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Abstract 

Background:  Murray Valley encephalitis virus (MVEV) is a clinically important virus in Australia responsible for a num-
ber of epidemics over the past century. Since there is no vaccine for MVEV, other preventive health measures to curtail 
its spread must be considered, including the development of predictive risk models and maps to help direct public 
health interventions. This article aims to support these approaches by presenting a model for assessing MVEV risk in 
Western Australia (WA).

Methods:  A Bayesian Belief Network (BBN) for assessing MVEV risk was developed and used to quantify and map dis-
ease risks in WA. The model combined various abiotic, biotic, and anthropogenic factors that might affect the risk of 
MVEV into a predictive framework, based on the ecology of the major mosquito vector and waterbird hosts of MVEV. 
It was further refined and tested using retrospective climate data from 4 years (2000, 2003, 2009, and 2011).

Results:  Implementing the model across WA demonstrated that it could predict locations of human MVEV infection 
and sentinel animal seroconversion in the 4 years tested with some degree of accuracy. In general, risks are highest in 
the State’s north and lower in the south. The model predicted that short-term climate change, based on the Intergov-
ernmental Panel on Climate Change’s A1B emissions scenario, would decrease MVEV risks in summer and autumn, 
largely due to higher temperatures decreasing vector survival.

Conclusions:  To our knowledge, this is the first model to use a BBN to quantify MVEV risks in WA. The models and 
maps developed here may assist public health agencies in preparing for and managing Murray Valley encephalitis in 
the future. In its current form, the model is knowledge-driven and based on the analysis of potential risk factors that 
affect the dynamics of MVEV using retrospective data. Further work and additional testing should be carried out to 
test its validity in future years.
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Background
At a global level, amongst the most important groups of 
emerging infectious diseases are those caused by arbo-
viruses. These include West Nile virus (North America, 
1999), Rift Valley Fever virus (Arabia, 2000), and Chikun-
gunya virus (Indian Ocean rim, 2005/2006; Italy, 2007) [1, 
2]. Many arboviral diseases are zoonoses maintained in a 

transmission cycle between a non-human vertebrate host 
and an arthropod vector [1].

In Australia, Murray Valley encephalitis virus (MVEV) 
is an important pathogenic arbovirus largely endemic 
to the Kimberley region of Western Australia (WA) and 
the Top End of the Northern Territory (NT) [3]. A num-
ber of MVE epidemics have occurred in the past century 
[3, 4], with the last major event in 1974, when 58 cases 
were reported across the country [4]. There are fears that 
with increased economic activity and development in 
northern Australia where the virus is endemic, the risk 
of MVEV epidemics in that region might increase, which 
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could lead to its spread to, or emergence in, other parts of 
the country [5].

MVEV is maintained in an arthropod vector-vertebrate 
host transmission cycle. The virus’s major vector is the 
common banded mosquito, Culex annulirostris Skuse, 
a freshwater species, and the major hosts are waterbirds 
of the order Ciconiiformes, in particular the Rufous night 
heron, Nycticorax caledonicus [3]. Evidence also suggests 
that other species of mosquito may transmit the virus, 
such as Cx. australicus, Aedes normanensis, and Ae. 
sagax [6]. Although non-avian vertebrates such as kan-
garoos, rabbits, cattle, horses, pigs and mice can become 
infected with MVEV, their roles in transmitting the virus 
on to humans are uncertain [3, 7].

Cases of MVEV infection in humans are typically 
reported after the annual wet season in Australia, par-
ticularly during late summer and autumn [3]. In the 
majority of cases, infections are typically asymptomatic, 
and only about 0.10–0.67  % of all infected persons will 
display symptoms [8]. Although this is a small percent-
age, such infections can be lethal [8]. In about 40  % of 
symptomatic cases, permanent neurological sequelae 
may result [8]. Death can occur in about 15–30  % of 
encephalitic cases [8]. Currently, treatment of sympto-
matic infections is limited and no antiviral therapy has so 
far proven effective [8]. Preventive measures and educa-
tion form the mainstay of public health efforts to control 
the virus.

As mentioned above, there is the prospect of increased 
incidence of MVEV infections due to greater human 
activity in northern Australia. For example, large parts of 
the Kimberley and Pilbara regions in WA are being devel-
oped to support mining, agriculture and other industries, 
and have driven increased immigration to those regions 
[5]. The increase in population and frequent travel-related 
exposure of those regions put communities there at 
greater risk of experiencing an outbreak. Compounding 
these processes are other factors such as climate change, 
which could possibly lead to changes in the geographi-
cal ranges of Cx. annulirostris or Ciconiiformes, and the 
emergence of MVEV in other parts of the country.

The factors that drive MVEV epidemics in the past 
have been identified and various models developed in 
an attempt to predict when and where the next outbreak 
will occur. According to Forbes, two preceding seasons of 
excessive rainfall is predictive of an MVEV epidemic in 
the Murray Valley region [9], while according to Nicholls, 
summer epidemics in that same region are most likely 
to occur if the Southern Oscillation Index is below aver-
age during the preceding three seasons [10]. Kay et  al. 
(1987) developed a mathematical model of MVEV ampli-
fication specific to southern parts of Australia calibrated 
with data from the 1951 and 1974 epidemics [11], while 

Schuster et  al. [12] devised a separate model to predict 
MVEV epidemics in the Kimberley and Pilbara regions of 
WA based on remotely sensed rainfall data. It predicted 
higher risk of MVEV with elevations in the monthly rain-
fall and the number of days with above average rainfall 
[12].

Here, we present a new approach for assessing MVEV 
risk in Western Australia. Our model differs from previ-
ous attempts by being a Bayesian Belief Network (BBN), 
incorporating a range of abiotic, biotic and anthropo-
genic factors that might affect features such as the pop-
ulation densities of Ciconiiformes and Cx. annulirostris, 
which would in turn affect MVEV risk. These include (i) 
climatic factors such as rainfall, temperature and humid-
ity; (ii) geographical factors such as the presence of riv-
ers and waterbodies; (iii) ecological factors that influence 
the timing of waterbird breeding and migration; and 
(iv) anthropogenic factors such as the seroprevalence of 
MVEV among members of the community. Risk maps 
encompassing all of Western Australia were then pro-
duced based on the model.

BBNs are acyclic graphical networks consisting of a set 
of vertices and edges (nodes and arrows, respectively) 
that represent conditional probability relationships 
between random variables, with each node having one or 
several states whose probabilities are assigned based on a 
prior distribution model (input or ‘parentless’ nodes) or 
calculated using Bayes’ Theorem from prior probabilities 
(‘child’ nodes) [13, 14]. BBNs are widely used in diverse 
fields such as artificial intelligence, medical diagnosis, 
speech recognition, and most relevantly, in ecology and 
environmental health as well [13–17]. For example, BBNs 
have been used in conjunction with Geographic Informa-
tion Systems (GIS) to identify suitable habitats for wild-
life [18, 19]; support conservation and land-management 
efforts [20]; evaluate forest management techniques [14]; 
analyse risk factors contributing to the outbreak of wild-
fires [21]; and also to assess environmental factors affect-
ing the distribution of birth defects [22].

We chose a BBN as the modelling tool because it is best 
suited to modelling large and complex systems with mul-
tiple interacting variables [17], which is often the case in 
ecological processes including those that drive the emer-
gence and distribution of MVEV. BBNs are generally 
robust to imperfect knowledge and approximate prob-
abilities (even educated guesses) very often give good 
results [15, 23]. Because arboviruses are maintained in 
such complex ecological networks involving at least three 
different species—the viruses themselves, their verte-
brate hosts, and arthropod vectors, each governed by its 
own ecological parameters and inhabiting its own niche 
in space and time—they are intrinsically well suited to 
risk modelling and mapping [24]. The factors that drive 
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their emergence in new locations are complex and mul-
tifaceted, with landscape factors and ecological processes 
playing a dominant role. This extends to MVEV, whose 
emergence can only happen when viruses, vectors, hosts, 
and humans, are present in sufficient numbers simulta-
neously [1, 24].

The model that we present is an ‘expert system’ [23] 
designed after a comprehensive review of the literature. 
It was subsequently tested and refined using climatic 
data and historical reports during the main MVEV sea-
son of 4  years in the first decade of this century (2000, 
2003, 2009 and 2011), containing a mix of epidemic 
and non-epidemic years. In such BBNs, where all or the 
majority of conditional probability tables (CPTs) are 
essentially determined by expert-opinion, there inevita-
bly arises a sense of arbitrariness to the entire construc-
tion, although guidelines have been suggested by some 
authors to streamline and rationalise the whole process 
[16]. Here we present a unique way of populating expert-
derived CPTs. As described further in the “Methods” and 
the Additional file 1, for every CPT that was to be popu-
lated by subjective opinion, we first assigned a numeri-
cal score/weight to every possible combination of parent 
node states. We then derived the probability distribution 
for that combination of states from a probability distri-
bution table containing the distributions for all possible 
scores. These pre-defined probability distribution tables 
were carefully constructed to be symmetrically balanced 
around the middle score. The main advantage of using 
this method is that a consistent way of populating opin-
ion-based CPTs was achieved.

The risk maps are presented in order to demonstrate 
the model’s capacity to predict MVEV outbreaks during 
the four selected years. Because rainfall has been consist-
ently identified as a major factor affecting MVEV risk, we 
also included maps showing the risk distributions at dif-
ferent states of the rainfall node in order to test the mod-
el’s sensitivity to this particular node. Our results show 
significant differences in risk distributions across WA 
between ‘high’ and ‘low’ states of rainfall.

Finally, it is our hope that the model and maps pre-
sented here will add to the range of surveillance measures 
available to combat this infectious disease in Western 
Australia.

Results
Risk model
The MVEV risk model is shown in Fig. 1. All node states 
and prior distributions are listed in Table 1, and the Con-
ditional Probability Tables (CPTs) are provided in the 
Additional file 1. Prior distributions of parentless nodes 
are uniform while those of all other nodes are determined 
by their CPTs. 

The rationale behind the construction of the BBN, 
including reasons for the inclusion of all variables, is pro-
vided in the Additional file  1. Briefly, in determining the 
risk of MVEV, the model takes four main factors into 
account: population density of Cx. annulirostris (titled Cx_
annulirostris_Popn); population density of Ciconiiformes 
(titled Ciconiiformes_Popn); endemicity of the virus by 
region within WA (titled WA_Region); and immune status 
of the human community (titled Immunity_Level_Popn). 
In turn, the population densities of mosquito vectors and 
vertebrate hosts are affected by the habitat suitability of 
the area (Part A), and seasonal climatic factors that affect 
the population densities of Cx. annulirostris (Part B) and 
Ciconiiformes (Part C). Age distribution and migrant back-
ground of the human community are two factors that 
might also affect the immune status of the community, 
with younger individuals and new migrants (assuming 
they had arrived from non-MVEV endemic regions) being 
more susceptible to infection since they were presumably 
less exposed to the virus in the past, thereby increasing the 
community’s risk (Part D).

The first three nodes mentioned above converge on the 
node which models the minimum infection rate of Cx. 
annulirostris with MVEV (titled Vector_Min_Infection_
Rate). This variable is dependent on the lifespan of adult 
females since older adults are expected to have experi-
enced a longer period of potential exposure to the virus 
than younger adults and so are more likely to have higher 
infection rates [Lindsay, pers. comm.]. This node directly 
affects the density of virus-transmitting vectors, which 
is itself dependent on the longevity of adult female mos-
quitoes and the extrinsic incubation period of the virus 
in Cx. annulirostris. Long-lived adult vectors increase the 
transmission rate by taking multiple blood meals from 
hosts [Lindsay, pers. comm.]. The extrinsic incubation 
period (EIP) is inversely proportional to transmission 
rate as shorter EIP means shorter time taken between 
infection of the vector and onward transmission.

The query node (titled MVEV_Risk_Humans) has 
three states corresponding to ‘low’, ‘medium’ and ‘high’ 
risks. It is affected by the density of transmitting Cx. 
annulirostris; overall susceptibility of the human commu-
nity to infection; and distance to the nearest lake or river 
(which reflects the fact that Cx. annulirostris are more 
likely to be found within 15 km of wetlands due to their 
short flight range [25]).

Risk maps
Average current climatic conditions
MVEV risk across Australia was modelled under current 
average climatic conditions (Fig. 2). The time period with 
highest risk is from February to April. The model cor-
rectly predicted that the Kimberley region is most at risk 
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of MVEV: it is in the ‘High’ risk category from December 
to April (Fig. 2a, b). In the Pilbara, an area in the ‘Medium’ 
risk category runs along a narrow corridor from Newman 
to the coast in a northwest-southeast direction in summer 
(Fig. 2a), but expands to include a substantially larger area 
in the succeeding three month period (Fig. 2b). It is during 
this later period that the major towns of Karratha and Port 
Hedland are included within the ‘High’ risk zone.

Apart from the Kimberley and Pilbara regions, the rest 
of WA mostly has ‘Low’ risk. Interestingly, Perth and the 
area around Kalgoorlie have ‘Medium’ risk from Febru-
ary to April (Fig. 2b), largely due to a greater abundance 
of lakes and rivers there. Three-monthly rainfall is suf-
ficient to cause these waterbodies to become inundated 
with water thus providing breeding sites for mosquitoes.

In winter (Fig.  2c), the total area with ‘Medium’ or 
‘High’ risk contracts to include only the region west of 
Karratha, in line with expectations since the winter cli-
mate does not support large populations of mosquito 
vectors.

Scenario modelling: current climatic conditions 
with maximum rainfall
Figure  3 illustrates the risk distributions if every part 
of WA were to experience the highest three-monthly 

rainfall state (in excess of 100  mm) in all three time 
periods, while maintaining the current average values 
for temperature and relative humidity. While this is an 
unlikely situation, higher levels of rainfall can occur in 
parts of WA when there are cyclones or due to the La 
Nina pattern [26].

Larger areas of WA have ‘Medium’ or ‘High’ risk, 
extending as far south as Albany and Esperance during 
summer (Fig. 3a). These places are near natural wetlands 
and rivers and are expected to support large populations 
of Cx. annulirostris and Ciconiiformes if rainfall is high. 
Inland towns such as Meekatharra are also at higher risk 
from December to April (Fig. 3a, b). MVEV transmission 
could even occur in the Kimberley region during winter if 
the seasonal rainfall experienced is greater than 100 mm 
(Fig. 3c), although that does not normally occur [27].

Scenario modelling: current climatic conditions 
with minimum rainfall
Figure  4 shows the risk distributions if the total three-
monthly rainfall were to fall below 60  mm throughout 
WA (e.g. during drought conditions), while maintain-
ing current average values for temperature and relative 
humidity. In this case, no location on the map is at ‘High’ 
risk. Areas at ‘Medium’ risk include a narrow band in 

Fig. 1  The infectious disease risk model for MVEV
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Table 1  Nodes and states of the MVEV BBN

Type of variable Description of node; name in bold italics; node states; prior distribution (%)

Binary (2 states) 1. Is the location at high risk of dryland salinity (Dryland_Salinity_High_Risk) i.e. Description of node (Node name)

 Yes (50.00) i.e. state 1 (probability)

 No (50.00) i.e. state 2 (probability)

2. Vegetation cover over the previous 3 months (Past_3mo_NDVI)
 No_vegetation (50.00)

 Vegetation_present (50.00)

3. What is the likelihood of seasonal rainfall (Likelihood_of_Seasonal_Rain)

 High (50.00)

 Low (50.00)

4. What is the seasonal amount of surface runoff (Surface_Runoff_Seasonal)
 Zero (50.00)

 Above_zero (50.00)

5. Is it the breeding season for waterbirds (Breeding_Season)

 Yes (45.80)

 No (54.20)

6. What is the direction of migratory movement of waterbirds (Migratory_Species)

 Arrival (50.00)

 Departure (50.00)

7. Was there an MVEV epidemic last year (MVEV_Epidemic_Previous_Year)

 Yes (50.00)

 No (50.00)

8. Linear distance to nearest waterbody (Nearest_Wetland_or_River)

 Below_15 km (50.00)

 Equal_or_Above_15 km (50.00)

Nominal/ordinal scale (3 states) 1. Density of mosquito predators and waterbird prey (Predators_and_Prey)

 High (43.40)

 Medium (49.60)

 Low (6.99)

2. In which climatic zone is the location (Climatic_Zone)

 Tropical_WA (33.30)

 Arid_WA (33.30)

 Temperate_WA (33.30)

3. Endemicity of MVEV in WA, according to the region (WA_Region)

 Kimberley (33.30)

 Pilbara (33.30)

 Rest_of_WA (33.30)

4. Prevalence of Ciconiiformes’s immunity to MVEV (Ciconiiformes_MVEV_Immunity)

 High (25.00)

 Medium (50.00)

 Low (25.00)

5. Proportion of new immigrants in the human community (Popn_Mobility)

 High (3.30)

 Medium (33.30)

 Low (33.30)

6. Proportion of under-15 year olds in the human community (Demographic_Structure)

 Higher_Propn_Young (33.30)

 Medium_Propn_Young (33.30)

 Lower_Propn_Young (33.30)

7. Prevalence of immunity to MVEV in the human community (Immunity_Level_Popn)
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Table 1  continued

Type of variable Description of node; name in bold italics; node states; prior distribution (%)

 High (30.30)

 Medium (39.40)

 Low (30.30)

8. Overall risk of MVEV at the location (MVEV_Risk_Level)
 High (2.24)

 Medium (5.54)

 Low (92.20)

Nominal/ordinal scale (4 states) 1. Abundance of non-perennial lakes at the location (Non_Perennial_Lake_Grid)
 High (25.00)

 Medium (25.00)

 Low (25.00)

 Zero (25.00)

2. Abundance of perennial lakes at the location (Perennial_Lake_Grid)

 High (25.00)

 Medium (25.00)

 Low (25.00)

 Zero (25.00)

3. Density of non-perennial rivers at the location (Non_Perennial_River_Density)

 High (25.00)

 Medium (25.00)

 Low (25.00)

 Zero (25.00)

4. Density of perennial rivers at the location (Perennial_River_Density)

 High (25.00)

 Medium (25.00)

 Low (25.00)

 Zero (25.00)

5. Level of inundation of the perennial lakes at the location (Inundated_Lake_Grid1)

 High (25.00)

 Medium (25.00)

 Low (25.00)

 Zero (25.00)

6. Level of inundation of the non-perennial lakes at the location (Inundated_Lake_Grid2)

 High (18.80)

 Medium (22.90)

 Low (27.10)

 Zero (31.30)

7. Level of inundation of the perennial rivers at the location (Inundated_River_Density1)

 High (25.00)

 Medium (25.00)

 Low (25.00)

 Zero (25.00)

8. Level of inundation of the non-perennial rivers at the location (Inundated_River_Density2)

 High (12.50)

 Medium (21.90)

 Low (28.10)

 Zero (37.50)

9. Level of inundation of all lakes at the location (Inundated_Lake_Grid_Total)
 High (48.20)

 Medium (26.00)
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Table 1  continued

Type of variable Description of node; name in bold italics; node states; prior distribution (%)

 Low (18.00)

 Zero (7.81)

10. Level of inundation of all rivers at the location (Inundated_River_Density_Total)
 High (43.40)

 Medium (27.30)

 Low (19.90)

 Zero (9.38)

11. Level of inundation of all lakes and rivers at the location (Inundated_Lake_and_River)

 High (79.30)

 Medium (15.00)

 Low (5.03)

 Zero (0.73)

12. Abundance of saline lakes at the location (Salt_Lake_Grid)

 High (25.00)

 Medium (25.00)

 Low (25.00)

 Zero (25.00)

13. What is the season of the year (Season)

 Spring (25.00)

 Summer (25.00)

 Autumn (25.00)

 Winter (25.00)

14. What is the effect of air temperature on the Cx. annulirostris growth rate (Popn_Growth_Rate_Temp)

 Ideal (11.10)

 Positive_fast (22.20)

 Positive_slow (22.20)

 Negative (44.40)

15. What is the combined effect of air temperature and relative humidity on the Cx. annulirostris growth rate (Popn_
Growth_Rate_Combined)

 Ideal (14.80)

 Positive (21.80)

 Neutral (19.00)

 Negative (44.40)

Nominal/ordinal scale (5 states) 1. How suitable is the location as a habitat for Cx. annulirostris (Mosquito_Habitat_Grid)

 Very_Good (4.96)

 Good (10.10)

 Neutral (11.10)

 Poor (5.86)

 Very_Poor (67.90)

2. How suitable is the location as a habitat for Ciconiiformes (Bird_Habitat_Grid)

 Very_Good (35.10)

 Good (34.60)

 Neutral (21.20)

 Poor (7.12)

 Very_Poor (2.01)

3. What is the population density of Cx. annulirostris at the location (Cx_annulirostris_Popn)

 Very_High (1.02)

 High (3.44)

 Medium (5.91)

 Low (5.63)
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Table 1  continued

Type of variable Description of node; name in bold italics; node states; prior distribution (%)

 Very_Low (84.00)

4. What is the population density of Ciconiiformes at the location (Ciconiiformes_Popn)

 Very_High (20.90)

 High (33.40)

 Medium (26.90)

 Low (13.80)

 Very_Low (4.88)

5. What is the combined effect of air temperature and relative humidity on female adult Cx. annulirostris’ longevity 
(F_Adult_Lifespan_Combined)

 Very_long (11.50)

 Long (16.80)

 Average (18.80)

 Short (13.10)

 Very_short (6.54)

 Unsuitable_conditions (33.30) [this state is only invoked if the state of F_Adult_Lifespan_Temp = Unsuitable_Temp. 
See Table S11.]

6. Minimum MVEV infection rate of Cx. annulirostris at the location (Vector_Min_Infection_Rate)

 Very_High (0.33)

 High (1.81)

 Medium (4.54)

 Low (6.56)

 Very_Low (86.80)

7. Population density of MVEV-transmitting Cx. annulirostris at the location (Transmitting_Cx_annulirostris)

 Very_High (0.14)

 High (1.04)

 Medium (3.29)

 Low (6.17)

 Very_Low (89.30)

8. Population density of Ciconiiformes susceptible to MVEV at the location (Susceptible_Ciconiiformes)

 Very_High (11.50)

 High (27.40)

 Medium (29.60)

 Low (21.10)

 Very_Low (10.40)

Categories based on numerical 
ranges

1. Total rainfall over the previous 3 months (Past_3mo_Rainfall)

 Below_60 mm (33.30)

 From_60 mm_to_100 mm (33.30)

 Above_100 mm (33.30)

2. Surface temperature of waterbodies over the previous 3 months (Water_Temperature)

From_20C_to_30C (33.30)

Below_10C_or_Above_40C (33.30)

All_other_Temp (33.30)

3. Average air temperature over the previous 3 months (Air_Temperature)

 Below_18C (11.10)

 From_18_to_21C (11.10)

 From_21_to_24C (11.10)

 From_24_to_27C (11.10)

 From_27_to_30C (11.10)

 From_30_to_33C (11.10)
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Table 1  continued

Type of variable Description of node; name in bold italics; node states; prior distribution (%)

 From_33_to_36C (11.10)

 From_36_to_39C (11.10)

 Above_39C (11.10)

4. Average relative humidity at 3 pm over the previous 3 months (Relative_Humidity_3 pm)

 From_0_to_30 (33.33)

 From_30_to_60 (33.33)

 From_60_to_100 (33.33)

5. MVEV’s extrinsic incubation period in Cx. annulirostris (Extrinsic_Incubation_Period)

 From_0_to_5_days (11.10)

 From_5_to_10_days (22.20)

 From_10_to_15_days (22.20)

 From_15_to_20_days (11.10)

 Unsuitable_Temp (33.30)

6. Effect of average air temperature on female adult Cx. annulirostris’ lifespan (F_Adult_Lifespan_Temp)

 From_25_to_30_days (11.10)

 From_20_to_25_days (25.90)

 From_15_to_20_days (7.41)

 From_10_to_15_days (7.41)

 From_5_to_10_days (7.41)

 From_0_to_5_days (7.41)

 Unsuitable_Temp (33.30)

Names of every node are in bold italics and bracketed; every node state is listed with its probability bracketed

Fig. 2  Average current climatic conditions. MVEV risk maps under current average climatic conditions, December–February (summer) (a), Febru-
ary–April (b), and June–August (winter) (c) (dark blue ‘High’; light blue ‘Medium’; rest ‘Low’ risk)
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the extreme north along the coast during summer plus 
the region around Kununurra (Fig. 4a). From February to 
April, the total area at ‘Medium’ risk shrinks even fur-
ther, this time excluding Kununurra (Fig. 4b). In winter, 
the entire State is expected to have ‘Low’ risk.

Figures 3 and 4 illustrate the importance of rainfall in 
determining MVEV risk level, in agreement with a num-
ber of other studies that also demonstrate the importance 
of this variable [12, 28, 29].

Case study: February–April, 2000
Figure  5a shows the predicted MVEV risk distribution 
in WA using actual climate data from February to April 
2000. During the summer and autumn of 1999/2000, WA 
experienced unusually high amounts of rainfall. This pat-
tern was compounded by Tropical Cyclone Steve which 
moved along the entire coastal region of northern WA 
from Kununurra to Shark Bay before turning inland and 
moving southeasterly towards Esperance [30, 31].

With significant parts of the State experiencing ele-
vated levels of rainfall, the model predicted that larger 
areas should be at ‘Medium’ or ‘High’ risk of MVEV 
transmission. In addition to the usual locations in the 
north (which continue to have ‘High’ risk of transmis-
sion), the model suggested that more southerly areas 
are now at ‘Medium’ risk, including large parts of the 

Midwest (which should normally have a ‘Low’ risk cat-
egory during this period; see Fig. 2b).

The model’s predictions of affected areas were checked 
against historical reports. During that season, nine 
cases of MVEV infection in WA were recorded [30]. 
They were Newman (6 March), Kalbarri (8 April), Car-
narvon (16 April), Meekatharra (20 April), an unknown 
location in the Midwest to Kimberley region (25 April), 
Wickham (28 April), Mullewa (3 May), Dongara (5 May), 
and Broome (8 May). Comparing these places with areas 
marked ‘Medium’ or ‘High’ risk in Fig.  5a reveals that 
they are all included within ‘Medium’ to ‘High’ risk 
zones. The last three cases had onset of symptoms in 
early May but the dates suggest that they had probably 
acquired their infections in late April/early May.

Case study: February–April, 2003
Figure  5b shows the predicted MVEV risk distribution 
using actual climate data from February to April 2003. 
Year 2003 was chosen to determine how the model per-
formed for a non-epidemic year. The total rainfall in the 
summer/autumn of 2002/2003 was much less than that 
in 2000, although the Kimberley region still had above 
average levels of rain [32].

Once again, the Kimberley region is predicted to have 
the highest risk of MVEV transmission from February to 

Fig. 3  Scenario modelling: current climatic conditions with maximum rainfall. MVEV risk maps with elevated rainfall patterns (above 100 mm over 
the 3 month periods) throughout Western Australia, but having current average temperature and relative humidity (dark blue ‘High’; light blue 
‘Medium’; rest ‘Low’ risk)
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April, but the total area in the Pilbara having ‘Medium’ 
to ‘High’ risk is smaller than average (see Fig.  2b) and 
much smaller than the total area during the same period 
in 2000. Interestingly, the model predicted that ‘Medium’ 
risk areas should extend further south than usual all the 
way to Esperance on the southern coast.

There was no notified human case of MVEV infection 
in 2003, and we therefore compared the predicted risk 
distribution with sentinel chicken serosurvey results. 
That season was associated with little flavivirus activ-
ity throughout Australia [33]. In WA, MVEV was first 
detected in February at Fitzroy Crossing, followed by sero-
conversions at Kununurra, Kalumburu and Paraburdoo in 
April and May. No further seroconversions were reported 
for the rest of that season [33]. These four sites are all 
situated within what the model predicted were ‘High’ or 
‘Medium’ risk areas. Southern/inland regions of WA (in 

a vertical band from the central Pilbara region down to 
Esperance) had zones predicted to be at ‘Medium’ MVEV 
risk. However, it was difficult to correlate these estimates 
with actual measures of MVEV activity because sentinel 
chicken flocks were not stationed at these regions (in that 
year, the southernmost town where a flock was stationed 
was York, about 100 km east of Perth [34]).

Case study: February–April, 2009
We tested the model with climatic data from February 
to April 2009 (Fig.  5c). The total area where the risk is 
‘Medium’ or ‘High’ is more restricted in 2009 compared 
to the same period in 2000 and 2003, but appears similar 
to the modelled situation under current average climatic 
conditions (see Fig. 2b).

Four cases of human MVEV infection were reported 
across Australia in 2009 with two from WA: one at 

Fig. 4  Scenario modelling: current climatic conditions with minimum rainfall. MVEV risk maps with low rainfall levels (less than 60 mm over the 
3 month periods) throughout Western Australia, but having current average temperature and relative humidity. During winter, the risk is ‘Low’ 
throughout WA. (light blue ‘Medium’; rest ‘Low’ risk)
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Broome in March and another at Port Hedland in May 
[35]. Those two centres were correctly predicted as fall-
ing within or near to ‘High’ risk zones. Additionally, 
data from sentinel chicken flocks indicated that MVEV 
activity was greater during the 2009 season than in pre-
vious years, with seroconversions occurring in flocks 
at Kununurra, Halls Creek, Sally Malay Mine (Mabel 
Downs), Fitzroy Crossing, Harding Dam, and “all loca-
tions where sentinel chickens were in place in the Kim-
berley, Pilbara and Gascoyne regions” [35]. A number of 
those locations are indicated to fall within ‘Medium’ or 
‘High’ risk areas. The model also correctly predicted that 
“no seroconversions to MVEV were detected south of the 
Gascoyne region” [35], labelling those regions as having 
‘Low’ risk.

Case study: February–April, 2011
The model was tested using climate data from Febru-
ary to April 2011 (Fig. 5d). Year 2011 was another major 
epidemic year with 17 cases reported across Australia, 
including three deaths [36]. Nine cases were from WA 
including one death [36]. Predicted ‘High’ risk areas 
include much of the Kimberley and coastal areas of the 
Pilbara region, while ‘Medium’ risk areas extend as far 
south as Kalgoorlie.

A comparison of Fig.  5d with a map of actual MVEV 
cases in 2011 [36] shows a high degree of agreement 
between the two. There was even an unusual case occur-
ring far inland near the border with Northern Territory 
and South Australia (actual location unknown). The 
large area having ‘Medium’ to ‘High’ risk is attributable 
to greater amounts of rainfall, which led to large popu-
lations of Cx. annulirostris and Ciconiiformes, similar to 
the situation which existed in February to April 2000. 
The 2011 experience showed that MVEV activity is not 
restricted to coastal regions: cases can occur within WA’s 
interior, as modelled by the BBN.

Future scenario: risk in 2030
Finally, we ran the model using predicted climate data for 
the year 2030 (Fig. 6), under the SRES A1B emissions sce-
nario which is based on a future world condition of high 
economic growth, a global population that is assumed to 
peak in 2050, and a balanced use of world energy sources 
between fossil and non-fossil fuels [37]. Climate predic-
tions were generated under the CSIRO Mark 3.5 (CSIRO-
Mk3.5) model by OzClim [38].

Comparing Figs.  2 and 6, the overall MVEV risk is in 
fact predicted to decline between now and 2030. From 
December to April 2030, the total area having ‘Medium’ 
to ‘High’ risk is smaller compared to the current situa-
tion. Coastal areas of the Pilbara region no longer have 
higher risks of MVEV transmission. During winter, how-
ever, the risk distribution is predicted to be almost the 
same as the current situation.

Sensitivity analysis of the query node
Sensitivity analysis of a BBN node is a procedure that 
allows users to quantify the amount of influence every 
other node has on that node [16]. For a node with dis-
crete states, it is based on the reduction in the ‘entropy’ 
of that node when a finding has been entered for one of 
the other nodes [16]. Sensitivity analysis of the node for 
MVEV risk in humans (titled MVEV_Risk_Humans) 
showed that it was particularly affected by the following 
five nodes:

1.	 Density of MVEV-transmitting Cx. annulirostris 
(Transmitting_Cx_annulirostris)

2.	 Cx. annulirostris’ minimum MVEV infection rate 
(Vector_Min_Infection_Rate)

3.	 Ciconiiformes’ population density (Cx_annuliro-
stris_Popn)

4.	 Habitat suitability for Cx. annulirostris (Mosquito_
Habitat_Grid)

5.	 High risk of dryland salinity (Dryland_Salinity_
High_Risk)

The five most important abiotic factors affecting MVEV 
risk are, in order:

1.	 High risk of dryland salinity (Dryland_Salinity_
High_Risk)

2.	 Average air temperature (Air_Temperature)
3.	 Surface water temperature of waterbodies (Water_

Temperature)
4.	 Linear distance to nearest waterbody (Nearest_Wet-

land_or_River)
5.	 Abundance of saline lakes (Salt_Lake_Grid)

Rainfall is not within the top five most influential nodes. 
However, this does not mean that it is not an important 
factor affecting MVEV risk, because the sensitivity of 
a node to the state of another is acutely affected by the 

See Figure on previous Page 
Fig. 5  Case study: February–April 2000 (a), case study: February–April 2003 (b), case study: February–April 2009 (c) and case study: February–April 
2011 (d) (dark blue ‘High’; light blue ‘Medium’, rest ‘Low’ risk)
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number of intermediate nodes separating them, in addi-
tion to other factors such as the CPTs [16]. Although 
Past_3mo_rainfall is not included amongst the five 
most important abiotic factors affecting MVEV_Risk_
Humans, its influence is exerted through its effects 
on other nodes such as Cx_annulirostris_Popn. The 
strength of this influence is seen in Figs. 3 and 4.

Discussion
In this paper, we present a novel Bayesian Belief Net-
work-based model for assessing Murray Valley encepha-
litis virus (MVEV) risk in Western Australia. Although 
this application of BBNs to MVEV risk modelling has not 
previously been developed, the use of such networks has 
been successfully applied in other aspects of ecological 
modelling (e.g. [14, 18, 19]). Compared with other mod-
elling techniques, BBNs have the distinct advantage of 
being able to incorporate expert-derived knowledge and 
uncertainty in an explicit manner, allowing users to test 
the consequences of different suggested possibilities (i.e. 
hypotheses) on the outcome [23]. Naturally, this gives 
rise to the possibility of bias since different experts may 
weigh the importance of causative factors differently. In 
addition, since the networks cannot handle continuous 
variables, these must be discretised first, introducing 
another aspect of subjectivity [16, 23]. However, these 

drawbacks are reduced by the fact that the network and 
every assumption is made fully explicit, allowing for easy 
evaluation and critique, and more importantly, for easy 
updating and refinement as well [16, 23].

The MVEV risk model presented in this article is one 
such ‘expert-derived’ system, based on the ‘nidus’ concept 
of disease transmission originally proposed by Pavlos-
kiy (cited in [39]). In the context of arboviruses, it states 
that disease transmission can only take place when three 
components—the virus, competent vectors and suscep-
tible hosts—are simultaneously present at a particular 
location. Susceptible humans will only get infected when 
they enter the transmission zone or nidus [39].

The MVEV transmission nidus was modelled by the 
parent nodes of the Cx. annulirostris minimum MVEV 
infection rate node (titled Vector_Min_Infection_Rate). 
The entire BBN revolves around them and all other nodes 
in the network can be thought of as ‘secondary’ nodes 
supporting these ‘primary’ nodes: the node for Cx. annu-
lirostris population density (titled Cx_annulirostris_
Popn) models the density of infected and uninfected 
vectors at that location; the node for susceptible Ciconii-
formes population density (titled Susceptible_Ciconii-
formes) does the same for the vertebrate hosts of MVEV; 
the node for MVEV endemicity by region (titled WA_
Region) approximates the size of the virus population 

Fig. 6  Future scenario: risk in 2030. Predicted MVEV risk throughout WA in three periods of 2030, according to the A1B SRES emissions scenario [37], 
with climate predictions generated using the CSIRO-Mk3.5 model under a moderate rate of global warming (climate prediction software: OzClim 
[38]) (dark blue ‘High’; light blue ‘Medium’; rest ‘Low’ risk)
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there by reference to where the virus is enzootic or epizo-
otic in WA (assuming that virus populations are highest 
on average in enzootic regions and lowest in places that 
are neither enzootic nor epizootic).

Generally, regions most conducive for creating MVEV 
transmission nidi are those surrounding lakes (wetlands) 
and rivers. Therefore on a State-wide scale across WA, 
MVEV risk is primarily determined by the proximity to 
lakes (wetlands) and rivers, which are the main habitats 
of both Cx. annulirostris and Ciconiiformes. The risk 
maps show that for an average year (i.e. in which cli-
matic parameters have their current mean values), loca-
tions south of 25oS (the latitude of the coastal town of 
Carnarvon) are generally not at risk of experiencing an 
MVEV outbreak. North of this latitude, MVEV risk is 
highest from February to April, where total rainfall is 
highest of the three time periods considered. In winter, 
the total area at risk shrinks until only the region west of 
Karratha can support MVEV outbreaks throughout the 
year. This region has an abundance of wetlands to sup-
port large waterbird populations [40] and has a suitable 
climate all year round for mosquito breeding.

The model shows that rainfall patterns had a large 
impact on MVEV activity in WA. The obvious explana-
tion for this is that rainfall directly impacts the popula-
tion densities of Cx. annulirostris and Ciconiiformes in 
an area. For example, during the two major epidemic 
years (2000 and 2011), northern WA experienced sum-
mer cyclones which brought large quantities of rain over 
much of that region [41]. The importance of rainfall on 
the level of risk also brings the model in line with a num-
ber of other studies [e.g. 12, 28, 29].

Interestingly, MVEV risk was shown to decline for the 
2030 scenario, compared to the current situation. That 
is because of predicted higher mean temperatures from 
summer to April of 2030 over large parts of WA. Tem-
peratures above 33 °C are not ideal for Cx. annulirostris 
growth [42], and this led to the lowering of MVEV trans-
mission risk in 2030.

The overall agreement between the predictions and 
historical reality increases our confidence in the ability 
of the model to accurately predict future MVEV risks 
in WA. However, note that during the 4  years studied, 
places where human MVEV cases and sentinel chicken 
seroconversions occurred were only a small fraction of 
the total area predicted to have average to above aver-
age (‘Medium’ or ‘High’) risk. This shows that the model 
may have adequate sensitivity but still has relatively poor 
specificity, and this could continue to be refined in future 
BBNs.

There are other potential limitations in this analy-
sis. The overall influence of vegetation on mosquito and 
waterbird habitat suitability was kept low (Tables S6 and 

S7 in the Additional file 1). This was partly because veg-
etation was classified very broadly in terms of ‘presence’ 
or ‘absence’. In addition, risk here was modelled on a large 
State-wide scale and thus a highly detailed picture of the 
vegetative landscape, including its effects on the abun-
dance of Cx. annulirostris and Ciconiiformes, was not 
necessary. It is likely to become more important when a 
model is devised to assess MVEV risk at smaller, more 
localised areas. That would require careful analysis of the 
types of vegetation present [43, 44].

Human-related nodes in the model were not used dur-
ing the mapping process. These nodes incorporate the 
idea that the risk of MVEV in a community is inversely 
related to the level of immunity in that community. Their 
effects need to be considered when comparing MVEV 
risks between different communities in WA, but were not 
used in the mapping process because the scale of the risk 
map to be produced is too small to represent such differ-
ences clearly. The population of WA is highly clumped, 
with the majority living in urban areas. On a State-wide 
level, these urban areas appear simply as dots on a land-
scape surrounded by vast tracts of unpopulated land.

This points to a wider limitation of the analysis in terms 
of spatial resolution, since the resolution of the risk maps 
is limited by the resolution of the input data. For exam-
ple, the resolution of the nodes representing waterbody 
and river densities is approximately 600 km2 (see “Meth-
ods”), which represents the smallest resolution of the 
risk maps. We would like to emphasise that the maps are 
meant to delineate risk distributions on a small scale cov-
ering all 2.5  million km2 of land within WA. While the 
resolution is too coarse to allow for greater precision in 
locating potential outbreak areas, the fact that cases of 
MVEV infection and seroconversion coincide with ‘high’ 
and ‘medium’ risk regions on the risk maps is an indica-
tion that the principles behind the model are valid.

Furthermore, risks were modelled in three-month 
blocks, and all climatic data were averaged throughout 
that timeframe before being used as inputs for the model. 
Thus the BBN can only model general relationships 
between climate and vector and virus population growth 
characteristics. This is suitable when dealing with broad 
trends in disease risk across very large landmasses, which 
is the scale for which the MVEV model in this study was 
intended. Microclimatic variations in climate variables 
were not accounted for; these will become important 
when developing models that deal with risk on a micro-
scale (e.g. a few suburbs of Perth).

Conclusion
MVEV is a significant pathogen affecting public health in 
Western Australia and is expected to remain so for the 
foreseeable future. This study presents a Bayesian Belief 
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Network (BBN)-based risk model for MVEV risk assess-
ment in WA, built on considerations of vector and host 
ecologies and designed for application on a State-wide 
scale. In its current form, the MVEV risk model is knowl-
edge-driven and based on an analysis of potential risk 
factors that might affect the dynamics of this disease. The 
results and future applications of the BBN could poten-
tially assist health authorities with outbreak prediction 
and the allocation of resources to combat MVEV in the 
future.

Methods
Framework of BBN risk modelling and mapping
The modelling software was Netica™ (Norsys Software 
Corp., Vancouver, BC) while mapping was performed on 
ArcGIS v10.1 (Esri, Redlands, CA).

A comprehensive review of the literature was con-
ducted to determine the main factors affecting the dis-
tribution of MVEV in Australia and Western Australia 
specifically. An initial BBN was created and GIS-compat-
ible spatial data of environmental factors were sourced 
from government agencies (Table  2). Risk distributions 
were modelled in the following 3-month blocks: Decem-
ber–February (summer); February–April (peak MVEV 
season); and June–August (winter) to assess seasonal 
effects on risk [45], and all climatic data were averaged 
throughout these three-month periods.

Risk maps were generated based on the initial BBN 
and assessed to determine whether they conformed to 
expectations based on the literature. Revisions were 
made where necessary before the draft model and maps 
were consulted with an external professional (Dr. Michael 
Lindsay, Department of Health of Western Australia); any 
suggestions provided were subsequently factored in and 
the BBN revised again. The model was further refined 
using retrospective climate data from 4 years (2000, 2003, 
2009 and 2011) to determine whether it could accurately 
predict locations where human infections and/or senti-
nel chicken seroconversions occurred. The entire process 
was knowledge-driven, iterative, and continued until a 
risk model and risk maps were obtained that conformed 
to expectations and retrospective data from the literature.

Bayesian Belief Network model‑building
All variables were represented as nature nodes with dis-
crete states, and arrows were inserted between nodes that 
formed a causal pathway. Conditional Probability Tables 
(CPTs) were populated using data from the literature, 
where available. Where data were unavailable, the CPTs 
were populated according to the following procedure: (i) 
the degree of influence of every parent node state on the 
child node was estimated and weighted with a numeri-
cal score, before the total weight of every combination of 

parent node states was obtained by summing the scores; 
(ii) the summed scores of every combination of parent 
node states were re-scaled to a 100-point scale using a 
standardised approach; and (iii) the corresponding prob-
ability distributions of the child node were then read off 
or interpolated.

Classification schemes for all nodes are detailed further 
in the Additional file 1. For nodes where we have greater 
freedom to choose the total number of states, we selected 
classification schemes where a ‘median value’ state exists. 
The two most economical schemes where a median value 
exists are those having three- or five-states in total, cor-
responding to ‘high/middle/low’, and ‘very high/high/
middle/low/very low’ states. In some nodes such as Per-
ennial_Lake_Grid where there are four states, the fourth 
state corresponds to the ‘zero value’, hence allowing one 
of the other three states to be the ‘median value’ state. 
This method of classification only applies to nodes where 
we have a measure of freedom to select the number of 
states; they are usually populated by the ‘point-system’ 
mentioned above. Nodes such as F_Adult_Lifespan_
Temp and Air_Temperature, which have seven and nine 
states respectively, are not affected because their states 
were not subjectively determined, i.e. they correspond to 
objective measures such as lifespan and temperature.

Input data processing and classification
All input nodes were used during the modelling and map-
ping process except the human factor nodes and the node 
for vegetation presence (titled Past_3mo_NDVI). The 
node Surface_Runoff_Seasonal was used for risk mod-
elling and mapping in summer and winter only, because 
accurate data for February to April were unavailable. The 
vegetation node was not used for mapping partly because 
vegetation was classified very broadly in terms of ‘pres-
ence’ or ‘absence’, and partly because risk was modelled 
on a large State-wide scale hence a highly detailed picture 
of the vegetative landscape and its effects on the abun-
dance of Cx. annulirostris and Ciconiiformes was not 
necessary. Human factor nodes were not used because 
the population distribution in WA is highly aggregated; 
their effects are not noticeable on small-scale maps as in 
this analysis.

Non‑saline lakes (perennial and non‑perennial) and saline 
lakes
A rectangular ‘fishnet’ grid composed of 160  ×  160 
cells was created, spanning 112°–156° west to east 
and −9° to −40° north to south. Each cell measured 
0.275°  ×  0.19375°, equating to approximately 600  km2. 
‘Inland water’ features were obtained from ‘Global Map 
Australia 1M 2001’ [46]. Features whose hydrologi-
cal category was ‘Perennial/Permanent’ were classified 
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as ‘perennial lakes’, while those that were either ‘Non-
Perennial/Intermittent/Fluctuating’ or ‘Unknown’ were 
classified as ‘non-perennial lakes’. ‘Swamp’ features from 
‘Geodata Topo 2.5 M 2003’ [47] were also included in the 
dataset for ‘perennial lakes’. Saline lakes (identified from 
‘Present Vegetation—Post European Settlement (1988)’ 
[48]) were excluded and analysed separately.

Lake features were overlaid with the fishnet grid. The 
percentage of each grid cell occupied by ‘perennial lakes’ 
and ‘non-perennial lakes’ was calculated. The two per-
centage lists were combined and summary statistics 
(excluding the value 0 %) obtained. Grid cells were then 
re-classified as follows: Zero: 0 %; Low: 0–33rd percen-
tile; Medium: 33rd–67th percentile; High: 67th–100th 
percentile. A similar method was used to process saline 
lakes features.

Rivers (perennial and non‑perennial)
‘Watercourse’ line features were obtained from [46]. Fea-
tures whose hydrological category was ‘Perennial/Per-
manent’ were classified as ‘perennial rivers’ while those 
that were ‘Non-Perennial/Intermittent/Fluctuating’ were 
classified as ‘non-perennial rivers’. ‘Aqueduct/canal’ fea-
tures from [46] were also included in the dataset for ‘per-
ennial rivers’. Kernel densities of ‘perennial rivers’ and 
‘non-perennial rivers’ lines were calculated with a search 
radius twice that of output cell size. Raw density values 
of the two datasets were combined and summary sta-
tistics (excluding the value 0 unit per square map units) 
obtained. Grid cells were re-classified using the Zero/
Low/Medium/High categories as for ‘Lakes’ above.

Climatic parameters
Monthly and seasonal temperature, rainfall, and 3  pm 
relative humidity ASCII grid files were obtained from 
the Australian Bureau of Meteorology [27, 32]. Air tem-
perature was used as a surrogate for water temperature, 
a reasonable approximation at the water surface where 
Cx. annulirostris’ eggs, larvae and pupae are present, but 
not at lower depths (temperature of stream water is cor-
related with (although not strictly equal to) air tempera-
ture [49]). This assumption excludes the effects of other 
factors that might affect surface water temperature, such 
as shading from vegetation and the type of substrate [50].

Dryland salinity
Spatial data for dryland salinity was obtained from the 
‘Western Australia Dryland Salinity Risk Assessment 
2000’ [51]. Area polygons classified as having ‘high’ risk of 
dryland salinity in the year 2000 were selected and over-
laid with the fishnet grid, and cells that enclosed those 
polygons were re-classified Yes (i.e. high risk of dryland 
salinity), while the rest were re-classified No.

Seasonal surface runoff
Mean summer and winter surface runoff maps were 
obtained from the ‘Multi-Criteria Analysis Shell for Spa-
tial (MCAS-S) Decision Support Version 3.1’ [52]. The 
maps were re-classified as follows: Zero: where run-
off = 0 ML; or Above_Zero: where runoff > 0 ML.

Climatic zones of WA
A map of WA agroclimatic zones was obtained from [53] 
and re-classified according to tropical, arid, and temper-
ate regions.
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