Skip to main content

Table 7 Cluster statistics for counties with the smaller poisson probability for Ni ≤ μ(Ai)

From: Differentiating anomalous disease intensity with confounding variables in space

Rank order County SMR SIDS E(SIDS) Poisson B1 P value1 Risk level B2 P value2
100 Forsyth 0.41 10 24.34 \(\text{8.80}{\times10}^{-4}\)   LP1  
99 Wake 0.56 16 28.72 \(\text{7.23}{\times10}^{-3}\) 0 1 LP1 0 1
98 Guilford 0.69 23 33.57 \(\text{3.53}{\times10}^{-2}\) 1 \(\text{1.43}{\times10}^{-1}\) LP1 1 \(\text{1.16}{\times10}^{-1}\)
97 Rowan 0.36 3 8.24 \(\text{3.59}{\times10}^{-2}\) 1 \(\text{2.68}{\times10}^{-1}\) LP1 1 \(\text{2.20}{\times10}^{-1}\)
96 Cabarrus 0.42 3 7.12 \(\text{7.59}{\times10}^{-2}\) 2 \(\text{7.27}{\times10}^{-2}\) LP1 2 \(\text{4.87}{\times10}^{-2}\)
95 Iredell 0.51 4 7.91 \(\text{1.05}{\times10}^{-1}\) 4 \(\text{6.70}{\times10}^{-3}\) LP1 3 \(\text{2.04}{\times10}^{-2}\)
94 Catawba 0.56 5 8.92 \(\text{1.21}{\times10}^{-1}\) 5 \(\text{4.36}{\times10}^{-3}\) LP1 4 \(\text{9.59}{\times10}^{-3}\)
93 Union 0.54 4 7.36 \(\text{1.43}{\times10}^{-1}\) 6 \(\text{3.21}{\times10}^{-3}\) LP1 5 \(\text{5.45}{\times10}^{-3}\)
92 Alexander 0.00 0 1.92 \(\text{1.46}{\times10}^{-1}\) 8 \(\text{6.85}{\times10}^{-4}\) LP1 7 \(\text{8.79}{\times10}^{-4}\)
91 Sampson 0.55 4 7.24 \(\text{1.52}{\times10}^{-1}\) 8 \(\text{2.25}{\times10}^{-3}\) LP2 7 \(\text{2.52}{\times10}^{-3}\)
90 Gaston 0.75 11 14.71 \(\text{2.05}{\times10}^{-1}\) 8 \(\text{6.44}{\times10}^{-3}\) LP2 8 \(\text{1.98}{\times10}^{-3}\)
89 Martin 0.48 2 4.15 \(\text{2.17}{\times10}^{-1}\) 8 \(\text{1.61}{\times10}^{-2}\) LP2 8 \(\text{5.24}{\times10}^{-3}\)
88 Cumberland 0.89 38 42.62 \(\text{2.69}{\times10}^{-1}\) 9 \(\text{1.46}{\times10}^{-2}\) LP2 9 \(\text{4.46}{\times10}^{-3}\)
87 Durham 0.83 16 19.22 \(\text{2.75}{\times10}^{-1}\) 10 \(\text{1.40}{\times10}^{-2}\) LP2 10 \(\text{3.80}{\times10}^{-3}\)
86 Richmond 0.67 4 6.00 \(\text{2.85}{\times10}^{-1}\) 10 \(\text{3.25}{\times10}^{-2}\) LP2 10 \(\text{8.98}{\times10}^{-3}\)
85 Buncombe 0.79 9 11.38 \(\text{3.01}{\times10}^{-1}\) 10 \(\text{6.75}{\times10}^{-2}\) LP2 10 \(\text{1.94}{\times10}^{-2}\)
84 Franklin 0.56 2 3.58 \(\text{3.05}{\times10}^{-1}\) 11 \(\text{6.68}{\times10}^{-2}\) LP2 11 \(\text{1.80}{\times10}^{-2}\)
83 Gates 0.00 0 1.16 \(\text{3.13}{\times10}^{-1}\) 11 \(\text{1.25}{\times10}^{-1}\) LP2 11 \(\text{3.68}{\times10}^{-2}\)
82 Orange 0.69 4 5.79 \(\text{3.14}{\times10}^{-1}\) 12 \(\text{1.28}{\times10}^{-1}\) LP2 12 \(\text{3.53}{\times10}^{-2}\)
81 Chatham 0.57 2 3.50 \(\text{3.21}{\times10}^{-1}\) 15 \(\text{4.36}{\times10}^{-2}\) LP2 15 \(\text{8.03}{\times10}^{-3}\)
80 Stokes 0.43 1 2.34 \(\text{3.22}{\times10}^{-1}\) 17 \(\text{2.70}{\times10}^{-2}\) LP2 16 \(\text{8.58}{\times10}^{-3}\)
79 Duplin 0.70 4 5.72 \(\text{3.24}{\times10}^{-1}\) 18 \(\text{3.22}{\times10}^{-2}\) LP3 17 \(\text{9.38}{\times10}^{-3}\)
78 Vance 0.71 4 5.67 \(\text{3.32}{\times10}^{-1}\) 19 \(\text{3.89}{\times10}^{-2}\) LP3 18 \(\text{1.03}{\times10}^{-2}\)
77 Johnston 0.77 6 7.80 \(\text{3.38}{\times10}^{-1}\) 22 \(\text{1.51}{\times10}^{-2}\) LP3 19 \(\text{1.19}{\times10}^{-2}\)
76 Macon 0.00 0 0.97 \(\text{3.78}{\times10}^{-1}\) 22 \(\text{3.45}{\times10}^{-2}\)   19 \(\text{2.47}{\times10}^{-2}\)