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Abstract
Background: The statistics of disease clustering is one of the most important tools for
epidemiologists to detect and monitor public health disease patterns. Nowadays, tuberculosis (TB)
– an infectious disease caused by the Mycobacterium tuberculosis – presents different (development
in populations and antibiotics resistance) patterns and specialists are very concerned with it and its
association to several other diseases and factors. Each year, tuberculosis kills about three million
people in the world. In particular, it is responsible for the death of more than one-third of HIV-
infected people, who prove particularly susceptible due to a decline in their immune defences. The
purpose of this study is to determine if there are spatiotemporal tuberculosis incidence clusters in
continental Portugal. The presented case study is based on the notification of new tuberculosis
cases (disease incidence), between 2000 and 2004. In methodological terms, the spatial scan
statistic, used to identify spatiotemporal clusters, was improved by including two new approaches:
definition of window sizes in the cluster scanning processes considering empirical mean spatial
semivariograms and an independent and posterior validation of identified clusters (based on
geostatistical simulations).

Results: Continental Portugal is organized in 18 districts with 278 sub-districts. For this case study,
the number of new notified cases of TB, per sub-district and per year (2000–2004) was available.
TB incidence presents clear spatial patterns: a semivariogram consistent with 40% of nugget effect
and 60% of spatial contribution, following an exponential model with a range of 143 kilometres.
Temporal semivariograms were not conclusive, as only 5 years of data were available. The spatial
and temporal persistence of clusters were analyzed considering different models. Significant high
incidence rate space-time clusters were identified in three areas of Portugal (between 2000 and
2004) and a purely temporal cluster was identified covering the whole country, during 2002.

Conclusion: In terms of spatiotemporal clustering of tuberculosis disease, the proposed
methodology allowed the identification of critical spatiotemporal areas. In Portugal there were 3
critical districts (Porto, Setúbal and Lisbon) with high rates of notified incidences between 2000 and
2004. In methodological terms, semivariogram parameters were successfully applied to define
spatiotemporal scan window sizes and shapes (ellipsoidal cylinders), showing very good results and
performances in the case study. After defining the clusters, these were authenticated through a
validation method, based on geostatistical simulations.
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Background
In 1993, the World Health Organization (WHO) declared
tuberculosis (TB) to be a global emergency. Disease con-
trol is based on effective diagnosis, treatment and moni-
toring of TB cases, and must undergo a directly observed
short course therapy [1]; this defines "DOTS strategy".
Some authors sustain that tuberculosis can be controlled
only if appropriate policies are followed and effective clin-
ical and public health management is ensured [2]. New
perspectives and ways of addressing TB treatment and
control are needed.

Disease mapping has a long history [3] and it is not sur-
prising that this method of descriptive analysis was first
used as an attempt to identify sources of infections and to
describe rates of spread. The description of spatial/tempo-
ral patterns of disease incidence and mortality can be
defined as geographical epidemiology. This can be consid-
ered as a part of descriptive epidemiology, which is more
concerned with describing the occurrence of diseases with
respect to demographic characteristics (e.g. age, race and
sex), place and time [4]. In the past decade, several studies
on geographical epidemiology have been published all
over the world. Porter [5] published a very interesting
study about Geographical Information Systems (GIS) and
the tuberculosis DOTS strategy. Moonan et al. [6] used
GIS technology to identify areas of tuberculosis transmis-
sion and incidence in the USA, 1993–2000. Rodrigues-Jr
et al. [7] studied spatial distribution of M. tuberculosis-
HIV co-infection in São Paulo State, Brazil, 1991–2001. In
India, Tiwari et al. [8] investigated geo-spatial hotspots for
the occurrence of tuberculosis in the Almora district, using
GIS and spatial scan statistics. In the WHO European
region, the TB situation is critical in 16 of the 51 countries,
with a resurgence of the disease and a dramatic increase in
notification rates during the last 10 years [9]. Serra et al.
[10] studied the tuberculosis surveillance and evaluation
system in Portugal. Antunes et al. [11] took a historical
perspective on the 1994 tuberculosis situation in Portu-
gal. Briz [12] studied the country's effectiveness of the
Tuberculosis Control Program, stressing that, while Portu-
gal has the highest notified incidence of tuberculosis in
Western Europe, the estimated case detection is one of the
best (which may artificially contribute to the relatively
bad incidence score). The General Directorate of Health
publishes an annual monitoring report about incidence
and prevalence of TB in Portugal, based on these epidemi-
ologic concepts and using GIS only to allow visual geo-
graphical interpretations.

In my opinion, the identification of geographical areas
with on-going disease transmission, using GIS and spatio-
temporal statistical analyses, has become indispensable.
Spatiotemporal clustering methods are concerned with
the identification of greater density of occurrences of a

phenomenon in certain places at certain times. These
techniques have been intensively applied in several areas
such as demography, criminology, toxicology, among
others.

Disease clustering is a technique of major interest to epi-
demiologists which has been studied for many decades;
for an effective disease management it is essential to know
when, where and to what degree a disease is present. Dur-
ing the last decade there has been a huge and fast develop-
ment of spatiotemporal clustering applied to health:
assessment of infectious diseases, cancer, rheumatisms,
diabetes and accidents, among others.

In 1995, Kulldorff and Negarwalla [13] developed a new
method for the detection and inference of spatial clusters
for a particular disease, with a clearly defined hypothesis
test and test statistics based on the likelihood ratio. Klas-
sen et al. [14] studied geographic clustering of prostate
cancer. Nkhoma et al. [15] detected spatiotemporal clus-
ters of accidental poisoning mortality. Recently, Kadafar et
al. [16] presented a compilation of several methodologies
to detect disease clusters in time and/or space. Sheridan et
al. [17] investigated the distribution of bovine spongiform
encephalopathy (BSE) in herds of cattle in Ireland
between 1996 and 2000, prior to the introduction of
widespread active surveillance. Due to the exponential
growing and development of this subject, review papers of
several methods of spatial and (more recently) spatiotem-
poral clustering, have been particularly welcome [18-23].

Conjugation between classical approaches of space-time
clusters and geostatistical methodologies are relatively
recent. Berke [24] used kriging to estimate spatial risk
functions from regional count data. Goovaerts and Jac-
quez [25] present an application of spatially correlated
neutral models (based on Sequential Gaussian Simula-
tion) for the detection of changes in mortality rates across
space and time using the local Moran I Statistics. Goo-
vaerts [26] used Poisson kriging and p-field simulation to
assess cancer mortality risk.

In the present study, the objective is to map spatiotempo-
ral tuberculosis incidence in Portugal in order to deter-
mine when and where unusually high concentrations of
new cases occurred, considering the gender distributions
in local populations. Spatiotemporal clustering adjusted
with geostatistical parameters is used.

Two important perspectives were considered in this case-
study, as cluster detection was done both retrospectively,
trying to define when and where the clusters could be
found, and prospectively, given that the data set is gener-
ated as an on-going process, with data for recent cases
added as the cases are reported. With each inclusion of
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new data, the prospective analysis addresses the question
if there is a new cluster emerging.

Methods
Different approaches for the detection of space-time clus-
ters have been proposed and implemented. The most
referred approach relies on the space-time scan statistic
[27], which identifies the most significant cluster of a par-
ticular shape in space and time. This method identifies the
zone showing the strongest evidence of representing a
high density cluster. The scan statistic is based on a maxi-
mum likelihood ratio for each potential cluster that
expresses how much more likely the observed density is,
under the hypothesis of clustering, than under the
hypothesis of uniformity. Since the exact distribution of
the test statistic cannot be determined, Monte Carlo sim-
ulation is used to perform the hypothesis test.

One important aspect of this cluster detection method is
the choice of cluster shapes and cluster dimensions. This
choice will obviously directly influence the final results.
Kulldorff [27] referred that the best choice of window
depends on the application and indicated some possibili-
ties: all circular, with all circles centred at any of several
foci on a fixed grid, with a possible upper limit on circle
size or with a fixed circle size; all rectangles of a fixed size
and shape; and, when looking for space-time clusters, the
possibility of using cylinders, scanning circular geograph-
ical areas over variable time intervals.

Iyengar [28] analysed the influence of cluster shape and
concluded that cylindrical or elliptical search windows
can limit the fit of models, proposing analyses with more
than one shape, computing, for instance, square pyrami-
dal shapes.

The first problem addressed here is not cluster shapes (cir-
cular and elliptical shapes are considered), but cluster
dimensions. Using only cylindrical shapes, a large
number of windows (with different radii), can be com-
puted. If we consider the hypothesis of elliptical windows,
the number of possible windows to test grows fast (each
window is defined by centre coordinates, angle (azi-
muth), major axis dimension and minor axis dimension).
To deal with this infinity of possibilities, all software must
have some parameters defined by default. For instance,
when elliptical spatial scan statistics are requested, SaTS-
can, (one of the most popular and free space-time cluster-
ing software, [29]) uses the circular window plus four
different elliptical shapes (by default).

The idea of this paper is that disease-specific semivario-
gram parameters can be used to infer these windows
parameters. In simple terms, a semivariogram can be
defined as a key function in geostatistics that describes

spatial and/or temporal patterns of the observed phenom-
enon. It has a long and exhaustive history in scientific
geostatistical studies [30-32].

The semivariogram represents an average behaviour con-
tinuity (mean pattern) for the whole study area, whereas
a cluster is determined by the behaviour in a specific place
(local pattern). But, although there is no evidence about
any relation of global mean patterns with local behav-
iours, the use of mean pattern information is certainly
more sensible than using some default case-study inde-
pendent parameters. For instance, the software SaTScan
[29] is parameterized by default (in advanced options
including elliptical windows) to scan circular windows
plus four different elliptical shapes, with ratios of the
longest to the shortest axis of the ellipse of 1.5, 2, 3, 4 and
5. For each shape, different numbers of angles of the
ellipse are tested: 4, 6, 9, 12 and 15, respectively. The
north-south axis is always one of the angles included, and
the remaining angles are equally spaced around the circle.
For each shape and angle, all possible sizes of the ellipses
are used, up to an upper limit specified by the user in the
same way as for the circular window. But the question
here is: Why these defaults? They don't have any parame-
terization related to the specific case-study.

Semivariograms describing the mean space-time patterns
can be useful in this context, even when, like in this case-
study, it is only possible to compute mean spatial semi-
variograms [33,34]

Assuming a value Z(xi, tj) of variable Z, observed in a cer-
tain sub-district i (represented through a geometric central
point xi) for time tj, this value can be correlated with the
incidences observed in previous time periods for the same
area, and with incidents observed at neighbouring sub-
districts during the same or previous time periods.

The spatial continuity for a given period of time can be
characterized using a mean spatial semivariogram, γs(h),
computed by averaging the spatial semivariogram of each
time t slice and representing the mean spatial pattern for
that given period of time [34]:

where Nt is the number of time periods and Nh the
number of pairs of sub-districts at distance h from each
other (geometric central points distances).

These are commonly represented as a graph that shows
the variance behaviour γ(h) against the (distance or time)
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lag h. Usually and in presence of spatial/temporal depend-
encies, the semivariogram initially rises from some point
on the y axis (nugget effect) and reaches a threshold (sill)
at a certain location (defining the range).

Ranges of the adjusted semivariogram models as well as
angles (azimuths), can provide a first approach to case-
study specific scan window parameters. Here, the use of
the semivariogram parameters is proposed to infer a pos-
sible window shape, following the assumption (or expec-
tation) that local behaviours can influence or be
represented by the global behaviour's parameters, (not
following their exact values, but their general shape –
angle and ratio of the longest to the shortest axis of the
ellipse). So, in order to incorporate case-study coherence
into the parameters definition, these parameterized ellip-
tic windows were used next to circular windows. This way,
the number of different scan windows tested can be
reduced and will follow a case-study specific parameteri-
zation.

The second problem addressed is related with the valida-
tion of identified clusters. Goovaerts and Jacquez [25] and
Goovaerts [26] have presented some developments in
neutral models, stressing that spatially uncorrelated mod-
els can lead to some predisposition to reject the null
hypothesis, defining false clusters. Here a different
approach is proposed: After cluster identification, (using
hypotheses based on spatially uncorrelated models –
Monte Carlo) and knowing about the existence of a spe-
cific spatial/temporal pattern, geostatistical simulations –
Sequential Gaussian Simulations (SGS, [25,33]) – were
computed. SGS is used to generate realizations for each
identified cluster, not considering the incidence rates
observed in this cluster and imposing the fitted semivari-
ogram model. "True" clusters (identified using spatially
uncorrelated models) must present extreme (high)
observed rates in their simulated local distributions (con-
ditioned to the semivariogram and to neighbouring inci-
dence rates).

For each cluster, the validation process can be summa-
rized in the following steps:

- Temporally, delete observed incidence values of all spa-
tiotemporal points within the cluster (sub-districts/years);

- Simulate k scenarios for all these points, using SGS;

- For each scenario, sum up simulated spatiotemporal val-
ues for the same spatiotemporal observed location
(within this cluster);

- Compute a local distribution with k global incidence val-
ues;

- Compare the global observed incidence value (sum of
observed incidence values within this cluster) with the
local distribution: compute the probability of the simu-
lated notified rates being above the observed notified
rates of this cluster.

This validation process (considering only the spatiotem-
poral continuity after cluster identification) is a different
and simpler approach to deal with the potential tendency
to reject the null hypothesis defining false clusters. Note
that this processes requires the reproduction of the mean
spatial semivariogram inferred from all data, but only the
histogram of those data considered in the simulation
process (without data belonging to cluster). For each clus-
ter, each simulated scenario is computed in a space-time
domain (considering time as a third spatial axis).

Results
Case study
Portugal is fully covered by the National Tuberculosis
Control Program (PNT), which strictly follows the World
Health Organization's Strategy [1] defined as Directly
Observed Therapy, Short Course (DOTS) and regularly
issues a progress report. The information used, regarding
cases notified between 2000 and 2004, was provided by
SVIG-TB, the specific PNT information system managed
by the PNT coordination team, at the general Directorate
of Health. Data are all related to incidence notifications.
Population denominators come from official statistics,
issued by the National Statistics Institute. This study is not
a population-based study, but an institution-based study,
as it relies on the compulsory notification of cases to the
General Directorate of Health, by clinicians According to
Briz [12], Portugal presents a detection rate of 83%
(regarding pulmonary cases).

By analysing reported incidence rates per sub-district and
per year, instead of the number of cases only, spatial vari-
ability of population size is accounted for. Continental
Portugal is organized in 18 districts with 278 sub-districts
(spatial unit). The temporal aggregation is on an annual
basis (5 years: between 2000 and 2004).

Figure 1 shows the notified incidence rate per year and per
sub-district.

At a sub-national level, assuming a homogeneous detec-
tion rate, geographic heterogeneity of notified incidence
rates is clearly present.

Figure 2 shows the incidence rate per year for the whole
population (FM) and by gender (F = Female, M = Male).

In this first approach, space-time clustering is based on the
notified cases per sub-district per year. Figure 3 presents
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the yearly incidence rates for the three Portuguese districts
with the lowest and the three with the highest incidence
rates.

In the districts with the lowest incidence rates, the tempo-
ral patterns seem stable. The other districts present
decreasing behaviours from 2002 onwards (except for
Setúbal), agreeing with the 1972–2002 temporal patterns
[12].

Figure 4 presents the age/gender distribution in the noti-
fied incidence data, for the years 2000 and 2004 (as exam-
ples).

On their own scale, male and female population display
similar patterns for the same year. Between 2000 and
2004 a shift of the mode to the next age-group (25–34 to
35–44) can be observed. A tentative explanation, could be
that in 2004 the notified cases were more related to reac-
tivations (older ages) and less to new cases, than in 2000.
If we interpret this as a temporal tendency, it could point
at a successful control program, although this inference is
not possible based on a data series of 5 years only. To

define directions with major continuity patterns, mean
spatial semivariograms were computed for several direc-
tions (0, 10, 20, 30, 40, 50, 70 and 80) and also for their
perpendicular angles. Figure 5 shows the semivariograms
for the most representative directions.

According to the experimental mean spatial semivario-
grams presented in Figure 5, notified incidence rates have
clear spatial patterns. In this case-study, the fitted model
has a high nugget effect (350/865 = 40% of variance
behaviour, defining a considerable spatially uncorrelated
variation or some noise effects) and a spherical structure
(responsible for 515/865 = 60% of variance behaviour).
Defining the ellipsoids' characteristics, this model shows
a geometric anisotropy (the dispersion patterns are not
equal in all directions), with a major axis or range of 143
km (maximum distance of spatial correlation), over the
90 degrees azimuth and with an anisotropic ratio of 1.6
(ratio between major axis and minor axis). As already
referred, with 5 years of data (on an annual basis) it is not
possible to characterize temporal patterns.

Cluster Identification
In epidemiologic studies it is usually interesting to iden-
tify disease clusters, after having adjusted for spatial varia-
tions in the density and the characteristics of the
background population itself.

Notification rates (/105) per age group and gender, for 2000 and 2004Figure 4
Notification rates (/105) per age group and gender, for 2000 
and 2004.

Notification rates (/105) per year, for the whole population (FM) and by genderFigure 2
Notification rates (/105) per year, for the whole population 
(FM) and by gender.

Notification rates (/105) per sub-district and per yearFigure 1
Notification rates (/105) per sub-district and per year.

Notification rates (/105) per year, for select districtsFigure 3
Notification rates (/105) per year, for select districts.
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In the present study spatiotemporal clustering was per-
formed using the Poisson model, with and without
adjustments for a gender covariate (using indirect stand-
ardization [35,36]). Due to incomplete information
(population denominators per age, per sub-district), the

corresponding analysis using age distributions were not
possible.

Regarding the shape and dimension of the scan windows,
two different approaches were taken: using elliptical scan
window defaults (circular and elliptic space-time scan sta-
tistic) and using windows depending on semivariogram
parameters (and also considering circular shapes). In a
spatiotemporal context, this means that circular cylinders
and ellipsoidal cylinders were used.

Considering the presence or absence of the gender covari-
ate and default scan window parameters (SaTScan
defaults for the elliptic scan statistics), the first two models
were defined: model I – without covariates and using scan
window defaults; and model II -with gender covariate and
using scan window defaults.

For the second approach, window shape and dimension
are conditioned by the semivariogram parameters, search-

Table 1: Cluster characteristics, for each model.

Model Cluster Coordinates Minor axis Major axis Angle Ratio Time frame p-value (LL Ratio.) Obs/Exp

I 1 (121667, 
292213)

42131.3
210656

84
5

2000–2004 <0.001 (1012.7) 1.27

II 3 (161776, 
109687)

23934.1
118170

-60
5

2000–2004 <0.001 (1033.7) 1.57

II 4 (154861, 
471683)

12881
38643.1

-20
5

2000–2004 <0.001 (697.4) 1.72

I 2 all - - 2002 <0.001 (61.92) 1.14
II 5
III 8
IV 12
V 15

III 6 (110920, 
197626)

13024
20838.4

0
1.6

2000–2004 <0.001 (936.9) 1.75

IV 10

III 7 (160762, 
475195)

13638.7
21821.9

90
1.6

2000–2004 <0.001 (741.4) 1.68

III 9 (255455, 
350524)

0
0

0
1

2003–2004 <0.001 (22.4) 6.10

IV 11 (170616, 
460108)

15196.8
24314.8

0
1.6

2000–2004 <0.001 (734.7) 1.69

V 13 (115030, 
182346)

28758.64
28758.64

-- 2000–2004 <0.001 (954.4) 1.54

V 14 (159069, 
465960)

12945.24
12945.24

-- 2000–2004 <0.001 (712.94) 1.71

Mean spatial semivariograms of most representative direc-tionsFigure 5
Mean spatial semivariograms of most representative 
directions. Semivariogram a) corresponds to the 90 
degrees semivariogram (major range) and semivariogram b) 
corresponds to the perpendicular 0 degrees semivariogram.
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ing only ellipses with a ratio of 1.6 between the axes in
North-South and East-west direction, defining: model III
– without covariates; and model IV – with gender as cov-
ariate. Note that the semivariogram for this case study
presents a 40% nugget effect, suggesting a strong micro-
scale variation in incidence rates (which can be real, pro-
duced by erroneous measurements and/or dependent on
geometric central point distances) not explained by the
proposed model. Remember that these four models have
also circular cylinder options (by default). To enable com-
parison with classical approaches (using only circular and
not allowing ellipsoidal scanning windows) a fifth model
was also computed.

For each model, 999 realizations were generated, using
Monte Carlo Simulations. Analysis includes purely spatial
and purely temporal clusters. All these models were con-
strained to a maximum spatial cluster size of 50% of the
population at risk. Also, no geographical overlap was
allowed, as criterion for reporting secondary clusters.

Detailed characteristics of each cluster (per model) are
presented in Table 1. Figure 6 shows the simulation results
for the five models. For each model, the most likely cluster
is painted with red colour and secondary clusters with
green, blue and grey colours.

Comparing the clusters defined by models I and II (Figure
6 and Table 1), these always seem to constitute structures
with a ratio of 5 (biggest ratio scanned), generating large
and thin ellipsoids. Given that the models only differ in
the use of the covariate gender, its influence appears to be
significant (different cluster dimensions and identified
sub-districts).

A purely temporal cluster was identified by all models:
2002 had high notification rates in the whole country.

Comparing the results obtained with the models III and
IV, based on semivariogram parameters (considering or
not the gender covariate), we see that the most important
areas (including Porto, Lisbon and Setúbal) are identified
by both models. But, due to the imposed ratio and angle
(1.6 and 90°) the clusters could not extend into other
areas. Given that these models differ only in the use of the
covariate gender, its influence seems here not significant.
Note also that all spatiotemporal clusters have a temporal
frame of 2000–2004, including older and not resolved
clusters. One cluster composed by only one sub-district
(Fundão) and only estimated by model III, was identified
for the 2003–2004 period.

Model V, using only circular windows (cylinder shape),
defines areas similar to those of models II and IV, but with
different dimensions. Note that in elliptical searches, cir-
cular windows were also tried but due to the imposed cri-
terion of no geographical overlap (to define only the most
significant cluster for each area), circular clusters could
not be identified. Clusters 13 and 14 were therefore not
identified by model IV, since they were not allowed to
overlap geographically with the more significant clusters
10 and 11.

Mapping the identified spatiotemporal clusters of TB, using the five defined modelsFigure 6
Mapping the identified spatiotemporal clusters of TB, 
using the five defined models. Maps I) and I) were com-
puted using default window parameters, without (Model I) 
and with (Model II) gender as covariate. III) and IV) were 
computed using semivariogram parameters, without covari-
ates (Model III); and with gender as covariate (Model IV). 
Model V uses only circular windows and with gender as cov-
ariate.

Table 2: Cluster validations

Model Cluster Notification Rate Incidence
(Obs.)

Probability

I 1 14645.65 0.08

II 3 7912.13 0.08

II 4 4003.71 <0.001

I 2 11262.43 0.45
II 5
III 8
IV 12
V 15

III 6 2780 <0.001
IV 10

III 7 5024 <0.001

III 9 667.99 <0.001

IV 11 3667.28 0.08

V 13 5286.38 <0.001

V 14 2686.355 <0.001
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Models III and IV define more specific clusters than the
other models, which should be easier to study and to
apply prevention actions. It is possible to apply local best
practices with lower costs and make more detailed evalu-
ations, if the most critical sub-districts are identified.

In a brief, comparative CPU time analysis: model I takes
11 minutes and 39 seconds to run, model II 12 minutes
and 21 seconds, model III runs in 53 seconds and model
IV in only 49 seconds. Model V, the most restricted one,
runs in 23 seconds. Obviously, these CPU times are
directly related with the number of different shapes
scanned.

Concisely, the clusters identified here are not in disagree-
ment with the explanatory conclusions drawn from Fig-
ures 2 and 3 (Methods Section). There were other
identified clusters, all with associated p-values greater
than 0.9, which are not presented in the results. No signif-
icance level was imposed. The presence of extreme p-val-
ues only in this case-study (lower than 0.001 or greater
than 0.9) shows clearly that statistically significant clus-
ters are identified.

Cluster Validations
To validate the identified clusters, local distributions of
the incidence rates were calculated by stochastic simula-
tions (SGS, [25,33]), for each cluster (without taking into
account the data of the respective cluster). The idea is to
check whether the cluster's data belong to these local dis-
tributions. Results are presented in Table 2.

For each cluster, the probability of the simulated notified
incidence rates being above the observed notified inci-
dence rates is presented in the last column (Probability).
Considering the method and validation process applied,
the validation of a purely temporal cluster (2002) cannot
be robust: there are no neighbour conditioning points in
space to condition local distribution.

Bigger major axis clusters have less high probabilities of
presenting extreme values (0.08) than smaller ones. On
the other hand, small ellipses tend to validate the identi-
fied clusters.

Discussion
One major restriction of this study, very important and
already referred, is that this study is not a population-
based study but an intitution-based study; it relies on
compulsory tuberculosis incidence declarations to the
General Directorate of Health (National Tuberculosis
Control Program).

As referred, Portugal presents an estimated detection rate
of 83%, but there are no studies about regional heteroge-

neities of detection rates. These restrictions must be taken
into account, as they could produce some biases in the
conclusions.

In recent years, the decline of notified TB incidence rates
is very slow and not compliant with the goals of a good
control program [2]. Notification rate values are twice as
large for males than for females. A possible explanation
can be explained considering that tuberculosis contami-
nation is directly and strongly related to HIV and risk
behaviours, like, alcohol and drug abuse, homelessness,
among others, which are more frequent in the male pop-
ulation.

In terms of spatiotemporal clustering of tuberculosis dis-
ease the presented methodology allows the identification
of critical and very specific spatiotemporal areas. In Portu-
gal there are 3 critical districts (Porto, Setúbal and Lisbon)
that present high rates of notified incidence between 2000
and 2004. In comparison to models I and II, models III
and IV produce small clusters, which, in epidemiological
terms, may be more realistic and useful for prevention and
for the application of control policies.

Based on model III (using semivariogram information
and no gender information), Fundão, one isolated sub-
district was identified as a critical area with high notified
tuberculosis rates in 2003 and 2004. This area could ben-
efit from a more detailed evaluation to determine if it rep-
resents a real tuberculosis incidence cluster or if the cluster
is caused by other factors, for instance, a better notifica-
tion rate. But, when a variable is found that explains the
observed difference, usually no further investigation is
well succeeded. This point stresses the importance of per-
forming this kind of studies with adjustments for covari-
ates like age or others, next to gender. In the public health
context, the lack of such auxiliary information could con-
stitute a severe restriction of this study.

Nowadays, based on a unreal/isolated concept, tuberculo-
sis could be considered a disease "under control". How-
ever, strong relations between the occurrence of this
disease and some other diseases or risk factors (HIV, alco-
hol and drug abuse, homelessness, a.o.) are changing the
scenarios, leading to a real increase of incidence rates.
These factors must be incorporated in future analysis. We
need to discern whether increased incidence rates are the
result of improved notification or due to more occur-
rences.

In methodological terms, the use of semivariogram
parameters in the definition of scan window sizes and
shapes was successfully applied to this case study and
showed very good results and performances. There are
several problems associated to models I and II, based on
Page 8 of 10
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case-study independent random defaults: Are the tested
ratios adequate to estimate TB dispersion and clusters?
What maximum ratio should be tested? When and how
should the parameterization process stop? Do skeletal
(big-ratio) shapes make any sense for disease dispersion
phenomena? Should we use only circular windows? (Note
that, although this option was always available, no circu-
lar cluster was identified.) Out of curiosity I tried ratios of
6 and 10, with 12 and 15 angles (sections), respectively,
and using the gender covariate. For the ratio of 6 no clus-
ter was identify. For the ratio 10 one cluster was identified
(p-value < 0.001), which was similar to cluster number 4
in Figure 1 (identified without the gender covariate),
though narrower, beginning in the same area (in the
south) and continuing northward, along the coastline,
until Spain. This is a very confusing result, which proofs
the importance and serious consequences of the adopted
scan window shapes. Could we accept that the parameter-
ization of the scan window shapes has more influence (or
just as much) on disease clustering as the use of covari-
ates?

It is very uncommon to find scientific studies based on
elliptical scannings (most use only circular shapes). Com-
paring the results obtained for models II, IV and V (con-
sidering gender), it seems that model IV presents best
results to support public health oriented policies.

The clusters presented in this paper were identified based
on spatiotemporal independence as the null hypothesis,
i.e. assuming that the spatiotemporal distribution of
tuberculosis rates is random (without autocorrelation).
Considering the semivariogram patterns observed, this
assumption does not hold and its application could have
influenced cluster identification. However, the fact that, in
this case study, p-values are very distinct and extreme
(below 0.001 or above 0.9) suggests that this did not hap-
pen here. Furthermore, posterior and independent valida-
tions were conducted, with estimation of local
distributions (based on geostatistical simulations) that
confirm the identified clusters.
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