# Table 5 Landsat 5 thematic mapper candidate covariates

Variables Covariate subset list Variable definition Number of variables Non-spectral mean values Spectral (pixel-level) transform
Non-spectral transforms
B $$b_i$$; i = 1, 2, 3, 4, 5, 7 Mean value of Landsat 5 thematic mapper $$\hbox {band}_i$$ measurement 6 *
Bs $$bs_i$$ ... SD of $$b_i$$ 6 *
Bv $$bv_i$$ ... Variance of $$b_i$$ 6 *
Bc $$bc_i$$ ... Coefficent of Variation [CV]: $$bc_i$$ = sd($$b_i$$)/$$b_i$$ = $$bs_i$$/$$b_i$$ 6 *
S $$s_i$$; i = 1, 2, 3, 4, 5, 7 Square of $$b_i$$ = $$b_i$$ x $$b_i$$ 6 *
P $$p_{ij}$$; i = 1, 2, 3, 4, 5 and j = i + 1, ..., 5, 7 Non-spectral cross products of the means $$b_i$$ and $$b_j$$ 15 *
R.re $$r.re_{ij}$$; i = 1, 2, 3, 4, 5 and j = i + 1, ... , 5, 7 Non-spectral ratios of means $$b_i$$ and $$b_j$$ = $$b_i$$/$$b_j$$ 15 *
D $$d_{12}$$; i = 1, 2, 3, 4, 5 and j = i + 1 , ... , 5, 7 Non-spectral ratio of the difference-to-the-sum of the mean value $$b_i$$, $$b_j$$: $$d_{ij}$$= ($$b_i$$-$$b_j$$)/($$b_i$$+$$b_j$$). See text 15 *
Spectral transforms
NB $$nb_i$$; i = 1, 2, 3, 4, 5, 7 Mean value of the min-max normalized $$\hbox {band}_i$$ measurements (see text) 6   *
NBs $$nbs_1$$ ... SD of $$nb_i$$ 6   *
NBv $$nbv_i$$ ... Variance of $$nb_i$$ 6   *
NBc $$nbc_i$$ ... Coefficent of Variation [CV]: $$nbc_i$$= sd($$nb_i$$)/$$nb_i$$ = $$nbs_i$$/$$nb_i$$ 6   *
R $$r_{ij}$$; i = 1, 2, 3, 4, 5 and j = i + 1, ... , 5, 7 $$r_{ij}$$ = mean ratio of the paired pixel magnitudes 15   *
Rs $$rs_{ij}$$ ... SD of $$r_{ij}$$ 15   *
Rv $$rv_{ij}$$ ... variance of $$r_{ij}$$ 15   *
Rc $$rc_{ij}$$ ... Coefficient of Variance [CV] of $$r_{ij}$$ 15   *
DS $$ds_{ij}$$; i = 1, 2, 3, 4, 5 and j = i + 1, ... , 5, 7 $$ds_{ij}$$ = mean ratio of the difference-to–sum of the paired pixel magnitudes 15   *
DSs $$ds_{ij}s$$ ... $$ds_{ij}s$$ = SD of $$ds_{ij}$$ 15   *
DSv $$ds_{ij}v$$ ... $$ds_{ij}s$$ = variance of $$ds_{ij}$$ 15   *
DSc $$ds_{ij}c$$ ... $$ds_{ij}s$$ = coefficient of variation [CV] of $$ds_{ij}$$ 15   *
CH $$ch_{ijk}$$; i = 1, 2, 3, 4; j = i + 1, ... , 5; k = j + 1 Cylindrical transform of composite $$hue_{ijk}$$ - see text 20   *
CHs $$ch_{ijk}s$$ ... $$ch_{ijk}s$$ = SD of $$ch_{ijk}$$ 20   *
CHv $$ch_{ijk}v$$ ... $$ch_{ijk}v$$ = variance of $$ch_{ijk}$$ 20   *
CHc $$ch_{ijk}c$$ ... $$ch_{ijk}c$$ = coefficient of variation [CV] of $$ch_{ij}$$ 20   *
RH $$rh_{ijk}$$; i = 1, 2, 3, 4; j = i + 1, ... ,5; k = j + 1 Rectangular transform transform of composite $$hue_{ijk}$$ (see text) 20   *
RHs $$rh_{ijk}s$$ ... $$rh_{ijk}s$$ = SD of $$rh_{ijk}$$ 20   *
RHv rh ijkv ... $$rh_{ijk}v$$ = variance of $$rh_{ijk}$$ 20   *
RHc $$rh_{ijk}c$$ ... $$rh_{ijk}c$$ = coefficient of variation [CV] of $$rh_{ij}$$ 20   *
Total variables: 379 75 304
1. A summary of the 379 Landsat 5 thematic mapper variables calculated for this study. Only measurements collected in Bands 1 through 5 and Band 7 are used 