calculated by summing the raw score of four measures (percent high school graduates, percent employed, 
percent moved in last 5 years, and median household income), subtracting the mean of the raw composite scores, and dividing by the standard 
deviation of the raw composite scores. 2. Percent of persons 25 years or older who have received a high school diploma or its equivalent (e.g. 
GED) or higher (e.g. college or professional school). 3. Percent of persons 16 years old and over in the labor force who are currently employed. 4. 
Percent of residents age 5 and older who were not living in the same dwelling five years ago.5. Summed incomes (in thousands of dollars) of 
household members 15 years of age and older.
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borderline statistical significance (p = .09) in the unad-
justed analysis (figure 2).

Figure 4 shows results of a cluster detection analysis com-
paring the observed and expected numbers of cases of
high grade tumor in each block group, based on individ-
ual case characteristics, and also block group and county-
level population characteristics (block group median
household income, as well as the composite index of
county-level high school attainment, employment,
income, and residential mobility). Adjusting for these
area-level social influences changes both the number and
location of block groups found to have higher or lower
rates than expected by chance.

The most likely cluster in this analysis is an area of higher
than expected rates of aggressive tumor among cases,
located to the west of Baltimore City (RR = 1.45, p = .001).

This small area was previously identified as the most likely
cluster in figure 2, but with a lower relative risk, and was
not identified as having higher rates than expected in the
analysis adjusting for individual characteristics (figure 3).
The second most likely cluster in this analysis is a large
area of lower than expected rates (RR = 0.87, p = .001),
located in several counties to the north and west of
Washington DC. This area includes small clusters 3 from
figure 2 and cluster 1 from figure 3, but the majority of
block groups in this cluster were not previously included
in the clusters found in the previous analyses. The third
most likely cluster in this analysis is located on the Eastern
Shore, and although it includes areas identified in the two
previous clusters detected on the Eastern Shore, it is both
smaller in area and has lower estimate of relative risk for
aggressive disease among cases in this area (RR = 0.60, p =
.004).

Observed vs. expected block group rates of high grade tumors, and significant clustersFigure 2
Observed vs. expected block group rates of high grade tumors, and significant clusters. Proportion of prostate 
cancer cases with histologic grade of 3 or 4, compared to proportion expected based on overall Maryland rate, Maryland Can-
cer Registry, 1992–1997, N = 18949. A spatial scan statistic was used to identify non-overlapping clusters of statistically signifi-
cant high or low rates (table 3).
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Cluster detection results – stage at diagnosis
Figures 5, 6, and 7, and the related table 4, display results
of the cluster detection analysis for later stage diagnosis.
Cases were located in 90% (3313/3670) of Maryland's
1990 Census block groups; cases per block group ranged
from 1 to 90 with a median of 4.

Statistically significant clusters of high or low rates were
identified in four geographic areas in the unadjusted anal-
ysis (figure 5). As described in detail in table 4, the most
likely cluster is the largest, covering most of the Eastern
Shore and some of the adjacent Western Shore of the
Chesapeake Bay region of Maryland, with cases in this
area have a modestly elevated relative risk of later stage
diagnosis (RR) = 1.12, p = .001). A smaller geographic
area in the western area of the State was identified as the
second most likely cluster, with a relative risk of 1.94 (p =
.001). Two relatively affluent areas of the State were iden-

tified has having lower probability of later stage diagnosis:
Montgomery County, a suburb of Washington D.C. (RR =
0.71, p = .001), and the suburban and rural areas to the
north and west of Baltimore City (RR = 0.71, p = .001).

Figure 6 shows that, after adjusting for individual case
attributes associated with late stage (black race, younger
age, aggressive or missing tumor grade, and earlier year of
diagnosis), the relationship between the observed
number of later stage cases and the expected number
changes in many block groups across the State. Although
the visual pattern remains similar, the location and size of
statistically significant clusters, as well as the relative risk
of late stage diagnosis within those clusters, changes. The
most likely cluster is now in western Maryland, with a rel-
ative risk which is essentially unchanged by adjustment
for individual case characteristics (RR = 1.94, p = .001).
The largest cluster has now been reduced in size and

Observed vs. expected block group rates of high grade tumors, adjusted for case characteristics, and significant clustersFigure 3
Observed vs. expected block group rates of high grade tumors, adjusted for case characteristics, and signifi-
cant clusters. Proportion of prostate cancer cases with histologic grade of 3 or 4, compared to proportion expected based 
on case characteristics of age, race and year of diagnosis.
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includes primarily the lower Eastern Shore, but the esti-
mate of relative risk for later stage diagnosis in this area
has increased (RR = 1.43, p = .001). The area of lower risk
for cases in suburban Washington DC has grown to
include much of the suburban area between Washington
and Baltimore (RR = 0.86, p = .001), and a new area, cen-
tered in Baltimore City, has been identified as having
greater risk for later stage diagnosis (RR = 1.32, p = .029).

Figure 7 displays results of a cluster detection analysis for
later stage diagnosis, comparing actual counts to those
expected when considering both individual men's age,

race, year of diagnosis, and tumor biology, as well as their
immediate neighborhood and county level of social
resources – including occupation, education, employ-
ment, poverty and residential mobility. These additional
adjustments change both the visual patterning of higher
and lower rates, as well the location and estimates of
relative risk for the statistically significant clusters identi-
fied. Two clusters of higher than expected rates of later
stage diagnosis remain, covering essentially the same
areas as in figure 6. The relative risk for later stage diagno-
sis in western Maryland has been reduced only slightly,
from 1.94 to 1.79 (p = .001), and the relative risk for the

Observed vs. expected block group rates of high grade tumors, adjusted for case and area-level characteristics, and significant clustersFigure 4
Observed vs. expected block group rates of high grade tumors, adjusted for case and area-level characteristics, 
and significant clusters. Proportion of prostate cancer cases with histologic grade of 3 or 4, compared to proportion 
expected based on case characteristics of age, race and year of diagnosis, and area-level Census characteristics.
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secondary cluster on the Eastern Shore has been reduced
from 1.43 to 1.35 (p = .001). Both the Baltimore City clus-
ter and the suburban Washington DC clusters seen in the
first two maps are no longer identified as statistically sig-
nificant. However, a large area in the north central part of
the State has been identified as having lower than
expected rates of later stage diagnosis, with a relative risk
of 0.82 (p = .001).

Discussion
These geographic analyses provide information on both
biological influences on cancer, as well as those more
closely influenced by patterns of medical care. For tumor
biology, the results of the unadjusted analysis suggest that
one primarily rural area of the State, as well as two affluent
suburban areas, appear to offer protection from high
grade tumor histology. On the other hand, the urban Bal-
timore area has higher than expected rates of high grade
tumors among men diagnosed in the time period 1992–
1997.

Individual case characteristics change this picture dramat-
ically, but do not "explain away" all variation in this
important disease characteristic. For example, black race is
an important risk factor for aggressive tumor biology;
therefore, it is reasonable to speculate that area differences
in the proportion of African-American men in the case
population may have accounted for some of the clustering
in figure 2, with clusters in primarily white northern Bal-
timore County and primarily black Baltimore City no
longer statistically significant with race adjustment. Figure

3 shows that, despite individual case differences
accounted for with adjustment, there are still three areas
of the State with unusually high or low rates of aggressive
disease.

Figure 4 shows some impact of further adjustment for
social resource composition within small areas (block
groups) and larger areas (counties). The interpretation of
this adjustment is more speculative than confirmatory,
but suggests some avenues for further research.

Large areas of the rural Eastern Shore of Maryland are no
longer identified as being contained inside non-overlap-
ping areas of statistically significant lower risk for aggres-
sive tumor biology, with the protected area being
narrowed from a radius of 54.65 kilometers to 30.88
kilometers. Conversely, the small protective area in afflu-
ent Howard County between Washington and Baltimore
has now grown from a radius of 14.81 kilometers in figure
3 to 48.62 kilometers in figure 4. Anne Arundel County is
no longer at excess risk but Baltimore City is.

The influence of area level social resources on high grade
of tumor was complex: the men with the lowest risk for
aggressive tumors were white men living in small areas of
greater income, nested within counties of overall low
social resources. Therefore, clusters remaining in figure 4
are those whose rates are either higher or lower than
expected given their social characteristics.

Table 3: Cluster Analysis of Higher Grade* Prostate Cancer Cases – Maryland Cancer Registry, 1992–1997

Radius (km) # Block groups in 
Cluster

# Higher Grade 
Cases Expected

# Higher Grade 
Cases Observed

Relative Risk P Value

Map 2. Unadjusted 
Analysis

Cluster 1 5.99 550 522.5 669 1.28 .001
Cluster 2 44.93 201 305.3 210 0.69 .001
Cluster 3 10.34 173 253.9 176 0.69 .004
Cluster 4 5.93 38 93.8 49 0.52 .017

Map 3. Adjusted 
Analysis **

Cluster 1 14.81 292 487.3 362 0.74 .001
Cluster 2 54.65 162 247.6 164 0.66 .003
Cluster 3 8.27 80 99.6 156 1.56 .013

Map 4. Adjusted 
Analysis ***

Cluster 1 6.02 554 444.0 643 1.45 .001
Cluster 2 48.62 1181 1825.4 1587 0.87 .001
Cluster 3 30.88 99 155.8 94 0.60 .004

* Among cases with a histologic grade, those cases graded as 3 or 4 vs. 1 or 2.
** Expected Rate Adjusted for Race, Age, Year of Diagnosis.
*** Expected Rate Adjusted for Age, Race, Year of Diagnosis, and Area-Level Census Characteristics.
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The cluster in Baltimore City reflects the fact that Balti-
more City does not fit the overall model of low resource
counties as protective. Baltimore City is the single urban
county in the lowest range of the index; the rest of the
lower resource counties are predominantly rural. There-
fore, moving from figure 3 (only individual adjustment)
to figure 4 (area-level adjustment) identified that Balti-
more City's low social resources are not protective, to
same effect as in rural counties. This difference may be
caused by any number of lifestyle differences between
urban and rural low income communities. Although indi-
vidual case race is not likely to be driving this difference,
it may be that area-level racial composition is another
piece of this puzzle, given that Baltimore City's racial com-

position differs so dramatically from the other low
resource counties.

Conversely, the protective clusters are found in counties
with high social resource index scores, centered in Mont-
gomery County in the Washington, D. C. suburbs, and in
an area with slightly low scores, Talbot and Queen Anne's
counties on the Eastern Shore. For the D.C. suburbs, their
rate in figure 2 is neither high nor low; however, their high
social resource index score would predict high rates; there-
fore they create a lower- than-expected cluster.

For the Eastern Shore, the lower rate of aggressive disease
has been consistent across all three cluster analyses. For
low social resource counties such as Dorchester, the

Observed vs. expected block group rates of later stage at diagnosis, and significant clustersFigure 5
Observed vs. expected block group rates of later stage at diagnosis, and significant clusters. Proportion of pros-
tate cancer cases with stage of disease at diagnosis of 2 to 7, compared to proportion expected based on overall Maryland rate, 
Maryland Cancer Registry, 1992–1997, N = 19223. A spatial scan statistic was used to identify non-overlapping clusters of sta-
tistically significant high or low rates (table 4).
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adjusted predicted rate in figure 4 is now consistent with
expected low rates, and therefore this area is no longer
part of a cluster. However, the rate is lower than expected
in counties with slightly higher resources, and therefore
the most affluent Eastern Shore counties (Talbot and
Queen Anne's) continue to be identified as lower than
expected.

Finally, Anne Arundel County, which had higher than
expected rates in the individually adjusted analysis, is now
no different than expected, arguing that the relatively high
social resource index score for this county led to a closer
approximation of expected proportion of cases with
aggressive disease.

When considering the geographic patterning of later stage
at diagnosis for men with prostate cancer in Maryland
during the time period 1992 to 1997, it appears from the

unadjusted analysis that men in certain rural areas were
much more likely to come into treatment with more
advanced disease than those in the suburban, more afflu-
ent areas of the State. Individual characteristics of the
patients appear in some ways to have masked these geo-
graphic differences, in that the clusters generally remain or
become more important once the case population mix of
characteristics such as age, race, tumor biology, and year
of diagnosis is taken into account (figure 5 versus figure
6). Additionally, an area of Baltimore City, which has a
greater proportion of young, African American men than
the rest of the State, became significantly more likely to
have later stage cases, after adjustment for age and race.
This suggests that men in Baltimore are specifically disad-
vantaged in terms of early detection of disease, beyond
what would be predicted by their age, race, or tumor
biology.

Observed vs. expected block group rates of later stage at diagnosis, adjusted for case characteristics, and significant clustersFigure 6
Observed vs. expected block group rates of later stage at diagnosis, adjusted for case characteristics, and sig-
nificant clusters. Proportion of prostate cancer cases with stage of disease at diagnosis of 2 to 7, compared to proportion 
expected based on case characteristics of age, race, tumor grade, and year of diagnosis.
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From figure 7, we see evidence that area-level socioeco-
nomic resources may contribute to these patterns. The rel-
ative risk for late stage diagnosis in the two rural clusters
has been reduced somewhat, and the cluster of lower risk
in the north-central part of the State is less different than
in the unadjusted map. Baltimore City and the Washing-
ton suburbs no longer differ significantly from the rest of
the State, supporting a socioeconomic influence on the
previous clusters.

Prostate-specific antigen (PSA) testing was widely availa-
ble in Maryland during the entire time period of this study
(1992–1997). This suggests that more global barriers to
health care, rather than differential access to this specific
diagnostic tool, were more important in creating these
patterns of late stage diagnosis.

Conclusions
Although there is no statistical test to evaluate the propor-
tion of variation explained in a multilevel model, because
of the inclusion of random effects, it is reasonable to state
that, overall, our adjustment methods did account for
substantial variation in rates of aggressive disease and late
stage diagnosis, by considering important influences –
characteristics of the men themselves, as well as character-
istics of their environments.

In spite of this, variation in these cancer characteristics
remained substantial across the State. In fact, whether the
measure used is the number of cases, number of block
groups, or geographic area, figures 4 and 7 identify as
much, if not more, deviation from the predicted pattern
than the unadjusted figures 2 and 5 respectively. Many

Observed vs. expected block group rates of later stage at diagnosis, adjusted for case and area-level characteristics, and signifi-cant clustersFigure 7
Observed vs. expected block group rates of later stage at diagnosis, adjusted for case and area-level character-
istics, and significant clusters. Proportion of prostate cancer cases with stage of disease at diagnosis of 2 to 7, compared to 
proportion expected based case characteristics of age, race, tumor grade, and year of diagnosis, and area-level Census 
characteristics.
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areas are included in clusters across all three analyses of a
specific outcome. Given that the exact boundaries of clus-
ters are always approximate, and would be expected to
vary from analysis to analysis, it is important to note sim-
ilarities as well as differences within each outcome-spe-
cific set of maps. This suggests that there are underlying
causal influences that remain, despite the important rela-
tionships with the measures used for adjustment.

An additional caveat in the interpretation of these cluster
detection analyses is related to the choice of criteria used
for reporting clusters. In consideration of the large
amount of data being examined, both in terms of geo-
graphic area and number of cases, we chose to report clus-
ters only if they had a statistical significance of p < .05, and
contained no geographic overlap with a more significant
cluster. These restrictions meant that a given geographic
area could possibly be described as part of a cluster of
excess or reduced risk in one analysis, and not in other,
based on small changes in expected number of cases, or
based on the identification of a more significant cluster
nearby.

These findings have implications on both a practical can-
cer control level, as well as for further research in prostate
cancer. For state and local health agencies, trends in area-
level patterns of cancer outcomes over time can be used to
monitor change, whether to evaluate the effectiveness of
geographically distributed interventions such as screening
or treatment programs, or identify population changes

which may increase need for services. Unadjusted cluster
analyses provide valuable information for cancer control
planners who need to address areas of greatest need,
regardless of the cause. However, adjusted analyses iden-
tify geographically unique situations, such as the persist-
ently elevated rates of later stage diagnosis in two rural
areas of Maryland. For researchers, analytic techniques
which identify both explained and unexplained geo-
graphic variation may provide information about the
multilevel synergistic factors influencing cancer patterns,
or, at a minimum, identify areas and populations merit-
ing further study.

Methods
Data and data sources
More detailed information on these data and methods has
been reported previously [10]. With IRB approval from
the Johns Hopkins School of Public Health and the Mary-
land Department of Health and Mental Hygiene, and a
data agreement between the two institutions, we obtained
all incident cases of prostate cancer reported to the Mary-
land Cancer Registry during the years 1992–1997 (n =
24,189). Based on case residence address, we geocoded
cases to latitude and longitude coordinates. For cases una-
ble to be geocoded, we assigned cases to a coordinate loca-
tion within their zipcode using a weighted imputation
algorithm, based on 1990 US Census race-, age-, and gen-
der-specific population distributions within their zipcode
[12]. We thus assigned each nongeocoded case to a

Table 4: Cluster Analysis of Later Stage* Prostate Cancer Cases – Maryland Cancer Registry, 1992–1997

Radius (km) # Block groups in 
Cluster

# Later Stage 
Cases Expected

# Later Stage 
Cases Observed

Relative Risk P Value

Map 5. Unadjusted 
Analysis

Cluster 1 85.32 1436 1481.0 1743 1.18 .001
Cluster 2 20.72 88 93.8 182 1.94 .001
Cluster 3 41.92 291 512.7 366 0.71 .001
Cluster 4 10.61 316 455.8 325 0.71 .001

Map 6. Adjusted 
Analysis **

Cluster 1 24.71 96 98.3 191 1.94 .001
Cluster 2 69.96 326 372.5 533 1.43 .001
Cluster 3 39.82 1208 1633.4 1398 0.86 .001
Cluster 4 4.12 286 248.4 329 1.32 .029

Map 7. Adjusted 
Analysis ***

Cluster 1 20.65 95 104.9 188 1.79 .001
Cluster 2 69.96 326 394.8 533 1.35 .001
Cluster 3 47.90 676 1014.0 831 0.82 .001

* Among cases receiving staging, those cases diagnosed at Stages 2–7 vs. Stage 1.
** Expected Rate Adjusted for Race, Age, Grade, and Year of Diagnosis.
*** Expected Rate Adjusted for Age, Race, Grade, Year of Diagnosis, and Area-Level Census Characteristics.
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Census block centroid, based on the best-known distribu-
tion of men like himself within his zipcode.

Of 24,189 cases, 23,993 had verifiable Maryland
addresses. Ninety-one percent (21,904) were successfully
geocoded, and nine percent (2,089) were assigned to an
imputed location within their zipcode by algorithm. An
additional 3063 cases were not used, due to missing
demographic or clinical data, or because their race was
neither African-American or white, leaving a final analysis
population of 20,928.

We used individual case characteristics from the Registry
record, including age at diagnosis, race, year of diagnosis,
tumor stage, and tumor histologic grade. Based on case
residence, we added to each case record selected 1990 US
Census characteristics of three nested geographic units
surrounding the case location – the Census block group,
Census tract, and county. Our record for each case there-
fore contained individual demographic and clinical char-
acteristics based on the Cancer Registry data, point
location of residence, and Census measures for the case's
block group, tract and county of residence.

We created seventeen possible area-level social indicators
for each block group, tract, and county from the 1990 US
Census STF-3 file [13]: three measures of housing
resources (median sale price, percent of owner occupied
units, and housing value percentile rank, based on both
rental and sale values, weighted by the proportions of
rental and owner-occupied housing in an area), three
income measures (median household income, median
family income, and median per capita income), four pop-
ulation composition measures (percent white, percent
black, percent born outside the US, and percent age 5 or
older not living in the same residence for at least five
years), two social class measures (percent high school
graduates among persons age 25 and older, and percent
employed in white collar jobs, defined as Census job clas-
sifications of managerial, professional, technical, sales,
and administrative support) and five material deprivation
measures (percent households without a car, percent
households without a telephone, percent persons 16 and
older who were unemployed, percent persons living in
"crowded" residences, defined as more than one person
per room, and percent of persons living in poverty).

For continuous variables (case age and census measures),
we compute standardized measures to reduce collinearity,
by centering each case value at the population mean, and
dividing by the standard deviation. For year of diagnosis,
we centered the values at 1994, a midvalue in our six year
time window.

We chose two outcomes of interest which are associated
with differences in prostate cancer disease severity and
longterm survival for patients – histologic grade, or degree
of cell differentiation, of the tumor, and stage, or extent,
of disease at time of diagnosis. For each outcome, we
dichotomized the data and examined the likelihood of
the more negative outcome. For tumor grade, we com-
pared tumors staged as 3 or 4 (poorly differentiated or
undifferentiated) to those graded as 1 or 2 (well or mod-
erately well differentiated). For stage at diagnosis, we used
the Surveillance, Epidemiology and End Stage (SEER)
summary stage [14], and compared cases diagnosed at
stages 2 through 7 (regional to distant metastases) to
those diagnosed at stage 1 (localized disease). Cases only
missing staging information were retained for analyses of
grade, and cases only missing grade were used in the anal-
ysis of stage at diagnosis. Because tumor histology is an
important predictor of rapidly spreading disease, tumor
grade was used as an independent predictor in modeling
late stage disease.

Cluster detection methods
In order to explore the geographic patterns of our two out-
comes of interest, we used the spatial scan statistic [15] to
detect and evaluate the statistical significance of any geo-
graphic clusters of each outcome. This method imposes a
very large number of overlapping circles of different loca-
tion and size on the map, each of which is a potential clus-
ter, and adjusts for the multiple testing inherent in the
many circles considered.

Our cluster detection method identified clusters of both
high and low rates, with a maximum scanning window
size to include up to 50% of the population at risk. Sec-
ondary clusters were reported if they had no geographic
overlap with more likely clusters. P-values were derived
from 999 simulated Monte Carlo replications under the
null hypothesis of spatial randomness of outcomes of
interest.

We conducted three separate cluster detection analyses for
each of the two prostate cancer outcomes: higher histo-
logic grade of tumor, and later stage at diagnosis. In the
unadjusted analysis, under the null hypothesis, the
expected number of more aggressive grade or late stage
cases in a block group was calculated by multiplying the
total case population of the block group by the statewide
rate of the outcome of interest. Thus, in the unadjusted
analysis, a block group would be expected to have the
same rate or proportion of late stage or high grade cases in
its case population as the State. In the two adjusted anal-
yses, the expected number of aggressive grade or later
stage cases was calculated from a regression model con-
taining individual case characteristics, or from a regres-
sion model with both individual and area-level covariates.
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Based on the expected counts, the number of aggressive
grade and later stage cases in each block group was mod-
eled as a Poisson distribution.

For the unadjusted analyses, we also used a Bernoulli
model to compare the distribution of so-called "cases"
(those with aggressive grade or late stage) to "controls"
(less aggressive grade or early stage) based on point loca-
tion of each residential address, rather than rates within
block groups. This was useful to compare the sensitivity of
the Poisson model assumption for aggregated data to that
of the unaggregated Bernoulli method. No major differ-
ences in results were found, and to allow proper
comparison between the adjusted and unadjusted analy-
ses, the Poisson model results are presented for all three
types of analyses.

For each cluster identified, we list the radius, number of
block groups in the cluster, the observed versus expected
number of late stage or aggressive grade cases, the relative
risk and the p value. The relative risk is the risk of the
respective outcome within the cluster, compared to the
population's risk. We report clusters with statistical signif-
icance p < .05 that do not overlap with another reported
cluster with a lower p-value. Calculations were done using
the freely available SaTScan v4.0 software http://www.sat
scan.org.

Sources of expected population counts
We used the results of two multivariate modeling meth-
ods to calculate the expected count of aggressive grade and
late stage cases in each block group. In prior work [10] we
built multivariate hierarchical logistic regression models
[16,17] to identify individual and area-level factors signif-
icantly associated with aggressive grade and late stage
among cases, and these findings, summarized below,
served as the basis for calculating our expected population
in each block group.

In logistic regression models including only individual
level predictors, our final model included the following
statistically significant associations with higher histologic
grade of tumor: older age (Odds Ratio (O.R.) 1.17, 95%
Confidence Interval (C.I.) 1.13, 1.21), black race (O.R.
1.46, 95% C.I. 1.35, 1.57), more recent year of diagnosis
(O.R. 0.92, 95% C.I. 0.90, 0.94), and an interaction
between age and year of diagnosis (O.R. 1.06, 95% C.I.
1.04, 1.08).

To build the multilevel models, we tested each of the 17
area-level indicators at each level, starting with block
group, and also tested for interactions at each level and
between levels. To avoid unstable models, when we found
multiple significant Census predictors, we computed and
tested simple indices by summing relevant Census meas-

ures. We also tested for random effects, to account for
additional variability. In a multilevel logistic regression
model of aggressive tumor grade, each of the above indi-
vidual level variables remained significant. In addition,
two area-level indicators were significant in the final
model: block group median household income (O.R.
0.92, 95% C.I. 0.87, 0.96), with an interaction between
black race and income (O.R. 1.12, 95% C.I. 1.02, 1.223),
and a standardized county resource index, composed of
four summed county-level measures: percent high school
graduates, percent employed, percent moved within the
past five years, and median household income (in $1000
units) (O.R. 1.23, 95% C.I. 1.16, 1.31). Random intercept
terms were found to be significant at the block group and
county level.

In logistic regression models including only individual
level predictors, our final model included the following
statistically significant associations with late stage at diag-
nosis: older age (O.R. 0.85, 95% C.I. 0.82, 0.90), black
race (O.R. 2.97, 95% C.I. 1.35, 1.59), higher tumor grade
(O.R. 2.97, 95% C.I. 1.35, 1.59), missing tumor grade
(O.R. 5.56, 95% C.I. 2.77, 3.17), more recent year of diag-
nosis (O.R. 0.83, 95% C.I. 0.78, 0.88) and interactions
between age and black race (O.R. 1.18, 95% C.I. 1.09,
1.27), grade and year of diagnosis (O.R. 1.06, 95% C.I.
1.02, 1.10), and missing grade and year of diagnosis (O.R.
1.19, 95% C.I. 1.10, 1.30).

In the multilevel logistic regression model of late stage at
diagnosis, each of the above individual level variables
remained significant. In addition, two area-level indica-
tors were significant in the final model: block group per-
centage of white collar workers among the employed
population (O.R. 0.93, 95% C.I. 0.89, 0.98), and the
standardized county resource index (O.R. 0.94, 95% C.I.
0.89, 0.98). A statistically significant interaction existed
between county resource score and older age (O.R. 0.95,
C.I. 0.92, 0.99), and random intercept terms were found
to be significant at the block group and county level.

Calculation of block group-specific predicted populations
The models described above were used to calculate an
expected count of aggressive grade and late stage cases,
respectively, for each block group. This was accomplished
by taking the inverse logit transform of the expected linear
predictor in each logistic regression model, yielding a set
of estimated probabilities for each outcome. These proba-
bilities were then aggregated to the block group level,
providing expected block group-specific counts of later
stage and aggressive grade cases.

By definition the expected linear predictors includes only
estimates from fixed effects in each multilevel logistic
regression model. The random effects at the block group
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and county level, although influential on parameter esti-
mation, were not included in these calculations. Com-
pared to the unadjusted results, geographic patterns
shown in the adjusted analyses could be interpreted as
those existing after controlling for individual and area-
level factors, respectively. In essence, this approach
explores residual geographic variation. For this reason,
information from the random effects is not included in
determining expected outcome counts.
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