Skip to main content

Table 6 Cluster statistics for counties with the smaller poisson probability for Ni ≥ μ(Ai)

From: Differentiating anomalous disease intensity with confounding variables in space

Rank order

County

SMR

SIDS

E(SIDS)

Poisson

B1

P value1

B2

P value2

1

Anson

3.45

15

4.35

\(\text{1.36}{\times10}^{-5}\)

 

 

2

Rutherford

2.47

12

4.86

\(\text{1.57}{\times10}^{-3}\)

0

1

0

1

3

Columbus

1.94

15

7.72

\(\text{6.00}{\times10}^{-3}\)

0

1

0

1

4

Rockingham

1.87

16

8.54

\(\text{6.92}{\times10}^{-3}\)

0

1

0

1

5

Lincoln

2.33

8

3.43

\(\text{8.72}{\times10}^{-3}\)

0

1

0

1

6

Halifax

1.72

18

10.46

\(\text{1.11}{\times10}^{-2}\)

0

1

0

1

7

Onslow

1.52

29

19.08

\(\text{1.24}{\times10}^{-2}\)

0

1

0

1

8

Northampton

2.01

9

4.47

\(\text{1.64}{\times10}^{-2}\)

1

\(\text{7.81}{\times10}^{-1}\)

1

\(\text{6.98}{\times10}^{-1}\)

9

Bladen

1.88

8

4.26

\(\text{3.00}{\times10}^{-2}\)

2

\(\text{5.40}{\times10}^{-1}\)

2

\(\text{4.17}{\times10}^{-1}\)

10

Washington

1.97

5

2.54

\(\text{4.46}{\times10}^{-2}\)

2

\(\text{6.73}{\times10}^{-1}\)

2

\(\text{5.42}{\times10}^{-1}\)

11

McDowell

1.87

5

2.67

\(\text{5.43}{\times10}^{-2}\)

3

\(\text{5.16}{\times10}^{-1}\)

3

\(\text{3.65}{\times10}^{-1}\)

12

Alamance

1.48

13

8.81

\(\text{6.45}{\times10}^{-2}\)

4

\(\text{4.05}{\times10}^{-1}\)

3

\(\text{4.88}{\times10}^{-1}\)

13

Hertford

1.66

7

4.22

\(\text{6.50}{\times10}^{-2}\)

5

\(\text{3.32}{\times10}^{-1}\)

4

\(\text{3.65}{\times10}^{-1}\)

14

Madison

2.16

2

0.92

\(\text{6.70}{\times10}^{-2}\)

5

\(\text{4.67}{\times10}^{-1}\)

4

\(\text{4.88}{\times10}^{-1}\)

15

Swain

1.95

3

1.54

\(\text{7.03}{\times10}^{-2}\)

5

\(\text{6.05}{\times10}^{-1}\)

4

\(\text{6.10}{\times10}^{-1}\)

16

Hoke

1.61

7

4.35

\(\text{7.49}{\times10}^{-2}\)

5

\(\text{7.32}{\times10}^{-1}\)

4

\(\text{7.22}{\times10}^{-1}\)

17

Transylvania

1.83

3

1.64

\(\text{8.41}{\times10}^{-2}\)

5

\(\text{8.33}{\times10}^{-1}\)

4

\(\text{8.14}{\times10}^{-1}\)

18

Robeson

1.25

31

24.78

\(\text{9.23}{\times10}^{-2}\)

8

\(\text{4.86}{\times10}^{-1}\)

7

\(\text{3.96}{\times10}^{-1}\)

19

Greene

1.65

4

2.43

\(\text{9.94}{\times10}^{-2}\)

8

\(\text{6.25}{\times10}^{-1}\)

7

\(\text{5.21}{\times10}^{-1}\)

20

Bertie

1.51

6

3.98

\(\text{1.08}{\times10}^{-1}\)

12

\(\text{2.17}{\times10}^{-1}\)

9

\(\text{3.29}{\times10}^{-1}\)

21

Scotland

1.37

8

5.83

\(\text{1.36}{\times10}^{-1}\)

14

\(\text{1.43}{\times10}^{-1}\)

11

\(\text{1.97}{\times10}^{-1}\)

22

Henderson

1.44

5

3.48

\(\text{1.40}{\times10}^{-1}\)

16

\(\text{9.69}{\times10}^{-2}\)

13

\(\text{1.16}{\times10}^{-1}\)

23

Cherokee

1.53

2

1.31

\(\text{1.45}{\times10}^{-1}\)

17

\(\text{1.10}{\times10}^{-1}\)

13

\(\text{1.89}{\times10}^{-1}\)

24

Wayne

1.23

18

14.67

\(\text{1.58}{\times10}^{-1}\)

18

\(\text{1.26}{\times10}^{-1}\)

14

\(\text{1.90}{\times10}^{-1}\)

25

Carteret

1.33

5

3.77

\(\text{1.79}{\times10}^{-1}\)

19

\(\text{1.44}{\times10}^{-1}\)

14

\(\text{2.89}{\times10}^{-1}\)