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Abstract 

Background:  Human interaction and population mobility determine the spatio-temporal course of the spread of an 
airborne disease. This research views such spreads as geo-social interaction problems, because population mobility 
connects different groups of people over geographical locations via which the viruses transmit. Previous research 
argued that geo-social interaction patterns identified from population movement data can provide great potential in 
designing effective pandemic mitigation. However, little work has been done to examine the effectiveness of design-
ing control strategies taking into account geo-social interaction patterns.

Methods:  To address this gap, this research proposes a new framework for effective disease control; specifically 
this framework proposes that disease control strategies should start from identifying geo-social interaction patterns, 
designing effective control measures accordingly, and evaluating the efficacy of different control measures. This 
framework is used to structure design of a new visual analytic tool that consists of three components: a reorderable 
matrix for geo-social mixing patterns, agent-based epidemic models, and combined visualization methods.

Results:  With real world human interaction data in a French primary school as a proof of concept, this research com-
pares the efficacy of vaccination strategies between the spatial–social interaction patterns and the whole areas. The 
simulation results show that locally targeted vaccination has the potential to keep infection to a small number and 
prevent spread to other regions. At some small probability, the local control strategies will fail; in these cases other 
control strategies will be needed. This research further explores the impact of varying spatial–social scales on the 
success of local vaccination strategies. The results show that a proper spatial–social scale can help achieve the best 
control efficacy with a limited number of vaccines.

Conclusions:  The case study shows how GS-EpiViz does support the design and testing of advanced control sce-
narios in airborne disease (e.g., influenza). The geo-social patterns identified through exploring human interaction 
data can help target critical individuals, locations, and clusters of locations for disease control purposes. The varying 
spatial–social scales can help geographically and socially prioritize limited resources (e.g., vaccines).

Keywords:  Geo-social interaction patterns, Varying spatial–social scales, Geo-social visual analytics, Agent-based 
epidemic models, Social network analysis, Epidemic control
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Background
Airborne infectious diseases (e.g., influenza) cause a huge 
cost to society. The 1918 influenza pandemic infected 
one-third of the world’s population and caused 50 million 
deaths worldwide [1]. Severe acute respiratory syndrome 
(SARS) and Swine/H1N1 Influenza had a dramatic 

impact over most of the world in the twenty-first cen-
tury [2, 3]. Although the world’s public health system has 
made tremendous efforts to detect, prepare, and control 
such epidemics, outbreaks of novel infections (e.g., the 
Middle East respiratory syndrome) continue to occur, 
exacerbated by the increasing urbanization and the 
mobility of contemporary society [4]. How to effectively 
control airborne infectious disease transmission is still an 
open question.
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This research views the spread of airborne diseases as 
geo-social interaction problems, because human interac-
tion connects different groups of people over geographi-
cal locations where the viruses transmit [5]. Research has 
demonstrated that a better understanding of the underly-
ing network structure of a population at risk to infectious 
disease gives insight into disease dynamics and control 
strategies [6–9]. Guo [10] discovered geo-social interac-
tion patterns in population mobility data which provide 
great potential in designing effective pandemic mitigation. 
However, little work has been done to evaluate the effec-
tiveness of control strategy design using such geo-social 
interaction patterns [11]. Thus, this research proposes a 
new framework in terms of an effective disease control 
strategy that should start with identifying geo-social inter-
action patterns, progresses to designing effective control 
measures according to those patterns, and ends with con-
trol measure evaluation. This research designs and devel-
ops a visual analytics tool using the framework described.

The visual analytics tool aims to achieve the following 
linked research objectives: (1) to develop visual analyt-
ics methods representing complex human interaction 
data as geo-social forms that can facilitate the discovery 
of patterns in terms of disease spread and transmission 
control; (2) to develop methods to transform discovered 
patterns into reliable knowledge to support decision-
making processes in epidemic control. The tool consists 
of three components: a reorderable matrix for geo-social 
mixing patterns, agent-based epidemic models, and com-
bined visualization methods. The reorderable matrix 
allows users to identify useful geo-social interaction pat-
terns in terms of disease transmission and control. The 
combined visual-computational methods allow users to 
transform the useful patterns into knowledge to design 
advanced control scenarios. The agent-based epidemic 
models allow users to evaluate the efficacy of the control 
scenarios when considering such geo-social interaction 
patterns.

Related research
In terms of the epidemic control, this study addresses 
decisions about vaccination, and implements various 
immunization strategies into the geo-social visual analyt-
ics tool to allow the design and testing of advanced con-
trol scenarios. A comprehensive review about all of the 
control strategies used in the previous research can be 
found in Lee et al. [12]. There is also research that inte-
grates population-based epidemic models into visual 
analytics [13, 14].

Agent‑based epidemic models and vaccination strategies
Contact networks are built by a series of individuals 
with social or spatial locations and links between those 

individuals, which are fundamentally linked to the spatial 
spread of infectious disease [15]. Agent-based epidemic 
models are based on those contact networks, in which 
each individual is regarded as an agent and links between 
individuals represent possible infection channels [16, 17]. 
Each agent in the population is assigned to an infection 
status (e.g., susceptible, infectious, or recovered). Infec-
tion dissemination over those contact networks depends 
on the likelihood of infection and individual-level human 
interactions [18]. At this point, network topology plays 
a significant role in the speed and extent of epidemic 
dynamics within a population [19]. Therefore, epidemi-
ologists currently use agent-based epidemic models to 
simulate disease transmission and corresponding control 
scenarios on different network structures.

Given the limited supply of vaccines, vaccinations 
aim to achieve the highest efficacy through immunizing 
a fraction of the population [20, 21]. Current vaccina-
tion strategies identify the targeted population with the 
combinations of different network relationships among 
individuals [7, 22–25], and can be called as contact-based 
strategies. Some research has suggested that individu-
als who are socially close to an infection should have a 
high priority to be vaccinated, such as family members or 
office mates of those individuals [26, 27]. Other research 
has reported that targeting individuals with a large 
number of social contacts for immunization is an effec-
tive control strategy [24, 28], when community struc-
ture is not strong. When community structure becomes 
stronger, targeting individuals bridging communities 
becomes more effective than targeting individuals with 
a large number of social contacts [29, 30]. Those studies 
have shown that disease transmissions can be controlled 
through immunizing a small number of the “proper” 
individuals in a social network [18, 20, 31].

The above control strategies only focused on social 
contact characteristics without considering human spa-
tial interaction patterns that play a vital role in shaping 
disease spread process. The typical intervention strategy 
relevant to spatial distance is to simply apply a certain 
distance threshold (e.g., 5  km) to prohibit long-range 
trips’ transmission [32]. However, human interaction pat-
terns are much more complicated than a simple distance 
threshold, given that population mobility connects dif-
ferent groups of people over geographical locations with 
varying distances. Previous research shows that disease 
transmission (i.e., influenza) starts with a local growth 
followed by a long distance transmission to the whole 
population [33]. It indicates that there are three impor-
tant characteristics in terms of disease transmissions: the 
locations of infection sources, human interactions within 
locations, and the movement of individuals among dif-
ferent locations. The first two characteristics determine 
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the early stage of disease transmission patterns. The last 
characteristic describes the time course and geographic 
spread of the disease outbreak at the subsequent stage. 
The three characteristics determine human geo-social 
interaction patterns, based upon which researchers can 
design effective control strategies before airborne dis-
eases occur. Thus, this research proposes that a new 
framework in terms of an effective disease control should 
identify geo-social interaction patterns first and then 
transform human interaction patterns into knowledge to 
design and evaluate the efficacy of control scenarios.

Visual analytics in agent‑based epidemic models
Visual analytics aims to leverage the power of human rea-
soning and computational analysis through visual inter-
faces that enable analysts with domain knowledge to turn 
complex data into useful information and knowledge, 
and to support real-world decision-making [34]. Several 
studies have been done to integrate agent-based epidemic 
models with visual analytics tools, in order to allow users 
to enable analysts to set up parameters to simulate dis-
ease transmission and design control scenarios. The Epi-
Fast tool allows for a disease transmission and public 
health intervention simulation based on the explicit rep-
resentation of social contact networks among individu-
als [35, 36]. The epidemic models and interventions are 
pre-configured into the tool, so it does not allow users 
to explore the social contact networks to identify human 
interaction patterns to design advanced control scenar-
ios. Guo [10] develops a visual analytics tool to allow the 
identification of human interaction patterns, but it does 
not support designing and evaluating the efficacy of con-
trol scenarios considering the patterns.

The above discussion illustrates the new framework 
for an effective disease control processes. However, little 
work in visual analytics research areas has been done to 
evaluate the efficacy of control scenarios when consider-
ing geo-social interaction patterns. Thus, this research 
aims to implement the new framework through a vis-
ual analytics framework in order to fill the gap for both 
design of control strategies and visual analytics.

Methods
Data
This study uses data on face-to-face interactions among 
242 individuals including 232 children and ten teach-
ers, across ten classes over 2  days (Thursday, October 
1st 2009 and Friday, October 2nd 2009) in a French pri-
mary school collected by Stehle et  al. [37] (the data set 
is available at http://www.sociopatterns.org/datasets/
primary-school-cumulative-networks/). Stehle et  al. 
[37] used a proximity-sensing infrastructure based on 
radiofrequency identification devices (RFID) [38] to 

detect high-resolution proximity (about 1–1.5  m) and 
captured 77,602 contact events between individuals at 
the primary school, in order to capture close proxim-
ity interactions (CPIs) for the study of infectious disease 
transmissions. Each node represents individuals and 
edges are face-to-face interactions without directions. 
Each node has the attribute of classname that indicates 
the corresponding grade level and class number, and the 
teachers are assigned as the class of “Teachers” (Table 1). 
Edges between two nodes use the attribute “duration” to 
describe the cumulative time between two nodes in face-
to-face proximity within 1 day (Table 2). The cumulative 
time is measured over an interval of 20 s that allows RFID 
to assess the proximity of two individuals with a probabil-
ity over 99 % [38]. This study uses the data measured on 
the 2  days. This study converts the weighted edge table 
into the weighted networks among each individual. Each 
node has the attribute of classname to distinguish nodes 
from different communities. The data has been stored as 
comma-separated values (CSV) file format for input.

The high-resolution human interaction data is cho-
sen for four reasons. First, the resolution of contact net-
work data from other collections relevant for infectious 
disease transmission is too coarse for airborne disease 
transmission; these include surveys, socio-technological 
networks, mobile devices, and large scale human inter-
action simulation models [7]. Second, our research aims 
to evaluate the effectiveness of control strategy using 
human interaction patterns and the high-resolution data 
used in this research can capture the CPIs relevant to 
disease transmission. Third, schools are considered to 
play an important role in infectious disease spread such 
as influenza mainly because of the high density of CPIs 
[39] and the high-resolution data provides an opportu-
nity to design micro-interventions considering human 
interaction patterns and compare the outcomes of alter-
native mitigation measures. Lastly, before the availabil-
ity of high-resolution contact network data from school 

Table 1  Partial node table with  two attributes: label indi-
cates the id of each node, and classname indicates the cor-
responding class groups, including  grade level and  class 
number for students and “Teachers” for teachers

Label Classname

1538 4A

1539 4A

1551 3B

1552 3B

1650 Teachers

1653 Teachers

1656 1B

http://www.sociopatterns.org/datasets/primary-school-cumulative-networks/
http://www.sociopatterns.org/datasets/primary-school-cumulative-networks/
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environments, school closure has been proposed as an 
effective mitigation strategy [40]. Such measures however 
cause high associated social and economic costs. With 
the high-resolution contact network data, Gemmetto 
et  al. [39] have suggested that targeted grade closure 
strategies can achieve results that are almost as effective 
as the school closure, at a much lower cost. The targeted 
grade closure strategies focus more on social aspects of 
network structures (i.e., the targeted class and its corre-
sponding grade), but they do not take full advantage of 
the high-resolution data that can describe the real human 
spatial–social interaction patterns.

Geo‑social epidemic visual analytics (GS‑EpiViz)
This study treats each class as the basic local human 
interaction unit for two reasons: the network den-
sity for within class interactions is significantly higher 
than between class interactions; it is practical to imple-
ment control strategies based on spatial confinement 
(e.g., class, household, school). Based on the basic unit, 
the average time duration, i.e., total time duration/(the 
basic time measure unit of 20  s ×  all potential connec-
tions), between two communities in the network is used 
to measure the social connection strength among com-
munities. Communities with strong social connections 
imply highly spatial interactions caused by individual 
mobility via which infections can spread. Disease trans-
missions that start from the individual-level within each 
class followed by the class-level transmissions via indi-
vidual mobility can generate spatial–social interaction 
patterns in a hierarchical structure.

Visualizing the hierarchical structure of the social net-
work in an appropriate way allows users to design vacci-
nation strategies with regard to spatial–social interaction 
patterns. Network visualization has a rich history [41, 
42] that has generated many variants on two primary 
categories of network visualization methods: node-link 

visualization and matrix-based visualization [43]. This 
study applies the matrix view to represent our network 
data (Fig.  1) for two reasons: a matrix view has the 
advantage to exhibit high-level structures (relationships 
between different communities) by finding the proper 
ordering of rows and columns [44]; the proper ordering 
of rows and columns in this application is determined 
by the communities in which infected cases are located. 
For example, the matrix view on the right in the Fig. 1a 
displays the interaction data with rows and columns 
organized by grade and class from 1st grade class A at the 
top left to 5th grade class B in the lower right. The first 
infected individual in the scenario is in grade/class 5A. 
Figure 1b reorders all classes in the matrix view: it puts 
group 5A, with the first infected case, on the top left fol-
lowed by other groups according to the social connection 
strength from the highest to the lowest. The reordering 
process is of O(m + k2) complexity in which m represents 
the total number of edges and k represents the number 
of classes. The green cells along the diagonal from the 
top left to the bottom right in matrix views in Fig. 1c, d 
shows the within-community interactions, whereas all 
other cells show the spatial interactions among differ-
ent communities. The interactive view allows users to 
dynamically adjust the reordering sequence according to 
the positions of infection sources and social connection 
strength between the classes with the infection sources 
and all other classes. In this way, users can identify the 
clusters of communities with the strongest spatial–social 
interactions and then focus vaccination or other preven-
tative measures within those communities rather than 
applying the response uniformly to all communities. This 
targeted response is potentially more efficient (in overall 
use of resources) and more effective (in minimizing the 
proportion of individuals who are infected).

In addition to representing human interaction net-
work data in the matrix view to support control strategy 
design, this tool also implements agent-based epidemic 
models from a scratch to simulate disease transmis-
sion and different control scenarios. Specifically, each 
individual in our data set is considered as an agent who 
is described as one of four disease states: susceptible, 
exposed, infectious, or recovered (SEIR) [45]; this is so-
called SEIR agent-based modelling. A single influenza 
infection is randomly introduced into the network with 
all other initially susceptible individuals. Influenza is cho-
sen as an exemplar because it is a common infectious 
disease with reasonably well known transmission charac-
teristics. This study assumes that transmission can only 
occur during the day time, and only on weekdays (thus 
when the individuals involved are at the school). Though 
this simplifying assumption is not realistic, it allows an 
analyst to analyze the disease spread and design control 

Table 2  Partial edge table with four columns: Source indi-
cates the id of source node, Target indicates the id of Tar-
get node, Type indicates that  all edges are undirected, 
Duration indicates that the cumulative time between two 
nodes measured in seconds within 1 day

Source Target Type Duration

1538 1539 Undirected 260

1538 1545 Undirected 120

1538 1546 Undirected 660

1538 1548 Undirected 60

1538 1549 Undirected 40

1538 1618 Undirected 360

1538 1653 Undirected 420
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scenarios starting from one single infected case without 
considering multiple introductions of infected cases.

After coming in contact with an infection, a suscepti-
ble individual has a transmission probability 0.0015 per 
20 s of contact (basic duration measurement unit) to be 
infected. This value has been chosen because it gener-
ates values of R0 (the basic reproductive number) con-
sistent with observed R0 of pandemic influenza (0.9–2.1) 

in previous studies [46, 47]. R0 is defined as the average 
number of secondary cases generated in a susceptible 
population [48]. The calculation of R0 in this case study 
follows the steps: randomly generate one new infected 
case 100 times, simulate disease transmissions 100 times 
for each new infected case within the network according 
to parameters from the Table 3, and then calculate aver-
age R0 for each simulation. Both of the derived R0 based 

Fig. 1  GS-EpiViz consists of four major components: display panel, control panel, xy plot, and matrix view. Display panel in the top left allows users 
to select different matrix displays: binary matrix, time duration matrix, reorder binary matrix, and reorder time duration matrix. Control panels allow 
users to design different control scenarios based on the whole population and selected population. XY plot displays the accumulated infected 
cases over time based on the simulation of agent-based epidemic models. The matrix view visualizes different matrix displays with class information 
on the bottom and on the right. Black cells in the matrix view represent human interactions at the individual level, and white cells indicate there are 
no human interactions. a Displays the binary network with rows and columns organized by grade and class from 1st grade class A at the top left to 
5th grade class B in the lower right. b Displays the reordered binary network with new class numbers on the bottom and on the right. c Displays the 
reorder time duration network matrix with the average time duration values in each cell. d Displays a simulated influenza infection according to the 
parameters in Table 1 on the matrix view and XY plot. Yellow indicates that individuals are in an exposed state, red indicates an infectious state, and 
the blue indicates a recovery state



Page 6 of 16Luo ﻿Int J Health Geogr  (2016) 15:28 

on the two networks respectively are approximately equal 
to 1.8–1.9 which falls into the observed R0 pandemic 
influenza (0.9–2.1). Upon infection, the individual enters 
into the exposed period (infected but not infectious). The 
mean exposed days, 3  days, will be used in this simula-
tion [49]. After the exposed period, an exposed individual 
will become symptomatic and infectious. The infectious 
period used in this project is 7  days, the mean days for 
patients who recovered [49]. This study assumes that 
individuals cannot be infected again after recovery. Fig-
ure  1d shows a simulated influenza infection accord-
ing to the parameters in the Table  3. The tool can be 
applied to study other emerging infectious diseases (e.g., 
measles) directly with the input of their corresponding 
parameters.

In terms of control strategies, GS-EpiViz allows users 
to design four vaccination strategies: random-based, 
degree-based, betweenness-based, and strength-based 
vaccination strategies; these are selected because they 
are the most typical ones used to compare effective-
ness of vaccination strategies based on different network 
structures [7, 22, 29]. The random-based vaccination 
strategy randomly identifies a fraction of the population 
to vaccinate. The basic idea of degree-based, between-
ness-based, and strength-based strategies is first to 
rank the importance of individuals and then vaccinate 
the individuals from highest importance to lowest. The 
degree-based vaccination strategy ranks individuals 
according to the number of contacts during the day of 
measurement for vaccination. The betweenness-based 
vaccination strategy prioritizes individuals according to 
their betweenness centrality [50], capturing the extent 
to which a particular node lies on the bridge among 
different communities. The strength-based vaccina-
tion strategy ranks individuals according to their total 
time exposed to others during the day of measurement 
for vaccination. Given that the vaccination results are 
sensitive to vaccination rates, the tool provides a vari-
ety of options in terms of the percentage of the popula-
tion vaccinated: 5, 10, 15, 20, 25, and 30 %. To compare 
the effectiveness of vaccination strategies based on the 

whole population and local human geo-social interac-
tions, this tool provides two panels on the left of the tool: 
Whole Population Control Design and Selected Popula-
tion Control Design. The former panel allows users to 
select control strategies and control rates based on the 
whole population, whereas the latter panel allows users 
to select control strategies and control rates based on 
the geo-social interaction patterns (orange area in the 
Fig. 2).

Vaccination strategies are applied at the beginning of 
the spread of influenza in the network. The percent of 
the infected population and the spatial–social extent of 
infection are used to evaluate the efficacy of those strat-
egies. There are two networks, four different control 
regions, four strategies, and six vaccination rates, yield-
ing 192(2*4*4*4) combinations to simulate. The efficacy 
of vaccination strategies for each combination is esti-
mated for 10,000 simulation runs, resulting in a total of 
1,920,000 epidemic simulation runs. GS-EpiViz is devel-
oped with JAVA for a cross-platform purpose and the sys-
tem architecture is illustrated in Fig. 3. Geo-social mixing 
patterns are identified from human interaction network 
data. Java universal network/graph framework (JUNG) is 
used to calculate node centrality (i.e., degree, between-
ness) based on human interaction data. SEIR agent-based 
modelling is implemented to simulate disease transmis-
sion and control scenarios. Reordering matrix is imple-
mented to identify and display geo-social mixing patterns 
of the data and simulation results from SEIR agent-based 
modelling. JFreeChart is used to display the vaccination 
efficacy results.

Results
This study aims to compare the efficacy of vaccination 
strategies between the local geo-social interaction pat-
terns and the whole areas based on the real world net-
works provided by the school interaction data. The better 
vaccination strategies are expected to generate a lower 
number of infections. Another measure of how well we 
can contain the epidemic locally is the number of infected 
cases occurring outside the selected areas. If this number 
is zero, the local control scenarios with the selected areas 
are considered successfully. Otherwise, the local control 
scenarios are considered as failures. Figure  2 shows the 
design of eight vaccination strategies with six different 
control rates in the two networks, Thursday, October 1st 
2009 in (a) and Friday, October 2nd 2009 in (b). Two net-
works have been reordered according to the strength of 
social connections to the classroom with the first infected 
case. The local control areas are highlighted in orange. 
The efficacy of eight vaccination strategies in the two net-
works is evaluated through infection percentage and the 
spatial–social extent of infection as described below.

Table 3  Basic simulation parameters for  influenza diffu-
sion

Parameters Default value Literature

Total humans in simulation 242 Stehle et al. [37]

Length of exposed period 3 days Heymann [49]

Length of infectious period 7 days Heymann [49]

R0 0.9–2.1 Mills et al. [46] and 
Ferguson et al. [47]

Infection probability 0.0015 Measured based on R0
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Fig. 2  The design of eight vaccination strategies with six different control rates in the control panel, and selection of reorder binary matrix in the 
display panel. The matrix view visualizes the reordering network, Thursday, October 1st 2009 in a and Friday, October 2nd 2009 in b. The local con-
trol areas are highlighted in orange
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Vaccination strategies in terms of infection percentage
The better vaccination strategies in terms of infection 
percentage are expected to generate a smaller number 
of infections. Figure 4a, b shows that all of the eight vac-
cination strategies can produce a decreasing number 
of infections in proportion to the increasing vaccina-
tion fractions. The random-based vaccination strategy 
produces the highest number of infections, followed by 
the random-based vaccination strategy with the local 
selected control areas in Fig. 2a, b. The other three pairs: 
degree-based, betweenness-based, and strength-based 
vaccination strategies exhibit the same pattern: the three 
strategies with the local selected control areas outper-
form those strategies with the whole area, respectively. 
The explanation for the pattern is illustrated in Figs.  5 
and 6. Figure  5 displays the percentage of the local 

control success for the four local vaccination strategies 
within 10,000 simulation runs. As the vaccination frac-
tions increase, all of the four local vaccination strategies 
can produce a higher percentage of the local control suc-
cess, but to different degrees. In addition, when the local 
control scenarios are successful, they can produce a sig-
nificantly lower number of infected cases (Fig. 6). Those 
results show that when the vaccination fraction reaches 
a relatively high level (i.e., 30 %) with the selected control 
areas, the disease transmission can be confined locally at 
a very high percentage (i.e., 90–95  %), resulting in only 
a small number of infections (i.e., 2–5). Figures  5 and 
6 shows that the former can stop the disease transmis-
sion locally at a certain probability (Fig.  5), which also 
results in the lower number of infections (Fig. 6). Figure 4 
shows that the disease transmission cannot be confined 

Human Interac�on 
Data 

Network 
Representa�on 

Geo-social mixing 
pa�erns 
Node centrality with 
JUNG 
SEIR agent-based 
modelling 

Explora�on and 
Control Scenario 

Design Reordering Matrix 
JFreeChart 

Control Efficacy 
Comparison 

Fig. 3  GS-EpiViz system architecture

Fig. 4  The efficacy of eight vaccination strategies in two networks, Thursday, October 1st 2009 in a and Friday, October 2nd 2009 in b. The Y axis 
represents the percent of infection, and the X axis represents the vaccination rates. Eight vaccination strategies are represented by eight curves in 
different colors and shapes, as the legend shows at the bottom
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locally at 100  %, which also results in the high number 
of infections (Fig. 7). For example, when the local vacci-
nation fraction in terms of degree-based, betweenness-
based and strength-based control strategies reaches to 
30 %, a high number of individuals (i.e., 25–45) in Fig. 7 
are infected at a very low percentage (5–10 %) in Fig. 5. 
Those results suggest that containing disease outbreaks 
locally should be highly recommended, but the follow-
up control strategies (e.g., vaccination) are needed if the 
local control strategies are not successful.   

Vaccination strategies in terms of spatial–social extent 
of infection
From a spatial–social perspective, effective vaccination 
strategies with the selected areas are expected to confine 

the disease outbreak locally. This section only displays 
the simulation results with the second day, Friday, Octo-
ber 2nd 2009, because the 2  days’ results will generate 
the same conclusion as below. Figures 8 and 9 compare 
spatial–social extent of affected areas between the whole 
area and the selected area control scenarios with 30  % 
vaccination rate. The average number of infections based 
on the simulation results is displayed on each cell in each 
matrix. Within the selected areas in each matrix (in pur-
ple square), local control scenarios can produce a much 
lower number of infections (Fig.  9) compared to the 
whole area control scenarios (Fig. 8). This is because plac-
ing the same amount of vaccines within a smaller spa-
tial–social extent of areas would cause a lower number 
of infections locally. However, outside the selected areas, 

Fig. 5  The percentage of the local control success for four local vaccination strategies within 10,000 simulation runs in two networks, Thursday, 
October 1st 2009 in a and Friday, October 2nd 2009 in b. The Y axis represents the percentage of the local containment success, and the X axis rep-
resents the vaccination fraction. Four local vaccination strategies are represented by four curves in different colors and shapes, as the legend shows 
at the bottom

Fig. 6  The total number of the final infected cases when the local vaccination strategies are successful within 10,000 simulation runs in two 
networks, Thursday, October 1st 2009 in a and Friday, October 2nd 2009 in b. The Y axis represents the total number of the final infected cases, and 
the X axis represents the vaccination fraction. Four local vaccination strategies are represented by four curves in different colors and shapes, as the 
legend shows at the bottom
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there are a much larger number of infections (Fig.  9) 
compared to the whole area control scenarios (Fig.  8). 
Each pie chart in Fig. 9 shows the number of local control 
successes versus the number of local control failures with 
10,000 simulation runs. Each bar chart in Fig.  9 repre-
sents the average number of infections between the local 
control success and local control failure. It shows that 
there is a high probability (see pie chart) to contain the 
disease outbreak locally with 30  % vaccination rate, but 
a larger disease outbreak would occur (see bar chart) if 
the local control fails at a low probability. Those results 
suggest that if the local control scenarios fail, new con-
trol strategies have to be implemented to avoid disease 
outbreaks outside the selected control areas. Therefore, 
the efficacy of vaccination strategies in terms of spatial–
social extent of infection also suggests that local vacci-
nation control would be a good control strategy. On the 
other hand, this strategy should be complemented with 
other control strategies if the local ones are not success-
ful at a low likelihood.

Vaccination strategies in terms of varying spatial–social 
scales
This study further explores the impact of varying spatial–
social scales on the success of local vaccination strate-
gies. This section displays the simulation results with the 
local degree-based vaccination strategies on the first day, 
Thursday, October 1st 2009. Figure  10 compares simu-
lation results with varying spatial–social scales (in the 
purple square) with a 20 % vaccination rate. Within the 
increasing spatial–social scales, the number of local con-
trol successes has a gradual increase from 55 % in Fig. 10a 
to 63 % in Fig. 10b to 86 % in Fig. 10c and decreases to 
80  % in Fig.  10d. It implies that a proper spatial–social 

scale can help achieve the best control efficacy with a 
limited number of vaccinations. One explanation is that 
a certain number of vaccinations have its upper limit of 
susceptible population pool. The number of local con-
trol successes increases until it reaches the upper limit, 
whereas the number of local control successes decreases 
after it goes beyond the limit.

Conclusions and implications
This research proposes a new framework in terms of 
effective disease control that starts from identifying geo-
social interaction patterns, followed by designing effec-
tive control measures accordingly, and then evaluates the 
efficacy of different control measures. This framework 
is used to structure design of a new visual analytic tool: 
GS-EpiViz. This tool first identifies the geo-social inter-
action patterns applicable to the design/plan disease 
containment strategies before disease outbreak occurs, 
then implements the method and agent-based epidemic 
models into a visually interactive environment. With 
real world human interaction data as a case study, this 
research compares the efficacy of vaccination strategies 
between the spatial–social interaction patterns and the 
whole areas. The simulation results show that the con-
trol strategies based on spatial–social interaction pat-
terns can lead to a significant reduction of epidemic size 
in terms of total number and spatial–social extent at a 
very high likelihood within the school environment. This 
research also gains new insights into how a proper spa-
tial–social scale matters in terms of control efficacy with 
a limited number of vaccinations.

The success of vaccine strategies depends on early 
detection, efficient targeting, and prioritizing high 
risk individuals; this is essential because of the limited 

Fig. 7  The total number of infections when the local vaccination strategies are not successful within 10,000 simulation runs in two networks, Thurs-
day, October 1st 2009 in a and Friday, October 2nd 2009 in b. The Y axis represents the total number of the infected cases, and the X axis represents 
the vaccination fraction. Four local vaccination strategies are represented by four curves in different colors and shapes, as the legend shows at the 
bottom
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resources and time [47, 51]. This study provides valu-
able insights for designing effective control strategies that 
consider the geo-social interaction patterns and by doing 
so help meet the above challenges. Our approach dem-
onstrates that the geo-social interaction patterns can help 
identify critical individuals, locations, and clusters of 

locations for disease control purposes. Geo-social inter-
action patterns should be used to implement control pol-
icies because simple distance threshold (e.g., 5 km) [32] 
cannot capture the most likely and complicated disease 
transmission processes. The varying spatial–social scales 
can help geographically and socially prioritize limited 

Fig. 8  The spatial–social patterns of simulated vaccination strategies with 30 % vaccination rate with the average number of infections based on 
10,000 runs after reordering the second day network, Friday, October 2nd 2009. a The random-based vaccination strategy, b the degree-based vac-
cination strategy, c betweenness-based vaccination strategy, and d the strength-based vaccination strategy
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Fig. 9  The spatial–social patterns of simulated vaccination strategies with 30 % vaccination rate based on the selected areas (purple square) after 
reordering with the average number of infections in each cell in the second day network, Friday, October 2nd 2009. The number of infections within 
the selected areas is achieved through calculating the sum of infected individuals on each of the 10,000 runs and then dividing by 10,000 runs. The 
average number of infections outside the selected areas is calculated through dividing by the number of local control failures, because the number 
of infections is zero when the local control is successful. a The random-based vaccination strategy, b the degree-based vaccination strategy,  
c betweenness-based vaccination strategy, and d strength-based vaccination strategy. The pie chart in each figure represents the number of local 
control success versus the number of local control failure with 10,000 simulation runs. The bar chart in each figure represents the average number of 
infections between the local control success and local control failure
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Fig. 10  The spatial–social patterns of local degree based vaccination strategies with 20 % vaccination rate with varying spatial–social scales (in the 
purple square) after reordering with the average number of infections in each cell in the first day network, Thursday, October 1st 2009. The number 
of infections within the selected areas is achieved through calculating the sum of infected individuals on each of the 10,000 runs and then dividing 
by 10,000 runs. The average number of infections outside the selected areas is calculated through dividing by the number of local control.  
a–d Increasing spatial–social scales. The pie chart in each figure represents the number of local control success versus the number of local control 
failure with 10,000 simulation runs. The bar chart in each figure represents the average number of infections between the local control success and 
local control failure
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resources (e.g., vaccines) in time critical situations during 
an outbreak. After the first infections are reported, the 
varying spatial–social scales can help identify a proper 
scale for immediate actions. The distribution of avail-
able vaccines within the proper scale can also give an idea 
how likely it is that the infection can be confined within 
the scale. Based on the likelihood, policy makers can have 
a priority list according to limited resources and time to 
prepare for the situation when the infection cannot be 
confined within the scale.

Though the real, high-resolution human interaction 
data analysed here provides a proof of concept to study 
the impact of geo-social mixing patterns and scales on 
infectious disease control, three major limitations of this 
research are important to mention. First, the data used 
in this research measure the frequency of spatial prox-
imity between individuals, but they do not include spa-
tial topology information (e.g., relative position of the 
classrooms). Such spatial information has mostly been 
used to build human interaction network such as assign-
ing individuals to home or workplace according to their 
relative positions [36, 52]. After the human interaction 
network is built, infectious disease simulation is based 
on the network topology rather than spatial topology. 
Thus, the agent-based simulation processes based on 
our data are similar as other models with spatial topol-
ogy information. Second, though vaccination strategies 
we discussed in this research are novel, we only tested 
them with one specific dataset corresponding to one 
particular school. High resolution data collected from 
different schools or different countries [7] can capture 
varying human interaction patterns within the classes 
and among different classes. Lastly, though the high 
resolution data can capture the real human interaction 
patterns for epidemic analysis research purpose, its limi-
tation comes from relatively small network size.

The above limitations illustrate several future research 
directions in terms of GS-EpiViz development with 
more complex human interaction data. First, insights 
could be achieved by comparing effectiveness of the 
proposed strategies using such high-resolution data 
describing the real spatial–social interaction patterns 
from other schools or countries. Second, It would repre-
sent an important step to apply the proposed strategies 
to human interaction data at a larger scale (e.g., urban). 
In reality, each classroom in this study can be viewed 
as one geographical location (e.g., workplace, home) at 
larger spatial scales (e.g., cities), whereas human move-
ment among different classrooms can be viewed as spa-
tial interactions among geographical locations. Gao and 
Bian [53] found that human interaction network within 
a metropolitan community is spatially clustered. Thus, 
the effectiveness of our vaccination strategies based on 

the school data with the high density of CPIs implies 
that those strategies are very likely to be effective to 
control disease spread with larger scale spatial–social 
network data with a large number of individuals move 
within and between communities on a daily basis such 
as urban areas [22]. We expect that the strategies would 
be more effective to control infectious disease trans-
missions with larger scale spatial–social network with 
weak connections between sparse population distribu-
tions such as rural areas [22]. In terms of network size, 
the space complexity in GS-EpiViz is O(m + n + k2), in 
which m represents the total number of edges, n repre-
sents the number of nodes, and k represents the num-
ber of communities. Then it would not be a problem for 
GS-EpiViz to deal with large data sets (up to 1 GB). For 
example, a network with 1,000,000 nodes and 5,000,000 
edges and 1000 communities requires approximately 1 
gigabytes of internal memory for handling the data all 
at once.

In summary, infectious disease transmission is deter-
mined by the mixed interactions of the social and spatial 
relationships among individuals [17, 54]. Either relation-
ship can play an important role in exploring proper vac-
cination strategies. Social or spatial relationships, 
respectively, have received substantial attention, while 
the mixed interactions of the social and spatial relation-
ships have often been under-studied [22]. To our knowl-
edge, this research is the first attempt to evaluate the 
efficacy of control scenarios when considering geo-social 
interaction patterns and to bring the concept of scale into 
the design of control scenarios. GS-EpiViz facilitates the 
vaccination strategy evaluation with local spatial–social 
interaction patterns and varying spatial–social scales. 
The results provide insights into community-based plan-
ning within school environment and potentially at larger 
spatial scale (e.g., urban, rural) for controlling emerging 
air-borne infectious diseases.
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