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Abstract
Background: Life expectancy in China has been improving markedly but health gains have been
uneven and there is inequality in survival chances between regions and in rural as against urban
areas. This paper applies a statistical modelling approach to mortality data collected in conjunction
with the 2000 Census to formally assess spatial mortality contrasts in China. The modelling
approach provides interpretable summary parameters (e.g. the relative mortality risk in rural as
against urban areas) and is more parsimonious in terms of parameters than the conventional life
table model.

Results: Predictive fit is assessed both globally and at the level of individual five year age groups.
A proportional model (age and area effects independent) has a worse fit than one allowing age-area
interactions following a bilinear form. The best fit is obtained by allowing for child and oldest age
mortality rates to vary spatially.

Conclusion: There is evidence that age (21 age groups) and area (31 Chinese administrative
divisions) are not proportional (i.e. independent) mortality risk factors. In fact, spatial contrasts are
greatest at young ages. There is a pronounced rural survival disadvantage, and large differences in
life expectancy between provinces.

Background
This paper develops a model for mortality contrasts
between 31 administrative divisions of China. Despite
major gains in life expectancy in China and improved
health and living standards, there is evidence of consider-
able social and health inequality [1], and poor access to
health care in rural and less developed areas [2]. As a
result, health and life expectancy improvements have
been uneven, typically greater in developed eastern and
southern areas of China.

Assessment of age-related inequalities in mortality is
therefore important, and life table analysis is often used to

this end. However, conventional life table analysis pro-
ceeds by independent analysis of each region, often by
spreadsheet; for example, see the Population Analysis
Spreadsheets developed by the US Census Bureau [3]. This
approach to life table analysis takes no account of spatial
structure in mortality risks due to socio-economic and
environmental factors that affect neighbouring regions
similarly. Life table analysis most commonly also adopts
(albeit often implicitly) a saturated fixed effects model
that does not model correlation in mortality rates
between adjacent age groups, and is heavily parameter-
ised.
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Here the modelling approach pools strength over ages
and regions using random effects methods that recognize
correlations between adjacent ages and areas. The number
of parameters involved in the model becomes an
unknown, often referred to as an effective parameter total,
and with a suitably designed model this total may be con-
siderably less than the parameters needed under fixed
effects approaches [4].

On the other hand, it is possible that a mortality model
oversimplifies such that predictions from it do not accu-
rately reproduce the observed mortality data. Many mod-
els in the disease mapping literature assume
multiplicative age and area effects, under which area
effects on mortality relative risk are constant across age
groups [5,6]. The modelling approach here, while rela-
tively parsimonious, explicitly recognizes that age and
area effects in observed mortality schedules may not be
multiplicative (or additive in the logs of mortality risk), in
which case predictive discrepancies will be apparent when
a multiplicative model is used. Instead an interaction
scheme between age and area dimensions is proposed by
adapting the bilinear interaction scheme of Lee and Carter
[7], who consider mortality forecasts in age and time
dimensions.

Data sources
As mentioned by Banister & Hill [8] the most complete
mortality data for China to date have been gathered from
all households in the three most recent nationwide cen-
suses of 1982, 1990, and 2000. Over a yearly period end-
ing at the census date, information about household
deaths was collected by single year of age and sex. These
are population wide collections of death details parallel to
the full population enumeration provided by the census.
Here the focus is on mortality data over a calendar year
(1.11.1999 to 31.10.2000) collected in conjunction with
the 5th population census of China conducted on Novem-
ber 1, 2000. The mortality data can be disaggregated to a
relatively low geographic level [9], but here the framework
is the 31 administrative divisions of China. These divi-
sions are a mix of 22 provinces, 5 autonomous regions
and 4 direct-controlled municipalities (Beijing, Tianjin,
Shanghai, and Chongqing), though with status equal to
that of the provinces [10]. Taiwan is not included. Specific
data sources are the Complete Collection of Provincial
Population Census Data Assemblies (2000 Census), avail-
able from the University of Michigan China Data Center,
and in particular two sets of tables:

Tables 1-7a, 1-7b and 1-7c, populations by age, sex and
for cities/towns/rural within each division;

Tables 6-1a, 6-1b, 6-1c, deaths over 1.11.1999 to
31.10.2000 by age, sex and for cities/towns/rural within
each division.

Populations and deaths in towns and cities within each of
the 31 divisions are amalgamated to provide a simplified
comparison of urban and rural mortality.

While the deaths data collected in conjunction with recent
China censuses are the most complete available, there is
still under-recording. A full discussion of death under-
counting is provided by Bannister & Hill [8] who obtained
correction factors using the general growth balance
method [11]. In deriving mortality rates and life expectan-
cies in this paper, adjustment factors from the paper by
Banister and Hill are applied to correct for mortality
under-recording. Specifically, populations at risk are
reduced to correspond to recorded deaths; thus the male
mortality adjustment factor was 1.113, so recorded deaths
were retained as the response variables but analyzed in
relation to census populations scaled by 1/1.113 = 0.898;
for females the adjustment factor is 1.181 so female pop-
ulations are scaled by 0.847. As reported below (Table 5)
China wide life table estimates from the models used here
are close to those from Banister and Hill that correct for
death undercount.

So the observed data consists of deaths and (scaled) pop-
ulations differentiated by age (21 groups from 0–4,5–9
through to 100+), by gender, and by an urban-rural cate-
gorisation of populations within each administrative divi-
sion. For simplicity we refer to the administrative
divisions simply as divisions below. To provide some
background on the varying socio-economic character of
these divisions, Appendix 1 tabulates comparative data on
indices of literacy, rurality, income and employment. The
wide contrasts in development and living standards are
relevant to interpreting mortality differences.

Other analyses of the 2000 census mortality data are pro-
vided by Heilig [12]. Lai [13], and Cai [9], while Lai et al
[14] provide analysis of corresponding data for 1990.
These analyses adopt conventional fixed effects
approaches, in contrast to the comprehensive approach to
smoothing over areas and ages as obtained by the random
effects methods used in this paper. Whereas a fixed effects
model of conventional life table analysis would involve
31 × 21 × 2 × 2 = 2604 parameters when applied to the
data in this paper, the approach developed here is shown
to be considerably more parsimonious, while also repro-
ducing the data accurately.

A Bayesian approach [15] is adopted which fully allows
for parameter uncertainty.
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With repeated sampling from the posterior density of
parameters using Monte Carlo Markov Chain (MCMC)
methods, the stochastic variation in life table parameters
to be readily obtained: for example, one may obtain 95%
intervals for division life expectancies or more specific
outputs such as the difference in urban as against rural life
expectancy within each division.

The life table model
Let i denote division, x denote age, s denote gender (1 =
females, 2 = males) and r denote urban vs rural popula-
tions in each division (r = 1 for urban, 2 for rural). The
data are deaths yrisx and scaled populations Prisx. Because of
the aggregated spatial scale and relatively large death
counts involved, the life table model assumes deaths yrisx
to follow a negative binomial density, namely

where ξrisx represents the modelled mortality count. The

negative binomial is obtained as the marginal density
under an overdispersed Poisson model namely yrisx ~

Po(μrisx), with means μrisx themselves following a gamma

distribution. Specifically μrisx ~ G(α,α/ξrisx), whereby

E(μrisx) = ξrisx, Var(μrisx) = /α and

Var(yrisx) =

E[Var(yrisx|μrisx)] + Var[E(yrisx |μrisx)] = 

ξrisx + /α (2)

The initial multiplicative model 1 for mortality counts ξrisx
involves

a) an overall mortality level parameter by gender s, κs;

b) parameters ηxs to represent the age-sex mortality rates
for age × and gender s; these are assumed to follow a first
order random walk that reflects correlation in rates
between successive ages;

c) parameters γs to represent a gender specific rural mortal-
ity differential;

d) division effects φis to represent spatially correlated mor-
tality contrasts that are likely to be gender differentiated.

The age parameters ηxs describe the typical age profile of
mortality: relatively high child mortality, followed by low
mortality for older children and young adults, and then
rising at older ages. The age parameters in model 1 apply

across all provinces in line with the multiplicative model
– the validity of which the analysis here is seeking to
assess. For example, it may well be that some degree of
regional variation in age effects is in fact present in the
Chinese mortality data, and model elaborations
explained below allow for this. The final set of parameters
φis reflect unmeasured risk factors for (or influences on)
mortality that are themselves spatially patterned [16]. For
example, differences in environment, health care, climate,
economic development and so on are likely to be spatially
correlated.

Then model 1 specifies

log(ξ1isx) = log(P1isx) + κs + ηxs + φis (3.1)

log(ξ2isx) = log(P2isx) + κs + γs + ηxs + φis (3.2)

where Prisxare scaled populations from the 2000 China
Census. Detailed assumptions about the age and spatial
effects (in terms of prior densities) are considered in
Appendix 2.

In model 1 the age effects ηxs are assumed to be independ-
ent of area (division) effects, in line with the widely
applied multiplicative model [5]. Multiplicativity refers to
the original mortality risk scale, when all effects are expo-
nentiated in (3). The multiplicative assumption leads to a
parsimonious model but the actual mortality pattern may
not conform to the simplifying assumption of a uniform
age gradient through all divisions. For example, it may be
that age related discrepancies from the multiplicative
model occur, in line with the overall mortality level in a
division. So under a multiplicative model, infant and
child mortality may be underpredicted in relatively back-
ward high mortality divisions and overpredicted in the
more developed lower mortality divisions.

To reflect such possibilities a multiplicative interaction
between area and age is introduced in the log relative risk
scale. This provides a more general though still relatively
parsimonious model (model 2), namely

log(ξ1isx) = log(P1isx) + ks + ηxs + φxsθis (4.1)

log(ξ2isx) = log(P2isx) + ks + γs + ηxs + φxsθis (4.2)

where the θis represent area mortality contrasts, especially

for particular age groups. In fact, for parameter identifica-

tion the θis sum to zero, while the φxs sum to 1, namely

. Higher weights for a particular age

express the fact that these ages are particularly subject to
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the spatial variation expressed in θis. For example, divi-

sions with high θis may tend to have high child or young

adult mortality (this anticipates findings later in the

paper), and so the age-sex φxs parameters will be higher at

such ages.

An analogous scheme, but in an age-time rather than age-
area context, is the Lee-Carter model used for mortality
forecasting [7]. For death counts yxt with negative bino-
mial or Poisson means ξxt the Lee-Carter model would
involve a log-bilinear form

log(ξxt) = k + ηx + φxθt

where age weights φx are highest for those age groups
showing most improvement according to mortality trend
parameters θt which are typically correlated in time.

The overall parameter combination φxsθis in equation (4)
provides a relatively parsimonious representation of age-
sex-province mortality effects involving 104 parameters,
that avoids using 31*21*2 = 1302 age-area interaction
parameters ψxis. If model discrepancies remain despite the
generalisation in equation 4 (e.g. in predictions matching
observations), one might introduce ψxis, but this is likely
to be at the cost of model parsimony if applied across all
ages. The option considered here is to selectively add area
effects ψxis for age bands x according to an age level binary
indicator δx.

So with a low prior probability πδ (e.g. πδ = 0.05) that δx =
1, additional area-gender effects specific to the selected
age are added. This might be expected to occur particularly
for any ages where the mechanism in model 2 still leaves
discrepancies in fit. The potential additional effects ψxis are
assumed to be normally distributed random effects with
mean zero and an age specific variance parameter ζx,
namely ψxis ~ N(0, ζx). So for model 3, one has δx ~
Bern(πδ) and

log(ξ1isx) = log(P1isX) + κs + ηxs + φxsθis + δxψxis 

(5.1)

log(ξ2isx) = log(P2isX) + κs + γs + ηxs + φxsθis + δxψxis .
(5.2)

Findings
Models are estimated using the WINBUGS program [17].
Methods of assessing model fit and adequacy are dis-
cussed in Appendix 3, and model fit is summarised in
Table 1. For all models, two chains were run for 5000 iter-
ations with convergence by 1000 using Gelman-Rubin
scale reduction factors [18]. The Deviance Information
Criterion (DIC) – see Appendix 3-under the multiplicative
model 1 is 35860 with 99 estimated parameters, while the
log of the pseudo marginal likelihood is -17934 (Table 1).
Just over 5% of the cases are not included in the 95%
intervals of predictions yrep,risx. So in overall terms the
model is producing predictions that are concordant with
the data. On the other hand, an examination of the pat-
tern of model discrepancies at the age group level (Table
2) shows that a relatively high number of death counts for
ages 0–4 and the oldest ages are not predicted satisfacto-
rily; note that there are 2604/21 = 124 observations in
each age group so under model 1, 38 of the 124 death
counts in age group are not satisfactorily predicted.

Application of model 2, as in equation (4), results in con-
siderably improved global fit measures such as the DIC
and log(psML). The estimated model dimension de is
actually lower than model 1, possibly indicating a higher
degree of pooling strength under this model [15]. There is
also improved fit in the lowest age band with the average
log(CPO) in the 0–4 age band falling from -9 to -8.3
(Table 2) and the number death counts in 0–4 age group
not predicted well falling to 30. On the other hand, deaths
at ages over 90 still show discrepant predictions.

The division parameters θis in equation 4 (see Table 3) are
highest in the southwestern divisions of Yunnan, Qing-
hai, Tibet and Guizhou (relatively undeveloped in eco-
nomic terms, with below average income per head – see
Appendix 1), and lowest in developed divisions such as
Beijing, Shanghai and Tianjin. Figure 1 plots shows the
male and female age weights φxs; these show that child and
young adult mortality is most strongly linked to spatial

Table 1: Model Fit Summary

Pseudo Marginal 
Likelihood

Mean Deviance Estimated 
Parameters

DIC Number (and %) of observations not 
contained within 95% intervals of yrep,risx

No. %

Model 1 -17934 35761 99 35860 138 5.3
Model 2 -17398 34656 82 34738 132 5.1
Model 3 -17227 33900 346 34246 89 3.4
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mortality inequalities. The main age effects ηxs (Figure 2)
show the expected pattern of increase with age.

In an attempt to reduce model discrepancies further,
model 3 is applied with Pr(δx = 1) = πδ = 0.05. This model
produces a further improvement in the global fit measures
and reduces predictive discrepancies at age group level
(Table 2). As can be seen from Table 1, the better fit comes
at the cost of a much higher effective parameter count
with de = 346.

One may expect from the discrepancy pattern for model 2,
that the need for additional age-area interactions might be
greater at the youngest and oldest ages. In fact, there is
unequivocal evidence that ψxis are needed at ages 0–4 and
for the last three age bands (90–95, 95–99, 100+) where
the posterior probability for inclusion is Pr(δx = 1|y) = 1.
That is, age-area interactions are retained at these ages in
all MCMC iterations. For the 85–90 age band, Pr(δx = 1|y)
= 0.95. Ten of the remaining probabilities Pr(δx = 1|y) are
under 0.05, and the remainder range between 0.05 and
0.28. So age-specific area effects are only necessary conclu-
sively for a minority of age groups.

In order to summarise age-sex effects from model 3 in tab-
ular form, the 31 administrative divisions are aggregated
to three broad zones [19]: the western zone (the six prov-
inces of Shaanxi, Gansu, Qinghai, Sichuan, Yunnan and

Guizhou, the three autonomous regions of Ningxia, Xin-
jiang and Tibet, and the Chongqing municipality); the
eastern and coastal zone (Beijing, Tianjin, Hebei, Liaon-
ing, Shanghai, Jiangsu, Zhejiang, Fujian, Shandong,
Guangdong, Guangxi, and Hainan), and the middle zone
(Shanxi, Inner Mongolia, Jilin, Heilongjiang, Anhui,
Jiangxi, Henan, Hubei, Hunan). Table 4 shows the death
rates (posterior means)

mzsx = ξzsx/Pzsx

over the three zones z. Figures 3a and 3b plot the logs of
these rates. The latter show the wider contrasts in mortal-
ity at lower ages, with excess child and younger adult mor-
tality in the Western zone. Also apparent from Table 4 is
higher female than male child mortality (at ages 0–4), as
reported elsewhere [20].

Findings on expectancy variations
Of particular interest as model outputs are the expectancy
gap between urban and rural areas, and the contrasts in
life expectancy between divisions at different stages of
development. As to urban-rural differentials within divi-
sions, the parameter γs is estimated in model 3 as 0.48
(with standard deviation 0.02) for females, translating
into an average rural mortality relative risk of 1.62 with
urban areas at 1. For males the corresponding parameter
is 0.37 (with relative risk 1.45). So females are particularly

Table 2: Predictive Match by Age Band

Total observations not within 95% intervals of yrep,risx Average of log(CPO)

Age band Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

0–4 38 30 13 -9.0 -8.3 -8.3
5–9 6 3 0 -5.6 -5.2 -5.2
10–14 4 0 0 -5.4 -5.1 -5.0
15–19 11 12 17 -6.0 -5.9 -6.0
20–24 12 6 10 -6.3 -6.1 -6.2
25–29 3 2 6 -6.5 -6.3 -6.3
30–34 1 1 4 -6.5 -6.3 -6.3
35–39 1 2 2 -6.5 -6.3 -6.3
40–44 1 1 1 -6.6 -6.4 -6.3
45–49 0 1 1 -6.9 -6.8 -6.7
50–54 0 0 1 -7.1 -7.0 -6.9
55–59 0 1 3 -7.3 -7.2 -7.2
60–64 0 2 3 -7.8 -7.7 -7.6
65–69 1 3 4 -8.1 -8.0 -8.0
70–74 1 1 6 -8.3 -8.2 -8.2
75–79 1 2 2 -8.3 -8.1 -8.0
80–84 2 2 6 -8.1 -7.9 -7.9
85–89 6 5 2 -7.7 -7.4 -7.3
90–94 7 8 4 -6.8 -6.5 -6.4
95–99 20 23 0 -5.8 -5.6 -5.2
100+ 23 27 4 -4.1 -4.0 -3.8
All* 138 132 89 -6.9 -6.7 -6.6

* Gives total observations (in 2604) not within 95% intervals of yrep and average log(CPO) over all 2604 cases
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disadvantaged by rural location. The rural health disad-
vantage in modern China has been attributed to the dis-
proportionate subsidies given to urban hospitals, and to
the fact that income inequalities between rural and urban
areas have been rapidly followed by health inequalities
[21]. China's health system has been ranked by the WHO
as the lowest in the world in terms of health equity: urban
residents make up only about 20% of China's total popu-
lation, but enjoy about 80% of health resources [22].

Table 5 shows the profile of life expectancies at birth
resulting from model 3. These are by administrative divi-
sion and urban-rural populations within divisions. Also
shown are adjusted estimates of life expectancy presented
both by Heilig [12] and Cai [9], that were made by
China's National Bureau of Statistics [23]. The China wide
life expectancies for males and females according to the
NBS are respectively 69.6 and 73.3. Cai [9] mentions that
"although the NBS did not provide information on how

the adjustments were made, the comparison indicates that
adjustments were made for the undercounting of deaths
in the census". The China wide life expectancies for males
and females from model 3 are respectively 69.7 and 72.7.
These are very close to estimates made by Banister & Hill
[8], that also adjust for death undercounting, namely 69.7
and 72.8.

Table 5 contains estimates (namely posterior means)
obtained by sampling at each MCMC iteration, but in fact
one advantage of the Bayesian sampling approach is that
the full density of expectancies and other life table indices
can be obtained. Most density plots for the 124 expectan-
cies at birth are symmetric (i.e. do not show skewness
inconsistent with normality) with discrepancies between
mean and median under 0.1 year. However, many poste-
rior plots of life expectancy at birth exhibit levels of kurto-
sis inconsistent with posterior normality. For examples,
analysis of samples of size 1000 from the 62 posterior

Table 3: Spatial Effects Model 2

Female Male

Mean 2.5% 97.5% Mean 2.5% 97.5%

Beijing -5.6 -7.0 -5.8 -4.4 -5.6 -2.4
Tianjin -5.8 -6.8 -6.0 -4.6 -5.5 -3.5
Hebei -2.7 -3.3 -2.7 -1.9 -2.6 -1.1
Shanxi -2.1 -2.9 -2.2 -1.3 -2.2 -0.8
Inner Mongolia -0.2 -0.9 -0.2 0.1 -0.6 0.7
Liaoning -2.3 -3.3 -2.3 -1.7 -2.3 -1.1
Jilin -0.7 -1.5 -0.8 -0.5 -1.3 0.8
Heilongjiang -2.8 -3.5 -2.8 -1.9 -2.5 -0.6
Shanghai -6.6 -8.1 -7.3 -5.4 -6.7 -2.9
Jiangsu -3.4 -4.4 -3.5 -2.9 -3.5 -2.0
Zhejiang -2.3 -2.9 -2.2 -1.7 -2.2 -0.8
Anhui -0.4 -1.8 -0.3 -0.5 -1.5 0.3
Fujian -0.9 -1.8 -0.9 -0.5 -1.3 0.4
Jiangxi 1.7 -0.1 2.1 1.2 -0.5 2.3
Shandong -1.8 -2.6 -1.8 -1.4 -2.2 -0.7
Henan -1.1 -2.2 -1.1 -0.9 -1.6 -0.2
Hubei 0.3 -0.4 0.3 0.1 -0.5 0.9
Hunan 1.1 0.3 1.0 0.8 0.1 1.4
Guangdong -1.4 -2.3 -1.4 -1.0 -1.8 0.0
Guangxi 0.5 -1.3 0.6 0.6 -0.6 1.3
Hainan -1.0 -3.1 -0.9 -1.0 -2.2 -0.2
Chongqing 2.1 0.8 2.2 1.6 -0.1 2.4
Sichuan 2.2 1.5 2.1 1.6 1.0 2.3
Guizhou 6.7 5.9 6.6 5.1 3.4 6.2
Yunnan 6.8 5.9 6.8 5.3 4.5 6.0
Tibet 9.2 8.3 9.2 6.8 5.3 7.6
Shaanxi 1.0 -0.7 1.1 0.8 -0.2 1.6
Gansu 1.8 0.8 1.8 1.3 0.6 1.9
Qinghai 4.7 4.1 4.6 3.5 2.6 4.1
Ningxia 1.0 -0.9 1.1 1.1 0.2 1.8
Xinjiang 2.1 1.2 2.1 1.6 0.9 2.5
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(page number not for citation purposes)



International Journal of Health Geographics 2007, 6:16 http://www.ij-healthgeographics.com/content/6/1/16
urban life expectancy densities found 12 with significant
positive kurtosis (and none with significant negative kur-
tosis). So assessing whether life expectancy at birth E0i in
division i exceeded that in division j might be problematic
under classical analysis, but under a Bayesian sampling
approach the posterior probability Pr(E0i > E0j|y) is easily
obtained.

Table 5 shows generally higher expectancies for women;
men have considerably higher tobacco and alcohol con-
sumption than women in China [24,25], and are involved
in more traffic accidents and work-related diseases and
deaths than women [26]. However, women show a

greater rural vs urban survival disadvantage than men,
and their excess life expectancy over males is smaller in
rural areas (71 vs 68.3 for males), whereas in urban areas
the excess averages 3.8 years (77.1 vs 73.3).

There are wider expectancy contrasts in both female and
male expectancies within the rural sub-divisions than the
urban sub-divisions of the 31 regions. For females, the
range in urban subdivisions is from 72.4 (Yunnan) to
80.1 (Shanghai), while for rural subdivisions, the range is
from 64.5 (Yunnan) to 75.2 (Shanghai). Figures 4a and
4b show female expectancies for urban and rural female
populations in each division; they correlate highly, show-

Main Age Effects Model 2Figure 2
Main Age Effects Model 2.
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Table 4: Mortality Rate Profile; Three Zones

Female Male

Age band East/Coastal Middle Western East/Coastal Middle Western

0–4 0.00461 0.00634 0.01124 0.00351 0.00476 0.00810
5–9 0.00040 0.00049 0.00077 0.00059 0.00069 0.00097

10–14 0.00030 0.00036 0.00053 0.00047 0.00054 0.00073
15–19 0.00042 0.00053 0.00080 0.00068 0.00079 0.00108
20–24 0.00060 0.00078 0.00123 0.00110 0.00131 0.00179
25–29 0.00075 0.00092 0.00130 0.00125 0.00146 0.00191
30–34 0.00088 0.00105 0.00139 0.00155 0.00177 0.00220
35–39 0.00119 0.00137 0.00173 0.00202 0.00226 0.00270
40–44 0.00179 0.00204 0.00252 0.00314 0.00347 0.00400
45–49 0.00270 0.00304 0.00363 0.00449 0.00493 0.00559
50–54 0.00457 0.00512 0.00602 0.00686 0.00749 0.00839
55–59 0.00735 0.00804 0.00918 0.01147 0.01231 0.01347
60–64 0.01318 0.01418 0.01564 0.01911 0.02019 0.02146
65–69 0.02269 0.02446 0.02639 0.03165 0.03373 0.03522
70–74 0.03990 0.04241 0.04408 0.05397 0.05666 0.05876
75–79 0.06716 0.07147 0.07339 0.08267 0.08664 0.08842
80–84 0.11190 0.11870 0.12040 0.13480 0.14110 0.14320
85–89 0.16230 0.17140 0.17420 0.18760 0.19500 0.19730
90–94 0.23810 0.25160 0.25350 0.25090 0.25930 0.26330
95–99 0.31650 0.31920 0.31450 0.27430 0.21670 0.21940
100+ 0.36970 0.35790 0.36590 0.25320 0.25580 0.26510

Age Weights, Model 2Figure 1
Age Weights, Model 2.
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a Female Mortality by ZoneFigure 3
a Female Mortality by Zone. Horizontal Axis Caption: Age group. Vertical Axis Caption: Log rate. b Male Mortality by Zone. 
Horizontal Axis Caption: Age group. Vertical Axis Caption: Log rate.
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a Female Expectancy Urban SubdivisionsFigure 4
a Female Expectancy Urban Subdivisions. b Female Expectancy, Rural Subdivisions.
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ing that rural populations within healthier divisions ben-
efit in improved survival terms as well as urban
population groups.

Conclusion
This paper has sought to show the gains of using a model
based approach to life tables for a set of regions. It has
considered mortality in 31 Chinese administrative divi-
sions and shown how the major aspects of mortality vari-
ation can be summarised in parsimonious models with
interpretable parameters. In terms of geographic contrasts
the main results are the wide inter-division and urban-
rural contrasts in mortality risks and life expectancy.

The modelling approach allows the significance of such
contrasts to be readily assessed – and indeed the full pos-
terior sampling density of life table measures such as life
expectancy can be obtained by using MCMC sampling
output. By contrast, classical analysis relies on approxima-
tions such as Chiang's "delta method" approximation
[27] of the sample variances of life expectancies; such
approximations have to be worked out for each life table
measure separately.

The model schemes used have shown that area and age
effects do not conform to the multiplicative model con-
sidered by Hoem [5] and others – the multiplicative
model is equivalent to assuming effects of age and area are
additive in the log mortality risk scale. Instead, it is found
that spatial contrasts in Chinese division mortality are
especially apparent in younger age groups and model fit
(for models 2 and 3) is greatly improved by allowing for
such non-proportionality.

Much of the disease mapping literature, especially that
adopting a Bayesian modelling approach, has assumed
additive effects in the log relative risk scale, or has elimi-
nated consideration of age (or other demographic stratifi-
ers) using indirect standardisation, often without prior
checks on the validity of such simplifications. The indirect
standardisation approach [6] applies a standard age
schedule (e.g. national age mortality rates) across all areas
and leads to models where event counts yi for area i are
compared to expected deaths Ei which are treated as an
offset.

The present research emphasizes the importance of evalu-
ating such basic assumptions in making epidemiological
or health inferences, since relative risk contrasts between
areas may not be the same when age-area interactions are
allowed for. If mortality and health inequalities between
divisions or urban-rural areas are strongly age related then
this may be important in strategic health interventions to
counteract health imbalances.

While having implications for health policy, the type of
analysis undertaken in this paper is descriptive in the
sense that one is not seeking to explain life expectancy
contrasts in terms of a range of potential risk factors:
health behaviours, environmental or climatic factors,
income levels or income inequality, ethnicity and/or
nationality, education and literacy levels, female status, or
economic structure [28,29]. Rather a statistical modelling
approach accounting for age and area effects can be seen
as a preliminary to, but also providing a distinct perspec-
tive to, a causal model that would typically just examine
total life expectancy as a response.

Appendix 1 socioeconomic characteristics of 
administrative divisions
Table 6 shows selected socio-economic features of the
administrative divisions. The indicators are based on the
2000 census (based on tabulations distributed by China
Data Center at the University of Michigan), except for data
on GDP per head from the work of Heilig [1]. To summa-
rise ethnicity/nationality, the percent Han Chinese is
used: of the total population of 1198 million people liv-
ing in the 31 provinces, autonomous regions and munic-
ipalities, 91.6% were of Han nationality. At division level
the variation is from 6 to 100%.

Appendix 2 methods: details on priors for 
models
A fully Bayesian strategy is adopted using Monte Carlo
Markov Chain (MCMC) estimation. For bivariate spatial
effects, namely λi = (λi1, λi2) in model 1 and θi = (θi1, θi2)
in models 2 & 3, a bivariate version of the CAR normal
prior [30] is assumed. Thus with n = 31 provinces, and
with i and j denoting different provinces, the pairwise dif-
ference prior for λi = (λi1, λi2) has precision matrix Ψλ and
joint density

A contiguity assumption is made for the geographic inter-
actions so that wij = 1 for adjacent provinces and zero oth-
erwise. A Wishart prior with identity scale matrix and 2
degrees of freedom is adopted on Ψλ . The spatial effects
are centred at each MCMC iteration (to sum to zero over
all provinces).

The age effects ηxs in all three models are modelled in
terms of normal autoregressive random walks with vari-
ances ωs specific to sex, so

ηxs ~ N(ηx-1,s, ωs) (A1.2)

P wi
n

ij i j
i j

i j( | ) | | exp{ ( ) ( )}/

,

λ λ λ λ λλ λ λΨ Ψ Ψ∝ − − ′ −∑2

(A1.1)
Page 10 of 13
(page number not for citation purposes)



International Journal of Health Geographics 2007, 6:16 http://www.ij-healthgeographics.com/content/6/1/16
This prior does not set a level and so male and female age
effects are centred at each MCMC iteration (using the
car.normal prior in WINBUGS).

A uniform U(0,1000) prior is assumed for the negative
binomial α, and N(0,1000) priors on the fixed effects {ks,
γs}. For the precisions ωs (in all models) and ζx (in model
3), a uniform U(0,1000) prior is assumed. The age weight
parameters φxs in models 2 and 3 are generated using
gamma Ga(l,l) priors on parameters fxs, and then scaling
the fxs to sum to 1 within genders s. So

This is equivalent to a Dirichlet prior on the φxs
17.

Appendix 3 methods: model assessment
Comparisons of model fit in the analysis use two criteria:
the deviance information criterion (DIC) of Spiegelhalter
et al [31], and the pseudo marginal likelihood (psML)
based on Monte Carlo estimates of conditional predictive
ordinates, or CPOs [32,33]. The DIC is obtained as the
posterior mean deviance plus a measure of complexity de
that can also be regarded as estimating the effective
dimension of the model, but also reflects features such as
parameter precision.

The CPO is a cross-validatory measure of predictive fit,
namely

CPO = p(yh|y[h], θ) (A2.1)

ϕxs xs xs
x

f f= ∑/ (A1.3)

Table 5: Life Expectancies at Birth, by Administrative Division & Urban-Rural Populations within Divisions Model 3 Smoothed 
Expectancies (Urban, Rural, All Populations) vs Official Life Tables (All Populations)

FEMALES MALES

MODEL OFFICIAL MODEL OFFICIAL

Admin Division Urban Rural All All Urban Rural All All

Beijing 79.6 74.6 78.3 78.0 75.4 71.2 74.3 74.3
Tianjin 79.7 74.6 77.9 76.6 75.6 71.3 74.0 73.3
Hebei 78.2 72.5 74.0 74.6 74.2 69.7 70.8 70.7
Shanxi 78.1 72.4 74.2 73.6 74.1 69.4 70.9 70.0
Inner Mongolia 76.9 70.8 73.4 71.8 73.2 68.1 70.3 68.3
Liaoning 78.3 72.8 75.5 75.4 74.2 69.6 71.8 71.5
Jilin 77.9 72.0 74.8 75.0 73.9 69.1 71.4 71.4
Heilongjiang 78.8 73.3 76.0 74.7 74.7 70.0 72.3 70.4
Shanghai 80.1 75.2 79.5 80.0 76.2 72.1 75.7 76.2
Jiangsu 78.7 73.2 75.6 76.2 74.8 70.2 72.1 71.7
Zhejiang 78.4 72.9 75.4 77.2 74.3 69.8 71.8 72.5
Anhui 77.2 71.0 72.6 73.6 73.6 68.7 69.9 70.2
Fujian 77.6 71.7 74.0 75.1 73.8 69.1 70.9 70.3
Jiangxi 75.4 68.5 70.3 69.3 72.3 67.2 68.4 68.4
Shandong 77.8 72.1 74.3 76.3 73.9 69.2 71.0 71.7
Henan 77.6 71.5 72.9 73.4 73.8 69.0 70.0 69.7
Hubei 77.7 71.7 74.2 73.0 73.7 68.9 70.8 69.3
Hunan 77.0 70.8 72.5 72.5 73.1 68.0 69.3 69.1
Guangdong 77.9 72.2 74.8 75.9 74.0 69.4 71.6 70.8
Guangxi 76.9 70.4 71.9 73.8 73.3 68.3 69.5 69.1
Hainan 77.8 71.7 73.9 75.3 74.3 69.5 71.4 70.7
Chongqing 76.8 70.6 72.3 73.9 72.7 67.5 68.8 69.8
Sichuan 76.9 70.6 72.1 73.4 72.6 67.5 68.6 69.3
Guizhou 72.9 65.1 66.6 67.6 69.2 63.2 64.4 64.5
Yunnan 72.4 64.5 66.1 66.9 69.2 63.3 64.4 64.2
Tibet 73.0 65.3 66.3 66.2 68.9 62.8 63.6 62.5
Shaanxi 76.3 69.8 71.8 71.3 73.3 68.3 69.7 68.9
Gansu 75.9 69.1 70.5 68.3 72.7 67.2 68.3 66.8
Qinghai 74.9 68.0 69.7 67.7 71.1 65.4 66.9 64.6
Ningxia 77.4 71.3 72.8 71.8 72.9 67.8 69.1 68.7
Xinjiang 76.6 69.8 71.7 69.1 72.2 66.8 68.4 66.0
China 77.1 71.0 72.7 73.3 73.3 68.3 69.7 69.6
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where θ are the model parameters, yh indicates deaths in a
particular one of the 2604 subdivision-area-gender-age
strata, and y[h] denotes the data in the remaining 2603
strata. The conditional predictive ordinates are indicators
of model adequacy at the level of individual observations;
low CPOs (or highly negative log CPOs) indicate poorly
fitted points. The overall total of log(CPO) provides a
log(psML) which will be higher for a model providing a
better overall fit.

Model adequacy may also be assessed using predictions
from the model – more specifically, replicate observations
yrep,risx sampled from the posterior predictive density
p(yrep|y). Following Gelfand [34], a summary of how well
these predictions match the actual data, yrisx, involves a
tally of how many actual observations are located within
the 95% interval of the corresponding model prediction
yrep,risx. If 95% or more of the N = 2 × 31 × 2 × 21 = 2604
death counts yrisx are within the 95% intervals of the pre-

dictions then the model is judged to be reproducing the
observations satisfactorily.
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