Skip to main content

Table 2 Modelled estimates of the effects of climatic covariates on malaria incidence in the districts of Zimbabwe, including spatial and temporal variance. The smaller value of DIC indicates a better fitting model.

From: Spatio-temporal analysis of the role of climate in inter-annual variation of malaria incidence in Zimbabwe

Covariates Non spatial Model Spatial Model Spatial-temporal model
  IRR (95% CI) IRR (95% CI) IRR (95% CI)
Mean temperature (°C) 5.332 (4.700, 5.885) 6.533 (4.251, 8.812) 7.634 (6.890, 8.349)
Maximum temperature (°C) 0.440 (0.414, 0.485) 0.363 (0.306, 0.446) 0.291 (0.272, 0.322)
Minimum temperature (°C) 0.700 (0.657, 0.752) 0.479 (0.357, 0.623) 0.500 (0.412, 0.581)
Vapour pressure (hPa) 1.003 (0.998, 1.008) 1.036 (1.020, 1.050) 1.018 (1.005, 1.028)
NDVI 2.700 (2.267, 3.132) 1.478 (1.011, 2.256) 1.375 (0.913, 1.701)
Rainfall (mm) 1.017 (1.012, 1.021) 1.005 (0.999, 1.011) 1.006 (1.000, 1.012)
Spatial variation ()   1.346 (1.078, 1.673) 18.620 (15.280, 22.710)
Temporal variation ()    0.004 (0.001, 0.010)
DIC 8414.270 8113.280 7912.610
  1. NDVI – normalized difference vegetation index; DIC – deviance information criterion; IRR – incidence rate ratio; CI – credible intervals