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Abstract
Background: In geographic surveillance of disease, areas with large numbers of disease cases are
to be identified so that investigations of the causes of high disease rates can be pursued. Areas with
high rates are called disease clusters and statistical cluster detection tests are used to identify
geographic areas with higher disease rates than expected by chance alone. Typically cluster
detection tests are applied to incident or prevalent cases of disease, but surveillance of disease-
related events, where an individual may have multiple events, may also be of interest. Previously, a
compound Poisson approach that detects clusters of events by testing individual areas that may be
combined with their neighbours has been proposed. However, the relevant probabilities from the
compound Poisson distribution are obtained from a recursion relation that can be cumbersome if
the number of events are large or analyses by strata are performed. We propose a simpler
approach that uses an approximate normal distribution. This method is very easy to implement and
is applicable to situations where the population sizes are large and the population distribution by
important strata may differ by area. We demonstrate the approach on pediatric self-inflicted injury
presentations to emergency departments and compare the results for probabilities based on the
recursion and the normal approach. We also implement a Monte Carlo simulation to study the
performance of the proposed approach.

Results: In a self-inflicted injury data example, the normal approach identifies twelve out of
thirteen of the same clusters as the compound Poisson approach, noting that the compound
Poisson method detects twelve significant clusters in total. Through simulation studies, the normal
approach well approximates the compound Poisson approach for a variety of different population
sizes and case and event thresholds.

Conclusion: A drawback of the compound Poisson approach is that the relevant probabilities
must be determined through a recursion relation and such calculations can be computationally
intensive if the cluster size is relatively large or if analyses are conducted with strata variables. On
the other hand, the normal approach is very flexible, easily implemented, and hence, more appealing
for users. Moreover, the concepts may be more easily conveyed to non-statisticians interested in
understanding the methodology associated with cluster detection test results.
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Background
A cluster is an aggregation of excess cases of a disease or ill-
ness. When the aggregation occurs in geography, geo-
graphic cluster detection methods can be used to identify
geographic areas that have higher numbers of cases than
would be expected by chance. Statistical methods are used
to identify such aggregations and once areas are identi-
fied, resources can be targeted to determine if a statisti-
cally significant cluster is spurious or uncover reasons for
the cluster (e.g., environmental contamination).

In some contexts the number of cases may not be the sole
focus of the most meaningful unit for cluster detection.
For studies of health services utilization, the patient may
access various sources of health care numerous times. A
particular feature of these data are that an individual can
provide multiple, correlated data points. Higher utiliza-
tion may be indicative of more serious disease. Such serv-
ices can be generally called disease-related events and
detection of geographic areas with excess disease-related
events is a different exercise than the identification of
excess incident or prevalent cases.

Statistical cluster detection methods are generally classi-
fied into two main categories: non-focused (also often
referred to as general) and focused. Non-focused tests of
clustering identify areas with excess numbers of cases
whereas focused tests identify areas with excess numbers
of cases in the vicinity of potential causes (e.g., toxic waste
site). There are several methods that are applicable in dif-
ferent situations. Some methods assume similar popula-
tion sizes in each geographic area. Our interest, and
application, focuses on methods that allow for diverse
population sizes among the geographic areas.

Overviews of cluster detection methods can be found in
Lawson et al. [1] and Waller and Gotway [2]. An explora-
tory approach involving many overlapping circles was
introduced in Openshaw et al. [3]. Turnbull et al. [4] cre-
ate overlapping circles with constant disease risk that par-
tition the study region. While Turnbull et al. used a Monte
Carlo simulation to assess statistical significance, Kull-
dorff and Nagarwalla [5] provided a generalization that
uses a likelihood ratio test. Using a similar likelihood
ratio test, Duczmal and Assunção [6] examine connected
subgraphs. A chi-square statistic that compares observed
to expected frequencies proposed by Tango [7] gives a test
of clustering based on a "closeness measure" that provides
an overall determination of the tendency to cluster in a
study region.

Besag and Newell [8] take a different approach. They pro-
pose a test for each area based on the number of neigh-
bours that must be combined in order to contain a
minimum number of cases (i.e., cluster size). This method

relies on a pre-determined cluster size for each test and Le
et al. [9] provide a testing algorithm for the automatic
selection of cluster sizes. More recently, Rosychuk et al.
[10] proposed an event cluster detection method that was
similar in spirit to the method of Besag and Newell.
Rather than combining administrative areas in order to
achieve a particular number of cases, areas are combined
in order to contain at least a certain number of disease-
related events. The probability of observing the number of
events is based on a compound Poisson distribution and
the relevant probabilities are obtained through a recur-
sion relation. To our knowledge, this is the only method
that allows for multiple, correlated events per case in its
calculations.

In this paper, we propose the use of an approximate nor-
mal to the compound Poisson distribution. This approxi-
mation facilitates easier implementation and is
appropriate for situations where the population sizes are
large and the population distribution by important strata
may differ by area. We begin by describing the event clus-
ter detection method and the normal approach. We use a
testing algorithm analogous to those proposed in Le et al.
[8] and Rosychuk et al. [10]. We illustrate both
approaches and compare the results for a data set on
repeated visits to emergency departments. The perform-
ance of the proposed approach is also studied through the
Monte Carlo simulation.

Results
Our main result is the development and implementation
of an approximate normal for the detection of geographic
clusters of multiple (correlated) events. To help fix ideas,
we first provide notation consistent with what appears in
[10]. We assume that a study region is divided into sepa-
rate, non-overlapping, administrative areas called cells
and that each of these cells has a representative middle
point called a centroid. Such a centroid could be geogra-
phy- or population-based. We use the pairwise distance
between cell centroids as a criteria to calculate the spatial
relationship between cells. The total number of cells in the
study region is denoted by I. We label cell ip as the p-th

closest cell to cell i, p ∈ {1,..., I - 1}, and i0 = i. Let Ni be the

population size of the i-th cell with the total population

. A case is defined as an individual person

with at least one disease-related event. Let Ci and Cix be the

number of cases and number of cases with exactly x events
in the i-th cell, respectively, with observed values of ci and

cix. We also have Ci = Σx Cix, and the random variable Vi =

Σx xCix denotes the number of events in cell i with the

observed value of vi. Assuming that Ci and Vi are finite, C

N Nii

I= =∑ 1
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= Σi Ci and V = Σi Vi denote the total number of cases and

events for the entire region, respectively, with observed
values of c and v.

The test is based on combining neighbouring cells to
achieve a number of events above a threshold. The null
hypothesis is that every individual is equally likely to have
events, independent of other individuals and the location
of residence. In contrast, the alternative hypothesis sug-
gests that the number of events is higher than expected by
the event distribution.

We first review the compound Poisson method described
in Rosychuk et al., RHP hereafter, for event clustering in
next section and we then introduce the new approach for
general testing of events based on a normal distribution.

Compound Poisson RHP approach
Each cell is tested separately. An event cluster size, k, is
chosen that represents the minimum size of a cluster to be
detected. For cell i, the test statistic is defined as the mini-
mum number of cells that need to be combined with cell
i to include the nearest k events,

For cell i, let  be the total population in

its l nearest neighbours. Then, under the null hypothesis,
the number of cases in its l nearest neighbours,

, follows a Poisson distribution with

mean λi:l = Ni:lC/N. Since each case has at least one event

and potentially many events, the significance level of each
cell is determined by assuming that the number of events
in combined cells follows a compound Poisson distribu-
tion [11]. That is, the number of events in combined cells
can be considered as a random sum of a random number

of events. We then have  as the

total number of events for the Ni:l individuals where Yj is a

random variable and denotes the number of events of the
j-th case within cell i and its l nearest neighbours, j = 1,...,
Ci:l. Hence, Vi:l has a compound Poisson distribution

under the null hypothesis. We may write the significance
level as

where Pi:l(z) = Pr(Vi:l = z). Note that the probability Pi:l(z)
may be obtained through a recursion relation [11] where

and Q(x) = P(Yj = x). RHP used estimates  = Ni:lc/N and

(x) = c+x/c in where c+x is the observed number of cases

in the entire region with exactly x events.

To get the cluster size k, RHP adopted the approach sug-
gested by Le et al. which chooses multiple cluster sizes for
each cell that depend on the population. RHP extended
their approach to include strata information and also used
a Monte Carlo simulation to evaluate overall clustering in
the region.

Approximate normal distribution method
The recursion relation can be cumbersome when we have
a large number of events in each region. This computation
is more difficult when we have strata with auxiliary infor-
mation. We propose the normal distribution to approxi-
mate the compound Poisson probabilities. This approach
well approximates the compound Poisson distribution
when the mean of a cell is large enough [12,13]. Our
approach follows the same idea as the method proposed
by RHP, however, we use the normal distribution to cal-
culate the significance level in each cell rather than using
a compound Poisson distribution.

Let C denote the number of cases in the entire region and

suppose C is a Poisson random variable with mean λ. Let
X1,..., XC be independent random variables with identical

distribution F with mean μ and variance σ2. Then

 is a compound Poisson random variable

with mean λμ and variance λ(μ2 + σ2). For large λ, the dis-
tribution of the compound Poisson can be approximated

by a normal distribution with mean λμ and variance λ(μ2

+ σ2). The normal distribution and compound Poisson
distribution have the same mean and variance, however,
it is easier to calculate quantiles from the normal distribu-
tion than from the compound Poisson distribution.

More precisely, the test statistic in our approach is based
on the number of cells required to be combined to
include at least k* events and is given by

L q k Vi i
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Our test statistic is different from the test statistic of RHP

in the sense that  in (4) has different distribution than

 in (1). The significance level of each cell is deter-

mined by assuming that the number of events in com-
bined cells follows an approximate normal distribution.

As in RHP,  is the total number

of events for the Ni:l individuals. Under the null hypothe-

sis, the number of events of the j-th case, Yj, is equal to Y

for each case and Pr(Y = x) is the same for all cells. Under

the null hypothesis,  has a normal distribu-

tion with mean μi:l ≡ λi:lE(Y) and variance .

Assuming Pr(Yj = x) = Q(x), we may write

 and

. Therefore, the

significance level becomes

where Φ(·) is the cumulative distribution of the standard
normal.

In practice, we use estimates  and

 where

and

with  and . For the regularity

conditions on the mean and variance of the conditional
distribution of the number of events for each case, the
value of v*, and consequently v, c and x, must be

bounded. Therefore, we have =Ni:lv/N and  =

Ni:lv*/N, noting that  = Ni:lc/N assuming N is finite. As

a result, using (5) to find the significance level for each cell
is more convenient than the compound Poisson distribu-
tion proposed by RHP. We have provided R [14] code
available at http://www.ualberta.ca/~rhondar/clus
ter.html for potential users.

To better ascertain the chance of identified clusters, the
observed number of significant cells at level α can be com-
pared with the expectation under the null hypothesis to
provide an overall assessment of statistical significance. A
Monte Carlo simulation study can be used for this assess-
ment by generating a large number of samples (simulated
data sets), performing the test on each sample, and deter-
mining the proportion of samples that exceed the
observed number of significant cells at level α. The sam-
ples are generated by conditioning on the c1, c2,..., cases.
For each event number x, the cix cases are randomly
assigned to the cells based on the population size of each
cell.

A similar approach can be taken for each cell i (= 1,..., I)

to determine a Monte Carlo p-value, . Using the

same simulated data sets as above, the proportion of sim-
ulations for cell i with a p-value at least as extreme as the
p-value from the actual data is used as the Monte Carlo p-
value for cell i. This Monte Carlo p-value is used as a crite-
rion of how likely cell i is part of a cluster under the null
hypothesis.

The event cluster size can be chosen and different situa-
tions may dictate particular choices for the cluster size. In
absence of a meaningful size known a priori, an automatic
testing algorithm can be used. We follow the approach
used by Le et al. [8] and RHP to test cell i at a few different

cluster sizes , , and  in sequence. In our adapta-

tion, these cluster sizes are chosen based on normal distri-
bution for the population in cell i alone, and with its

nearest first and second neighbours. We consider  - 1,

 - 1, and  - 1 to be the 95 percentile of normal dis-

tribution with means μi:0, μi:1, and μi:2, and variances ,

, and , respectively. The cell i is tested at cluster

size . It is only tested at sizes  and  if the tests

based on  and , respectively, are insignificant.

Essentially, a sequence of tests is conducted until either
statistical significance is obtained or the last test in the
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sequence is completed. Because the normal distribution
could have a non-integer 95 percentile, all cluster sizes
were rounded up to the nearest integer. We note that this
testing algorithm should provide the minimum number
of events necessary for significance to be guaranteed based
on the populations of cell i and its two nearest neighbours

for sufficiently large μi/σi. For small μi/σi, the k* chosen

using the 95th percentile of the normal distribution with

mean μi and variance  is smaller than the the mini-

mum k* necessary to have (5) be less than 0.05. In that sit-
uation, the k* should be chosen to be the minimum
integer required to have (5) be less than 0.05. If the cluster
sizes are arbitrarily chosen, a too small choice would
mean that a statistically significant result may not be pos-
sible and a too large choice would mean that a real cluster
might not be identified because the combined cells might
dilute the high rate.

We can also easily modify the approach to present a strat-
ified cluster detection method. Let Cs and Ns be the total

number of cases and population in stratum s (= 1,..., S) in
the entire region, respectively. Let the number of cases and
population of stratum s on its l nearest neighbours from
cell i be Cis:l and Nis:l, respectively. Therefore, the Cis:l fol-

lows a Poisson distribution with mean λis:l = Nis:lCs/Ns. In

addition,  is the total number of

events for the Ni:l case, where Yjs is the number of events of

the j-th case in stratum s, j = 1,..., Cis:l with probabilities

Qs(x) = Pr(Yjs = x) for all j and events x ≥ 1. Thus, the Vi:l

has a normal distribution with mean

 and variance

 where

 and

. Note that

Qs(x) can be estimated by c+sx/c++s, where c+sx is the number

of cases with exactly x events in stratum s and c++s is the

observed value of C++s, the total number of cases in stra-

tum s. Thus, we can get the significance test similar to (5).
The Monte Carlo simulation and cluster size choices pro-
ceed in a similar manner.

Self-inflicted injury presentations to emergency 
departments
The western Canadian province of Alberta is divided into
nine regional health authorities (HAs), with varying geo-
graphic and population sizes. In terms of administrative
responsibility, these nine HAs are further sub-divided into
(I = 68) subregional HAs and these subregional HAs are
the geographic unit used in our analysis. We use the same
emergency department (ED) data illustrated in RHP.

The Ambulatory Care Classification System (ACCS) cap-
tures a variety of outpatient services and includes all emer-
gency department encounters in Alberta. This system was
created in 1997 and provides a rich source of information
on the health services required by the province's popula-
tion. We focus on the pediatric population (less than 18
years of age) and ED presentations for self-inflicted inju-
ries (SIIs). In our application, an individual with at least
one SII presentation to an Alberta ED during the fiscal
year 1998/99 is considered to be a case. These cases would
be indicative of individuals suffering from self-harming
behaviours. Since a case can make multiple presentations
for SIIs during the study period, each SII presentation can
be considered an event. Cases with high numbers of
events may represent individuals with greater illness or
with lesser access to other health resources. All of the data
and pairwise distances between HAs were provided by
Alberta Health and Wellness.

The population of the entire region under study was
785,079 and 827 children (cases) had 915 events (ED
presentations for SII) during the 1998/1999 fiscal year.
Analyses used gender and year of age as strata. The major-
ity of cases had only one event, however, 54 cases had
between two and eighteen SIIs during the study period.

The results of the compound Poisson approach proposed
by RHP and our approach are reported in Additional file
1 and the cells identified as parts of clusters are provided
in Figure 1. The Additional file 1 shows the results of all of
the tests conducted using the sequential testing algorithm.
The results are very similar in the sense that the cluster

sizes ki and , test statistics li and , number of observed

visits vi:l, and the population sizes Ni:l, for each combined

region are identical or nearly identical with each
approach. Based on our approach, thirteen HAs were
identified as clusters and of these seven HAs identified as
clusters alone, three with the first nearest neighbour com-
bined, and three with the two nearest neighbours com-
bined. Table 1 displays the p-values for statistically
significant clusters.

s i
2

Vi l jsj

C

s

S is l
:

:= == ∑∑ Y
11

m m li l is ls

S
is l jss

S
E: : : ( )≡ == =∑ ∑1 1

Y

s s li l is ls

S
is l jss

S
E: : : ( )2 2

1
2

1
≡ == =∑ ∑ Y

E xPr x xQ xjs jsx sx
( ) ( ) ( )Y Y= = ==

∞
=

∞∑ ∑1 1

E x Pr x x Q xjs jsx sx
( ) ( ) ( )Y Y2 2

1
2

1
= = ==

∞
=

∞∑ ∑ ki
∗ li

∗

Page 5 of 11
(page number not for citation purposes)



International Journal of Health Geographics 2008, 7:61 http://www.ij-healthgeographics.com/content/7/1/61
The method of RHP based on the compound Poisson dis-
tribution distinguishes twelve HAs as clusters. All of these
12 HAs are also clusters identified in our method. For each
of these HAs, the testing algorithm stops at the same point
and the test statistics are identical. The cluster sizes are
generally quite close, usually within one or two of each
other. The observed events meet or exceed either cluster
size and hence, both tests yield significant tests. For exam-
ple, HA2 requires at least 30 events to be considered a
cluster by itself under the compound Poisson and our
approaches. With 33 observed events, both tests are signif-
icant. For HA12 to be a significant cluster on its own, the
cluster sizes are 15 and 16 under the compound Poisson
and normal methods, respectively (not shown). With
only 12 events, the observed events are less than the clus-
ter sizes and neither test is significant. When a nearest
neighbour (HA21) is considered, the cluster sizes become
38 under both methods and with 42 observed events,
both cluster sizes are less than 42 observed events and
both tests are significant.

The only differences between the two approaches is HA20.
HA20 is detected as cluster in our method, however, it is
not identified as cluster in RHP method. As shown in
Additional file 1, HA20 is identified as cluster in our
method when combined with its two nearest neighbours.
For the RHP approach, the sequence of cluster sizes tested
are 21, 29, and 51 and the values for our approach are 22,
30, and 50. With 6 events in HA20 alone, the number of
events is not as large as the cluster size of 21 and 22 in
both approaches, and then the algorithm tests the next
cluster size. In next step, the number of events combined
with its first nearest neighbour (HA19) is 12 which is less

than the cluster size 29 and 30 for both methods. With an
insignificant result, the algorithm moves to the next clus-
ter size in the sequence to test. HA20 is combined with its
two nearest neighbours (HA19 and HA21) to yield a total
of 50 events. With 50 events and a cluster size 50 in our
approach, the test is significant. However, 50 events is less
than the cluster size of 51 in the RHP approach and the
test is not significant. In this situation, a slightly larger
cluster size provided a different finding.

As noted earlier, the majority of clusters were individual
HAs (i.e., l = 0). For cells 2, 21, 24, 26, 29, 41, and 42,
both approaches yield significant clusters without com-
bining any neighbours. When combined with cell 21, cells
12 and 16 are significant clusters in both methods. Cell 27
is a significant cluster in both approaches when combined
with cells 26 and 28. When combined with cell 26, cell 38
is a significant cluster in both methods. Cell 45 is also a
significant cluster in both approaches when combined
with cells 41 and 47.

In general, the testing algorithm proposed by Le et al. and
modified for event data is applied to choose a cluster size
for an HA and to detect an individual cluster provided
there are sufficient events. If an HA forms a cluster on its
own, no further testing assesses if when combined with
some of its nearest neighbours, the combined area is also
a significant cluster. However, an individual HA may not
be a cluster itself because of insufficient events to reach
the significance level based on normal distribution. Com-
bining the population of neighbours may produce
enough events to detect a cluster with two or more (at
most three based on our assumption) HAs.

In order to check the likely number of clusters detected,
we implemented a Monte Carlo simulation with 1000
samples. No samples provided more than 12 clusters.
Thus, these detected clusters are not likely all spurious and
an overall p-value is calculated as 0. We also conducted
Monte Carlo p-values, from the normal p-values, for each
cell and observed that 12 of the significant HAs have

 less than 0.05 (Table 1). The Monte Carlo p-value

for HA20 is 0.055 and is larger than corresponding nor-
mal p-value. The Monte Carlo p-values for the compound

Poisson method  are also shown in Table 1 for the

compound Poisson method. Using a custom R [14] pro-
gram on an Windows PC platform, the normal approach
takes 130 seconds to complete the individual and overall
tests. For the compound Poisson approach, an existing C/
C++ program on a Linux platform required 970 seconds
to perform the calculations.

pi
MC N( )

pi
MC CP( )

Table 1: The p-values for each significant HA for RHP method 

( ), normal approach ( ) and Monte Carlo ( ) and 

( ) for RHP and normal methods, respectively.

i

2 0.044* 0.035* 0.019* 0.018*
12 0.047* 0.035* 0.063 0.007*
16 0.047* 0.044* 0.035* 0.041*
20 0.968 0.043* 0.950 0.055
21 0.048* 0.028* 0.063 0.000*
24 0.046* 0.037* 0.066 0.006*
26 0.044* 0.026* 0.012* 0.000*
27 0.043* 0.040* 0.030* 0.018*
29 0.044* 0.033* 0.040* 0.000*
38 0.044* 0.033* 0.051 0.002*
41 0.045* 0.028* 0.039* 0.000*
42 0.038* 0.033* 0.000* 0.004*
45 0.043* 0.038* 0.011* 0.028*

An asterisk (*) denotes significant clusters at the 5% level, unadjusted 
for multiple testing.

pi
CP pi

N pi
MC CP( )

pi
MC N( )

pi
CP pi

N pi
MC CP( ) pi

MC N( )
Page 6 of 11
(page number not for citation purposes)



International Journal of Health Geographics 2008, 7:61 http://www.ij-healthgeographics.com/content/7/1/61
Simulation study
We investigate the performance of the normal approach
through a Monte Carlo simulation study. We set I = 50 as
the number of cells in a 10 × 5 grid pattern. We based our
experiment on nine different scenarios, where one cell (i
= 28) has a higher rate than the other cells. We consider
three different population sizes for each cell and three dif-
ferent settings for the total number of cases and events, (c,
v), for each population size. We examine the ability of the
approaches to identify a "true" cluster comprised of one
cell (i = 28), by setting the rate in that cell to be 1.5 times
larger than the rate in every other cell,

pi = r (i = 1,..., I; i ∉ 28) and p28 = 1.5r,

where r is obtained based on the condition .

To allow for each cell to have a different mean and vari-
ance, each cell's population size was determined ran-
domly based on a mean population setting (e.g., if the
mean population size was set to 5000, the population size
of each cell was a random whole number in
(4500,5500)). Note that the cases are generated in each
simulation based on multinomial distribution where
mean and variance for cell i are Nipi and Nipi(1 - pi), respec-

tively. We implement a Monte Carlo simulation with
1000 samples per scenario. We summarize the nine differ-
ent scenarios in Table 2.

The samples are generated by conditioning on the {cx}

cases. For each event number x, the cx cases are randomly

pii

I ==∑ 1
1

Subregional health authorities (HAs) identified as clusters on their own or when combined with neighbours to form clusters for the compound Poisson and normal approachesFigure 1
Subregional health authorities (HAs) identified as clusters on their own or when combined with neighbours to form clusters 
for the compound Poisson and normal approaches.
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assigned (multinomial distribution) to the cells based on
the population size of each cell. In scenario 1, for exam-
ple, the mean population size per cell is 5000 and the
total number of cases and events are 5 × 50 = 250 and 11
× 50 = 550, respectively. As it is probably easier to think of
the number of cases and events in a particular cell, the set-
tings involve multiplications by the number of cells (50)
to help interpretation. In each of the 1000 simulations,
100 cases have one event each at these 100 cases are ran-
domly assigned to the 50 cells using a multinomial distri-

bution with probability  = 0.0297 for cell 28 and

probability  = 0.0198 for all other cells. Similarly, a

total of 50 cases associated with two events each are ran-
domly assigned to the 50 cells using a multinomial distri-
bution with the probability of 0.0297 and 0.0198, for cell
28 and all other cells, respectively. This process continues
until all cases have been randomly assigned to cells.

Note that we are not generating data based on a com-
pound Poisson distribution. Rather, we are distributing
cases amongst the cells according to a multinomial distri-
bution as was done for the Monte Carlo simulations to
assess overall clustering and in a similar manner to the
Besag and Newell approach for cases. These simulations
assess the ability of the compound Poisson and normal
approaches to identify the "true" cluster. In essence, both
the compound Poisson and normal approaches will be an
approximation to the true distribution. While we have dif-
ferent numbers of cases and events, (ci, vi), for different
cells and samples, the total number of cases and events, (c,
v), are the same for each sample within a scenario. The
generation of the data preserves the total number of cases
and events.

We identified the significant cluster based on the cell itself
and with its first and second neighbours. However, for
simplicity we only show the results for the cell itself for
normal and compound Poisson approaches and the
results are similar where the cell is combined with its first
and second neighbours. Note that we used a significance
level 5%. Figure 2 shows the rate of significant clusters for
each cell based on the normal and compound Poisson
distributions for each scenario.

For scenario 1, where the mean population size is 5000
and (c = 5 × 50, v = 11 × 50), the normal approach identi-
fies some cells as statistically significant for some simula-
tions. Moreover, when (c = 5 × 50, v = 12 × 50) and (c = 5
× 50, v = 14 × 50), the normal approach more closely
approximates the compound Poisson results for scenarios
2 and 3, respectively. As expected, the rate of significant
cluster in cell 28 is higher than the other cells. Note that

in this situation the value of μi/σi is relatively small and if

k* - 1 is set as the 95th percentile of the normal distribu-

tion with mean μi and variance , then the cluster size is

too small to have a significant result. That is, the signifi-
cance level obtained using (5) is just above 0.05 and some
cells including cell 28 are not detected as a cluster even
though the observed number of events exceeded the clus-
ter size. In this situation, we had to increase the cluster size
so that significance could be obtained. This situation
demonstrates that with small numbers of events and pop-
ulation the testing algorithm and the normal approach
may not be as effective in detecting clusters.

When the mean population size is 10000 and (c = 10 × 50,
v = 22 × 50), the normal approach identifies some cells as
significant clusters for some simulations (scenario 4).
However, increasing (c, v) to (10 × 50, 24 × 50), most cells
are identified as significant clusters for some simulations
(scenario 5), and the normal distribution provides results
similar to the compound Poisson in all cells when (c = 10
× 50, v = 28 × 50) (scenario 6).

Increasing the mean population size to 20000, the normal
distribution distinguishes the significant clusters in all
cells for (c = 20 × 50, v = 44 × 50) for some simulations
(scenario 7). The rate of significant clusters in the normal
and compound Poisson approaches are very close in all
cells for (c = 20 × 50, v = 48 × 50) and (c = 20 × 50, v = 56
× 50), scenarios 8 and 9.

Note that with increased (c, v) for each population size
and scenario, the rate of significant cells also increases.
Moreover, we have observed that the mean proportion of
significant cells in scenarios 1 to 9 using the normal

1 5
50 5

.
.

1
50 5.

s i
2

Table 2: The nine different scenarios for the simulation study 
based on the mean population size, the number of cases, the 
number of events, and the number of cases for each event 
number x (c+1, c+2, c+3, c+4).

Scenario Mean population size (c, v)/50 (c+1, c+2, c+3, c+4)/50

1 5000 (5,11) (2,1,1,1)
2 5000 (5,12) (1,2,1,1)
3 5000 (5,14) (1,1,1,2)

4 10000 (10,22) (4,2,2,2)
5 10000 (10,24) (2,4,2,2)
6 10000 (10,28) (2,2,2,4)

7 20000 (20,44) (8,4,4,4)
8 20000 (20,48) (4,8,4,4)
9 20000 (20,56) (4,4,4,8)
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method is slightly higher than in the compound Poisson
approach (Table 3). The reason is that a continuous ran-
dom variable (normal distribution) is used to approxi-
mate a discrete random variable (compound Poisson
distribution) by using the Yates correctness in (5) [15]. In
addition, we rounded up decimal cluster sizes to whole
numbers to be in line with the spirit of the testing algo-
rithm. Furthermore, the normal approach takes 60, 87,
and 182 seconds to complete the simulations for scenar-
ios 3, 6, and 9, respectively. For the compound Poisson
approach, 420, 680, and 2100 seconds were required to
perform the calculations for these scenarios.

These simulation results suggest that for each population
size, Ni, we need to have minimum number of (ci, vi) per
cell to have the approximate normal be suitable in these

settings. Based on our findings, for mean population sizes
5000, 10000, and 20000, the minimum number of cases/
events must average (ci, vi) = (5,14), (10,24), and (20,56),
respectively, to have a good approximation to the com-
pound Poisson by the normal approach in these settings.

Discussion
We proposed an approximate normal to the compound
Poisson distribution for the identification of clusters of
disease-related events. Incidence or prevalence data are
often used for the identification of geographic clusters of
disease. In our data example, some individuals returned
multiple times to EDs for self-inflicted injuries. Such inju-
ries may be indicative of a health condition and an analy-
sis solely based on the number of individuals with at least
one self-inflicted injury may not be as informative as an

The rate of significant clusters based on 1000 Monte Carlo simulation for scenarios 1–9Figure 2
The rate of significant clusters based on 1000 Monte Carlo simulation for scenarios 1–9.
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analysis on the number of self-inflicted injuries. From the
ED service perspective, each ED presentation represents a
use of services and a loss of information results when indi-
viduals are considered rather than services. From the
health perspective, multiple presentations may mean that
an individual has a more severe health condition or has
lesser access to health services than other individuals who
present with self-inflicted injuries. Key to the compound
Poisson formulation for the determination of the signifi-
cance level was the specification of the number of events
per case. The number of individuals that presented to the
ED was assumed to follow a Poisson distribution but the
distribution of the number of presentations made by each
persons had to be fully specified. The empirical distribu-
tion of event frequencies to obtain probability estimates
or another distribution can be assumed. Unfortunately,
the uncertainty of these estimates and assumptions are
not captured in the final testing results and the recursive
nature of the compound Poisson probability calculations
means that calculations can become prohibitive.

As an alternative to the compound Poisson approach, we
have proposed a normal distribution with mean and var-
iance based on the number of events and this formulation
does not require the specification of the distribution of
the number of events per case. This approach is easily
implemented in statistical software and the quantiles are
readily calculated. Only a few lines of computer code are
required since the normal distribution is a fixture of statis-
tical software whereas statistical software may not have
the desired compound Poisson distribution pre-pro-
grammed. The incorporation of strata information into
the mean and variance of the normal are straight forward.
Especially when strata are involved, the normal approach
provides a computational advantage. The recursive calcu-
lations required by the compound Poisson approach can
be problematic when multiple strata variables are
included and/or cell population sizes are larger and
hence, for larger cluster sizes. In addition users must be

aware of numerical instabilities that may arise with the
addition of multiple small probabilities. The normal
method does not require such recursive calculations and
the approximate normal takes at most about 15% of the
time. Furthermore, the normal approach's concepts may
be more easily conveyed to non-statisticians interested in
understanding the methodology associated with cluster
detection results. Non-statisticians are more familiar with
a normal distribution than a compound Poisson distribu-
tion and the approximate normal assumptions are more
easily communicated.

We investigated the normal method with our ED data set.
For self-inflicted injury presentations both methods iden-
tified 12 clusters in common and the normal approach
identified one additional cluster. For one tested cell, the
cluster size for the compound Poisson approach was 51
and for the normal approach was 50. With 50 observed
events, an additional cell had to be combined to have at
least 51 events in the compound Poisson approach. No
further combination was required for the normal
approach and the test yielded a statistically significant
result. This discrepancy illustrates the importance of the
choice of cluster size. If the cluster size is too small, the
observed number of events may exceed the cluster size by
a substantive margin and the significance level may not be
significant because the cluster size is not far enough in the
tail of the distribution. In both methods, the significance
level is based on the cluster size and not the observed
number of events. If the cluster size is too large, high num-
bers of events in a particular area may be diluted by the
combination of additional areas and statistical signifi-
cance cannot be obtained. Users can decide what cluster
sizes are reasonable for a particular analysis situation,
however, such values are often not known before examin-
ing the data and it is therefore difficult to provide objec-
tive cluster sizes. In particular, this aspect becomes more
challenging when the cell population sizes are highly var-
iable. Le et al. [9] provided a testing algorithm to provide
objective cluster sizes to be tested in sequence based on
the population sizes in individual cells and nearest neigh-
bours. This approach provides minimum cluster sizes nec-
essary to attain statistical significance but increases the
number of tests, complicates the presentation of results,
leads to p-values close to the significance level, and forces
the test statistic for significant cells to be linked to the
number of cells used in the cluster size determination. We
have adapted this approach to the normal method that we
proposed since we did not have objective and meaningful
cluster sizes known a priori for our application.

Using Monte Carlo simulation studies, we further exam-
ined the behaviour of the normal approach. We examined
cells with mean population sizes of 5000, 10000, and
20000 and fixed the total number of cases, total number
of events, and the event distribution. One cell was desig-

Table 3: The mean proportion of significant cells for the 
compound Poisson (mpCP) and normal (mpN) methods by the 
nine different scenarios.

Scenario Mean population size (c, v)/50 mpCP mpN

1 5000 (5,11) 0.043 0.047
2 5000 (5,12) 0.045 0.048
3 5000 (5,14) 0.045 0.049

4 10000 (10,22) 0.046 0.051
5 10000 (10,24) 0.048 0.051
6 10000 (10,28) 0.048 0.053

7 20000 (20,44) 0.052 0.054
8 20000 (20,48) 0.052 0.054
9 20000 (20,56) 0.053 0.055
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nated a "true cluster" and had 1.5 times event rate as the
other cells. The normal approach works well for most of
the simulations situations where the mean number of
events is relatively large and when the cell population
sizes are relatively large.

Conclusion
When disease cases can have multiple disease-related
events, identifying clusters of event may be important for
researchers. These event clusters may signal geographic
areas with more severe disease where diseased individuals
have more disease-related events than expected by chance.
Previously, a compound Poisson distribution was used to
obtain the significance level for testing. A drawback to this
approach is that the distribution of the number of events
per case must be specified. We proposed an approximate
normal approach that is characterized by the mean and
variance of the number of events and this approximation
yielded a simpler calculation of the significance level. We
investigated the performance of the approximation using
a real data set and in simulation studies. For sufficiently
large population sizes, the normal approach provides the
same results as the compound Poisson approach.
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