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Abstract
Background: This article describes geographic bias in GIS analyses with unrepresentative data
owing to missing geocodes, using as an example a spatial analysis of prostate cancer incidence
among whites and African Americans in Virginia, 1990–1999. Statistical tests for clustering were
performed and such clusters mapped. The patterns of missing census tract identifiers for the cases
were examined by generalized linear regression models.

Results: The county of residency for all cases was known, and 26,338 (74%) of these cases were
geocoded successfully to census tracts. Cluster maps showed patterns that appeared markedly
different, depending upon whether one used all cases or those geocoded to the census tract.
Multivariate regression analysis showed that, in the most rural counties (where the missing data
were concentrated), the percent of a county's population over age 64 and with less than a high
school education were both independently associated with a higher percent of missing geocodes.

Conclusion: We found statistically significant pattern differences resulting from spatially non-
random differences in geocoding completeness across Virginia. Appropriate interpretation of maps,
therefore, requires an understanding of this phenomenon, which we call "cartographic
confounding."

Background
Epidemiologists and public health researchers are increas-
ingly using geographic information systems (GIS) to
assess the association between population health and the
area characteristics of where people reside [1-8]. However,
spatial analyses are fraught with challenges. The initial
task of assigning geographic locations to study subjects –
geocoding – can be difficult [9,10]. As Krieger et al have

noted [11], the completeness with which geocoding is
performed varies, which can affect the findings of spatial
epidemiologic analyses [12].

There are two separate and equally important problems
that can arise in the process of matching addresses to loca-
tions. First, addresses may be assigned longitudes and lat-
itudes that are unacceptably far from their actual
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locations. This positional inaccuracy, owing to incorrect
addresses or the assignment of incorrect latitudes and lon-
gitudes to correctly recorded addresses, can lead to bias in
a study's outcomes [13-16]. This paper does not address
this issue; rather, it focuses on the second problem, which
is differential match rates by geographic region.

Such differential match rates can give biased results
because GIS analyses may be based on unrepresentative
data and a consequent information [17] bias in which
important data are missing in a non-random fashion.
Non-random missingness, a term used by statisticians to
describe this information bias [18], can result from social,
economic, political, and other reasons. One of the central
contributions of spatial analyses of disease is that geo-
graphic location can be used to help account for unmeas-
ured and unmeasurable risks for disease[19,20]. However,
if the risk factors for missing locations are some of the
same risks as those for the disease under study, then this
confounding of risk factor with place makes an unbiased
spatial analysis more difficult to achieve [21]. We illus-
trate this latter type of bias through an analysis of prostate
cancer incidence over a 10-year period in Virginia.

In a study of prostate cancer incidence and race in Virginia
[22], we found that the median household income and
urban status of an area were associated positively with
prostate cancer incidence for both African Americans and
whites. The level of poverty and lower education were
associated with decreased incidence among whites but
not African Americans. Statistically significant associa-
tions were found only at the census tract level, disappear-
ing when the analyses were conducted at the county level.

We sought to discern whether the differences we noted at
the census-tract level analysis were real or simply an exam-
ple of the modifiable areal unit problem (MAUP) [20], in
which one obtains different results and inferences when
the same set of data is grouped in different sized areal
units. For example, Krieger et al [4] found in their analysis
of cancer incidence and mortality in Massachusetts and
Rhode Island that significant findings were lost when the
analyses were conducted with areal units larger than the
census tract. Gregorio et al [23], however, found in their
cluster analysis of incident prostate and breast cancer
cases in Connecticut that there were few differences in
results across areal units, and there was no compelling
need in typical cancer surveillance studies to prepare data
at areas finer than the census tract.

In our study, only 74% of the cases were geocoded to the
census-tract level, whereas 100% of the cases had county
codes. When the statistical analyses were conducted at the
county level with the same reduced data set (74% of the
cases) as that used at the census-tract level, the results were
similar, regardless of the geographic unit of analysis. (The
generalized linear mixed modeling used to conduct this
analysis and the results are described in detail elsewhere
[22].) When the county analyses were conducted using
100% of the cases, the associations between predictor var-
iables and prostate cancer incidence disappeared. These
statistical analyses indicated the differences in results were
not owing to the MAUP, but possibly to missing data.

In this paper, we report the findings of a study we con-
ducted to evaluate whether unrepresentative data resulted
merely from being missing, or whether the "missingness"

Table 1: Census Tract geocoding results broken down by address type.

% Of address types (No.)

No. %(No.) Street 
Addresses

Rural Routesa P.O. Boxesa Othera,b

Matchedc

African 
American

6,060 74.0 93.8 0.0 0.0 0.0

White 20,278 73.4 94.0 0.0 0.0 0.0

Unmatchedc

African 
American

2,192 26.6 6.2 100.0 100.0 100.0

White 7,136 26.0 6.0 100.0 100.0 100.0
TOTAL NUMBER 35,666 (26,338) (28,039) (4,131) (2,635) (861)

aAccurate geocoding to the Census tract cannot be performed on this address type. bIncludes garbled and incomplete addresses. cTo the Census 
Tract.
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of the data itself was confounded geographically with our
covariates.

Results
County codes were available for all African-American and
white cases from the Virginia Cancer Registry (VCR). We
successfully geocoded 26,338 (74 percent) of the cases to
the census-tract level. The types of unmatched cases did
not differ between African Americans and whites, with
rural routes and Post Office boxes making up virtually all
of the 26 percent of unmatched addresses in both popula-
tions. (See Table 1.) As can be seen from Table 1, we geoc-
oded about 94% of the cases that possibly could be
geocoded. Gregorio et al [21] note that subject loss

between 5 and 16% had been reported in a few studies
[24-26]. Our geocoding match rate falls within that same
range when measured against the cases with actual
addresses.

The overall incidence rate for whites was 97/100,000,
whereas the rate for African Americans was 157/100,000,
using the cases successfully geocoded to the census tract.
(Smoothed maps of the annualized, age-adjusted prostate
cancer rates for all males in Virginia 1990–99 are shown
in Figure 1.) Statistical testing for global clustering was
highly significant for the entire time period (Tango's Max-
imum Excess Events Test, p < 0.008) and for 1990–94 and
1995–99 separately (p < 0.001 for both). We examined

Annualized, age-adjusted prostate cancer incidence in Virginia, 1990–99Figure 1
Annualized, age-adjusted prostate cancer incidence in Virginia, 1990–99.
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local clustering at the county level in both time periods,
using either 100 percent of the cases or just those cases
geocoded to the census tract level (74 percent of the
cases). With 100 percent of the cases, we found 6 such
clusters in 1990–94 and 8 such clusters in 1995–99. In
both time periods, major clusters appeared in geographi-
cally similar locations. For the reduced data set, we found
14 statistically significant clusters in 1990–94 and 10 such
clusters in 1995–99. For each time period, patterns
appeared markedly different, depending upon whether
one used the cases located in the county or those geoco-
ded to the census tract (Figure 2) [22].

Figure 3 shows the proportion of missing census tract
geocodes for the years 1990–1994 and 1995–1999. Dur-
ing the earlier study period, the proportion of missing
geocodes in some areas reached 95%. Clearly, in the sec-
ond half of the study period, we successfully geocoded
more cases. In part, the increased match rate was due to a
decreasing rural population, and, also, owing to increased
numbers of rural residents receiving addresses rather than
rural routes or Post Office box numbers.

However, cases in the most rural portions of the state
remained systematically over-represented in the group
with missing geocodes. Figure 4 depicts a cluster analysis
on proportion of missing geocodes. Significant clusters of
missing geocodes are all in rural areas of the study area. In

addition to the missing geocodes being concentrated in
rural areas, the generalized linear regression analysis
showed that, in the most rural counties, the percent of a
county's population age 65 or older and adults with less
than a high school education were both independently
associated with a higher percent of missing geocodes (p =
0.016 and p = 0.003, respectively). One study in Califor-
nia suggested that P.O. Box holders were not necessarily
representative of the entire case population [27]. Semivar-
iograms of the residuals from the generalized linear
regression models showed no sign of spatial correlation.

Discussion
One of the most important contributions of using GIS
technology in epidemiologic research is to help us discern
geographic patterns of disease. We found that geographic
patterns of prostate cancer incidence at the census-tract
level in Virginia may reflect the distribution of the availa-
ble data rather than real, underlying disease patterns. In
an analysis of cancer incidence, where the census popula-
tion is the denominator, information bias may result from
missing geocoded data. The effect of missing geocoded
data could be different, for example, in an analysis of the
proportion of late-stage disease, where the denominator
would be the successfully geocoded cases. However, even
in this situation, if screening practices are different in
urban versus rural communities, then the apparent pro-
portion of late-stage disease could be biased.

Prostate cancer incidence clusters in Virginia, 1990–99Figure 2
Prostate cancer incidence clusters in Virginia, 1990–99.
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The percentage of data able to be geocoded at the census-
tract level in this analysis increased over the study period,
reflecting the progressive implementation of the
enhanced 911 rules by the Federal Communications
Commission. These rules, among other things, require
assigning street addresses to rural locations. Despite these
improvements, as well as increasing prostate cancer
screening from 1990–94 to 1995–99, the location of
high-rate clusters did not differ markedly between these
two time periods. However, for each time period the spa-
tial location of clusters among cases geocoded to the cen-

sus tract versus those located in the county were vastly
different.

These findings demonstrate statistically significant pattern
differences resulting from spatially non-random differ-
ences in geocoding completeness across Virginia. In clas-
sic epidemiologic terms, a measure of the effect of one
factor on disease risk can be biased because of its associa-
tion with another factor (confounder) and the disease.
Similarly, when the factor of interest is geographic, a factor
related to the disease that is not distributed randomly across the

Proportion of unmatched prostate cancer cases in Virginia, 1990–99Figure 3
Proportion of unmatched prostate cancer cases in Virginia, 1990–99.
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study area can confound the appearance of maps of that dis-
ease. Appropriate interpretation of maps, therefore,
requires an understanding of this phenomenon, which we
call "cartographic confounding."

In this study, systematically missing data are a result of
location; however, a location's urban or rural status and
associated sociodemographic characteristics were found
to be associated with the likelihood of missing data from
that location, as well as to the likelihood of disease in that
area. Spatial patterns of disease incidence, therefore, may
confound cartographically the location and sociodemo-

graphic risk factors for the disease. In our study of prostate
cancer incidence in Virginia, the findings that area-level
measures of income and urban status are associated with
increased incidence are tempered by the possibility of car-
tographic confounding. This problem is particularly vex-
ing when evaluating geographic health disparities, as the
possible bias of one's statistical analyses depends upon
the proportion of rural population in the study [28].

Cartographic confounding is geographically based, i.e.,
related to location. Methods designed to account for pos-
sibly unrepresentative data, therefore, also should

Clusters by proportion of unmatched prostate cancer cases in Virginia, 1990–99Figure 4
Clusters by proportion of unmatched prostate cancer cases in Virginia, 1990–99.
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account for this geographic component. One approach to
dealing with this problem is to minimize missing data
through imputation of geocodes [29].

Conclusion
When conducting spatial analyses, sound analyses
depend upon assessing for possible bias and cartographic
confounding resulting from insufficient geocoding that
leads to systematically missing data. In this way, the
power of geographic information science can be more
effectively brought to bear on important issues of public
health and the inferences from the analyses are more
likely to be correct.

Methods
Data sources
Incidence data are from the Virginia Cancer Registry
(VCR), 1990 – 1999. There were a total of 37,373 malig-
nant neoplasms of the prostate in that period, with
27,414 in whites, 8,252 in African Americans, and 1,707
in others. Incident cases were geocoded to the street level
using ArcGIS and its StreetMap USA 2000 database.(Prod-
ucts of the Environmental Science Research Institute, Red-
lands, CA.) A point-in-polygon methodology [30,31] was
used to attribute 1990 census tracts to cases. Case counts
were aggregated to the census tract. All cases were assigned
county codes by the VCR. County codes were checked
against the address-matched geocodes as a quality control
measure. County codes were incorrect in only 1% of cases.

For the study period, the North American Association of
Central Cancer Registries (NAACCR) reports that the VCR
has 90% case ascertainment [32]. The VCR is not given
NAACCR's top ranking primarily because the number of
cases ascertained by death certificate only is too high or
not available, depending on the year.

Area-based measures were derived from the 1990 U.S.
Census data (U.S. Bureau of the Census Summary Tape
File 3A). These measures were used so that presumed
exposures occurred before disease incidence. The poverty
variable was a measure of the percentage of persons in a
census tract below the poverty level, categorized as <10%,
10 – 19%, and ≥20%. A near-poor variable measured the
percent of the tract's population between 100 and 200%
of the federal poverty level. The tract's median household
income was also used as a variable. A low-education vari-
able measured the percentage of persons in a census tract
25 years or older who had less than a high-school educa-
tion. A high-education variable did likewise for that per-
centage with at least 4 years of college. The percent of a
tract's population that was rural (≤50%, 51 to <100%, and
100%) was another variable. These cutpoints were chosen
based on frequencies for this measure in our data. The per-

cent of female heads of household was another predictor
variable.

For both the African-American and white populations
during the study period, we used an area allocation
method [19,30] to produce population averages over the
study period at the tract level. (The 1990 and 2000 census
tracts do not match exactly, and this method was utilized
to adjust for this fact.) The 1990 and 2000 county bound-
aries were directly comparable. As a result, we created a
direct average of populations without any manipulation.
The resulting averages were annualized over the 10-year
study period, and these figures were used to calculate age-
adjusted incidence rates of prostate cancer by the direct
method utilizing the 2000 U.S. standard million [33].

Exploratory spatial data analysis
Annualized, age-adjusted prostate cancer incidence rates
for African Americans and whites were calculated at the
census tract and county levels. Owing to the low case
counts at younger ages, we used three age categories (<50,
50–74, and ≥75). These incidence rates were mapped at
the tract and county levels.

Low case counts, sparse populations, or both result in
unstable incidence rates. We used a weighted, two-dimen-
sional, median-based smoothing algorithm called "head-
banging" to reduce this noise [34], allowing patterns to
emerge from the data.

Statistical methods
Hierarchical Poisson regression modeling, using the SAS
GLIMMIX macro (SAS 2001), was performed to assess
prostate cancer incidence for all census tracts and counties
in Virginia by the patient's age at diagnosis and sociode-
mographic characteristics of the census tracts. Specifically,
the number of prostate cancer cases in census tract i (i = 1,
..., 1673), age group j (j = 1, 2, 3), denoted dij, was
assumed to be distributed as a Poisson random variable,
with a mean nijλij where nij is the corresponding popula-
tion at risk and λij is the incidence rate in census tract i and
age group j. We assumed a log-linear rate structure, with
the county or tract intercept of the regression model con-
ceptualized as a random effect with a spatial correlation
structure to account for spatial autocorrelation in the data.

The statistical analyses were stratified by racial category.
Owing to the sparseness of the VCR data in other racial
categories, we only analyzed data for African Americans
and whites. All main effects and two-way interactions
were initially screened for significance in a logistic regres-
sion model, and a final model for the hierarchical Poisson
regression was constructed using stepwise, backward vari-
able selection. Only highly significant interaction terms (p
< 0.005) were retained in the logistic model to account for
Page 7 of 9
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the multiple comparisons inherent in the selection proc-
ess [35]. The full results of this study of prostate cancer
incidence in Virginia, 1990–99, is available elsewhere
[22].

In the current study, we conducted analyses to assess
whether prostate cancer cases clustered within the study
area. As noted by Waller and Gotway [20], global cluster-
ing indicates clustering exists at some point in one's study
area, whereas local clustering refers to the presence of a
cluster at a specific site. We evaluated the raw count data
for global clustering, using Tango's Maximum Excess
Events Test (MEET) [36]. The statistical code to execute the
MEET was provided to the authors in R (an open-source
statistical package similar to S-Plus [Insightful Corpora-
tion]) by Prof. Toshiro Tango. We also assessed the count
data with a spatial scan statistic (SaTScan) [37,38] to iden-
tify statistically significant local clusters.

The patterns of missing tract identifiers were examined by
generalized linear regression models in SAS 9.1 (SAS Insti-
tute, Inc. Cary, NC) that included percent of tract popula-
tion over age 64, percent of tract population aged 25 or
older with less than a high school education, percent of
tract population aged 25 or older with at least a college
education, and the median household income in the area.
These factors have been found to be associated with pros-
tate cancer incidence [4-6,22]. Moreover, in our prior Vir-
ginia study [22], the geographic distribution of missing
data and that of several of these covariates was similar,
which, we hypothesized, might be the result of confound-
ing between the two.
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