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Abstract

Background: In a conventional P-median model, demanding points are likely assigned to the closest supplying facilities,
but this method exhibits evident limitations in real cases.

Methods: This paper proposed a modified P-median model in which exact and approximate strategies are used. The first
strategy aims to enumerate all of the possible combinations of P facilities, and the second strategy adopts simulated
annealing to allocate resources considering capacity constraint and spatial compactness constraint. These strategies allow
us to choose optimal locations by applying visual analytics, which is rarely employed in location allocation planning.

Results: This model is applied to a case study in Henan Province, China, where three optimal healthcare centers are
selected from candidate cities. First, the weighting factor in spatial compactness constraint is visually evaluated to
obtain a plausible spatial pattern. Second, three optimal healthcare centers, namely, Zhengzhou, Xinxiang, and
Nanyang, are identified in a hybrid transportation network by performing visual analytics. Third, alternative healthcare
centers are obtained in a road network and compared with the above solution to understand the impacts of
transportation network types.

Conclusions: The optimal healthcare centers are visually detected by employing an improved P-median model, which
considers both geographic accessibility and service quality. The optimal solutions are obtained in two transportation
networks, which suggest high-speed railways and highways play a significant role respectively.
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Background
A location allocation model generally involves two steps,
namely, locating facilities and allocating resources. In the
former step, a certain number of facilities are optimally se-
lected from a potential set to provide services; in the latter
step, resources are optimally allocated to a set of spatially
distributed demanding sites for consumption [1,2]. Op-
timality is typically evaluated with an objective function
in terms of minimum average travel distance or time,
maximum coverage, or minimum cost related to mul-
tiple factors. A commonly used model is the P-median
model introduced by Hakimi [3]; this model aims to de-
termine the locations of P facilities such that the total
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travel distance from each demanding site to the closest
facilities is minimized. In addition, the P-median model is
focused on objective function with a maximum coverage
[4] or on assignment strategy with a gravity effect [5].
However, the P-median model with an objective function
considering spatial compactness cost has been rarely in-
vestigated [6].
With a non-trivial role, location allocation analysis is

implicated in regional planning and resource allocation
for flexibility and refinement [7]; these factors have been
extensively investigated and applied in various fields. For
instance, studies have been conducted in private facilities
to determine optimal locations of warehouses [8] and allo-
cate costs in a hub-spoke telecommunication network [9].
Other studies have proposed an effective configuration of
a supply chain network in terms of profit maximization
[10]. Moreover, studies on public facilities have mainly
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focused on deriving optimal deployment of emergency re-
sponse facilities, such as ambulance sites or fire stations
with maximum coverage [11,12], determining convenient
locations for schools to minimize travel distance [13], and
addressing problems concerning parking lots [14] or off-
street parking facilities [15] in terms of minimum travel
distance and maximum demands.
Healthcare centers are categorized as public facilities.

In social justice, healthcare centers should be optimally
located to improve service accessibility, and medical re-
sources should be reasonably allocated to enhance service
quality. Hence, service accessibility in terms of time or
distance can be applied to determine the utilization of
medical resources [16,17]. Studies have already adopted
accessibility measurement or access-based two-step float-
ing catchment area method to evaluate hospital sites
[18-20]. Furthermore, service quality is usually related to
healthcare center capacities [21], suggesting that conven-
tional location allocation models in operational research
should be modified with a capacity constraint on facilities.
This modification undoubtedly increases the computation
complexity of a model, and heuristic or meta-heuristic al-
gorithms should be used to cope with this problem
[22-25]. However, only a limited number of models have
been proposed. For instance, Pirkul and Schilling [26] pro-
posed a lagrangian relaxation method in which covered
and uncovered demands are assigned successively. Shariff
et al. [21] utilized a modified genetic algorithm that sug-
gests the need for additional new facilities or capacities in
existing facilities.
Previous studies on healthcare center location are relied

on a homogeneous road network in which each road with
the same speed limit or even on a Euclidean plane to de-
termine accessibility measurement in terms of travel time
or distance. However, these measurements are slightly dif-
ferent from real situations. No study has considered the
effectiveness of the spatial deployment of optimal loca-
tions in terms of spatial compactness, although a previous
study considered this factor in resource allocation for land
development but was limited to a raster space [6]. To the
best of our knowledge, only a very limited number of
studies have attempted to visually evaluate optimal health-
care center locations by using interactive graphs or plots.
Visual analytics can be used to solve complex problems
with multiple variables, particularly optimal healthcare
center locations with multiple cost variables.
To fill these gaps, we proposed an exact and approxi-

mate integrated P-median model that can recommend op-
timal healthcare center locations from a set of spatially
distributed sites. In general, this model is constructed by
applying two successive procedures: exact and approxi-
mate procedures. In the first procedure, all possible com-
binations of P healthcare centers are enumerated; in the
second procedure, a simulated annealing meta-heuristic
approach is utilized to allocate medical resources from se-
lected P facilities to demanding sites. In this model, a
transportation network model is specifically used for the
underlying geographic infrastructure. Capacity constraint
of healthcare centers and spatial compactness constraint
of demanding cities are considered and modeled as cost
variables in an objective function. Visual analytics is also
applied to help identify optimal locations. Using the pro-
posed method to a real case in China, we aim to answer
the following questions. (1) How do we incorporate spatial
compactness constraint into our model and further de-
termine its influence on optimal locations of healthcare
centers? (2) How do we apply visual analytics to choose
optimal healthcare centers with multiple cost variables?
(3) How do transportation network types affect optimal
healthcare center locations?
The present study has the following structure. In

Section 2, the datasets are introduced. In Section 3, the
computational framework of a modified P-median model
is proposed by considering capacity constraint and spatial
compactness constraint. In Section 4, experiment results
are presented by applying the proposed method on a
case study based on visual analytics. In Section 5, sev-
eral topics, together with the limitations of the present
study, are discussed. In Section 6, conclusions are pre-
sented and topics for future studies are proposed.
Data
Three datasets of the Henan province of China are used in
this study. The first dataset is obtained from the Health
Department of Henan Province and composed of 38 hos-
pital sites. The second dataset is retrieved from Google
Map and consists of 17 cities. The third dataset is obtained
from the agency of surveying and mapping and consists of
transportation data, including secondary and primary ways,
highways, railways, and high-speed railways.
Hospital sites
Thirty-eight tertiary hospitals, which is the highest
medical level according to the classification system of
Chinese hospitals, are included in the present study.
Hospital information includes geographic location in
terms of latitude and longitude, hospital name, number
of beds, number of key special departments, number of
physicians per thousand residents, and number of beds
per thousand residents. Geographic information is used
to indicate the location of each hospital in the map, as
shown in Figure 1 with a red symbol; the number of
beds is used to calculate the capacity served by each
hospital. The three remaining details are utilized to de-
termine the attractiveness measurement of each hos-
pital (c.f. Sec. Methodologies).



Figure 1 Map of study area with hospital sites, cities, and transportation infrastructure.
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Cities
City data consist of 17 administration centers in Henan
Province and include the following information: geo-
graphic location in terms of latitude and longitude; city
name; and number of residents. Geographic information
is used to determine the location of each city in the map,
as shown in Figure 1 with a green symbol; the number of
residents is utilized to determine medical demands in each
city (c.f. Sec. Methodologies).

Transportation data
Transportation data are retrieved from the agency of
surveying and mapping of Henan Province, and these
data include 29,213 road segments with a total length of
40,477 km. These data also include road name and type.
Road type is classified into five categories, namely, sec-
ondary way, primary way, highway, railway, and high-
speed railway. These categories are shown in Figure 1
with different line styles. Moreover, different categories
of road types help obtain the speed limit imposed on
Table 1 Proportion of road length with respect to five road c

Secondary way Primary way

Percentage 42.1% 13.0%

Speed limit 80 100

(Note: speed limit is in kilometers per hour).
these roads, and speed limit can be further used to calcu-
late the approximate travel time on each road segment.
Table 1 shows that 42.1% of road length is covered by sec-
ondary way and only 2.3% of road length is covered by
high-speed railway.
The topological relationship in a transportation net-

work is essential for navigation-based algorithms, such as
Dijkstra algorithm, to calculate the shortest path. However,
the road segments in the transportation data are not topo-
logically related in terms of their connection. Moreover,
the railway network is not actually connected with the road
network. Hence, two steps are conducted to build the
topological relationship of the transportation network.
First, the railway station is used to find the nearest road
segment and railway segment; two link lines are then
drawn to connect the railway station to the nearest road
segment and railway segment, respectively. This connec-
tion is evidently shown by a black dashed line (Figure 2a).
Second, the connectivity relationship among the transpor-
tation segments is constructed by assigning an ID number
ategories

Highway Railway High-speed railway

31.1% 10.5% 2.3%

120 120 300



Figure 2 Illustration of (a) building topological relationship for a synthetic transportation network and (b) its pseudo-code.
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to the corresponding origin and destination nodes. This re-
lationship is shown in Figure 2b in which a recursive func-
tion is devised to encode the node starting from ID
number 1. Moreover, the travel time in each transportation
segment is calculated by dividing the segment length by
the speed limit. A hybrid transportation network contain-
ing a road network and a railway network suitable for navi-
gation are thereby obtained.
Methodologies
In this section, the methodologies adopted in the present
study are described. First, metrics of cities and healthcare
centers are elaborated. Second, the basic principle of the P-
median model is introduced. Third, a modified P-median
model proposed in the present study is illustrated by
adopting a meta-heuristic approach of simulated annealing
to allocate resources and by accounting for capacity con-
straint and spatial compactness constraint.
Metrics of cities and healthcare centers
In China, a healthcare center is an institution or integra-
tion of some medical institutions that is to treat the pa-
tients with major complex diseases and to train the
medical personnel for other hospitals within a certain
area. It has the highest medical level in a certain area,
and hence selection of potential healthcare centers is
very important for the provision and utilization of med-
ical services. For each healthcare center, attribute infor-
mation is determined by summation of corresponding
hospital data; its spatial information is assigned by the
location of the corresponding city. Specifically, three
metrics including demands of cities, capacity of a health-
care center, and attractiveness of a healthcare center are
derived using the following techniques.
Demands of cities
In the present study, city demand is defined as the num-
ber of potential patients with complex diseases that
should be transferred to a healthcare center for treat-
ment. To obtain this value, we consider three variables,
namely, the number of residents [Npop(city)], the average
rate of hospitalization (α), and the incidence of complex
diseases (θ). Note that the variable θ represents the pro-
portion of patients who should be transferred to health-
care centers. The value of α is set as 0.096 and the value
of θ is set as 0.1. This value can be approximated by the
product of these three variables, as shown in Eq. [1].
Using this formula, we obtained city demands.

demandcity ¼ Npop cityð Þ � α � θ ð1Þ

Capacity of a healthcare center
In the present study, healthcare center capacity is defined
as the number of residents that can be served by a health-
care center. To determine this value, we consider two var-
iables, namely, the number of available beds (Nbeds(hc))
and the average length of stay in a hospital (AlOS). Note
that the value of AlOS is set as 10.4 based on a survey in
Henan province. This value can be calculated using Eq.
[2]. Using this equation, we calculated the capacities of
healthcare centers.

capacityhc ¼ Nbeds hcð Þ � 365ð Þ � AlOS ð2Þ

Attractiveness of a healthcare center
In the present study, healthcare center attractiveness is
defined as the degree of strength of medical service
provision. A large value of healthcare center attractiveness
suggests that numerous residents prefer to visit this center.
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In general, healthcare center attractiveness can be deter-
mined by combining three variables, namely, the number
of key special departments (Nksd), the number of physicians
per thousand residents (Nptr), and the number of beds per
thousand residents (Nbtr). To calculate the weight of each
variable, we resort to the method of analytic hierarchy
process (AHP) [27]. The AHP method is very simple and
can be applied using the following steps. (1) A hierarchy of
the complex problem at hand is built by decomposing this
problem into easily comprehended sub-problems or ele-
ments; in the present study, two levels of hierarchy are
established in which the first level corresponds to the
problem and the second level corresponds to the three el-
ements (variables). (2) Ten experts are invited to inde-
pendently judge the relative importance of any two
elements, and a (3 × 3) matrix is generated by averaging
the judgment matrices of these experts. (3) An eigenvector
with a maximum eigenvalue is derived, and each com-
ponent in the eigenvector represents the weight of the
corresponding variable. Healthcare center attractiveness
value is expressed as Eq. [3], where Norm() represents a
normalization function to generate the value within [0, 1],
and w1, w2, and w3 are the weights of the three variables
with values equal to 0.62, 0.252, and 0.128 respectively.

attractiveness ¼ Norm Nksdð Þ � w1

þ Norm Nptr
� � � w2

þ Norm Nbtrð Þ � w3 ð3Þ

Principles of P-median model
The discrete P-median model was first proposed by Hakimi
in 1964 [3]. Since then, this model has been commonly
used for location allocation science. This model aims to
find P facilities such that the total weighted travel dis-
tance from all demanding points to the respective clos-
est facilities are minimal. Travel distance can be based
on a plane or on a street network, depending on the
purpose of the study. The simplicity of the model con-
fers its easy implementation and formulation with an
integer-programming problem as follows.

Min
Xm

i¼1

Xn

j¼1
weightdi � dij

� �
� xij ð4Þ

Xn

j¼1
xij ¼ 1 i ¼ 1; 2; ⋅⋅⋅; mð Þ ð5Þ

xij − yj ≤ 0 i ¼ 1; 2; ⋅⋅⋅; mð Þ j ¼ 1; 2; ⋅⋅⋅; nð Þ ð6Þ
Xn

j¼1
yj ¼ P ð7Þ

xij; yj∈ 0; 1f g i ¼ 1; 2; ⋅⋅⋅; mð Þ j ¼ 1; 2; ⋅⋅⋅; nð Þ ð8Þ
where i and j are indexes of demanding points and facil-
ities, respectively; xij and yj are decision variables denoting
if demanding point i is assigned to facility j and if facility j
is selected; dij is the distance between demanding point i
and facility j; weight_di is the weight value of demanding
point i; and P is the number of facilities to be selected. Eq.
[4] is the objective function to be minimized. Eq. [5] is the
constraint that requires each demanding point to be
assigned to only one facility. Eq. [6] is the constraint en-
suring that each demanding point is assigned to a selected
facility. Eq. [7] is the constraint ensuring that exact P facil-
ities are selected.
Kariv and Hakimi [28] showed that a P-median prob-

lem is NP-hard, indicating that this problem can be ef-
ficiently solved in polynomial time by a deterministic
Turing machine. In some cases, heuristic or meta-heuristic
algorithms, such as simulated annealing [24] or genetic al-
gorithm [23], may be utilized to obtain an optimal solution
instead of an exact solution. In addition, a conventional P-
median model assumes that each demanding point is
assigned to the closest facility relaxed by a gravity P-
median model [5]. Similarly, studies have relaxed this as-
sumption by assigning demands to the second closest or
farther facility if a closer facility exceeds capacity when cap-
acity constraint of facilities is considered [29]. Moreover,
the spatial deployment of demanding points to facilities is
rarely considered for a discrete P-median model and may
have a non-trivial effect on real cases of site location plan-
ning [30]. Therefore, our study proposes a modified P-
median model that simulates both capacity constraint and
spatial compactness constraint as costs in an objective
function of a simulated annealing process.

A modified P-median model
A modified P-median model is elaborated in this section.
This model generally adopts exact and approximate strat-
egies to choose optimal locations. In the exact strategy, all
combinations of P facilities are enumerated; in the ap-
proximate strategy, a simulated annealing meta-heuristic
approach is used to assign demanding points to facilities.
The computational framework is shown in Figure 3 in
which a flow diagram illustrates individual steps. Note
that the modified P-median model relies completely on the
simplicity and elegance of the conventional P-median
model. Nonetheless, it enriches the current studies on P-
median model by considering both capacity constraint and
spatial compactness constraint.

Alternative P facilities
In this step, all possible combinations of P facilities are
enumerated. For each combination, the total capacity of
the P facilities is calculated and compared with the total
demanding value. If the P facilities cannot serve the total
demands, a total increasing capacity is derived as the
product of an increasing factor and the difference be-
tween capacity and demanding values. Based on the total
increasing capacity value, the capacity of each facility is



Figure 3 General flow diagram of computational framework.
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then increased proportionally to its attractiveness value.
However, enumeration should be performed considering
all possible combinations because of the following points.
Location allocation problem is relatively small and a visual
analytic strategy helps obtain an optimal solution from po-
tential alternatives with marginal differences.

Simulated annealing for resource allocation
Kirkpatrick et al. [24] introduced the concept of annealing
to combinatorial optimization; this concept is based on the
analogy with an annealing process of heated crystals. In the
present study, annealing is applied to assign demanding
points to respective facilities and functions as follows. First,
each demanding point is assigned to a randomly selected
facility following the constraints in Eqs. [5, 6 and 7]; thus,
current allocation solution is obtained. Second, the object-
ive function in Eq. [4] is used to derive the cost value (cost-
Cur) of the current allocation solution in which travel time
is used instead of travel distance. Third, facility assign-
ment change is performed on two neighboring demand-
ing points that share a common edge in their Voronoi
polygons [31]. The next assignment solution is then in-
troduced and the corresponding cost value (costNext) is
calculated with the same objective function. Fourth, a
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decision is made either to accept the next assignment
solution as the current assignment solution or to reject
it. Acceptance is basically determined if the costCur
value is larger than costNext or if the costCur value is
less than costNext while meeting the Metropolis criter-
ion [32] as shown in Eq. [9]. The metropolis criterion
allows a movement to a slightly worse solution to avoid
being trapped in a local minimum. However, this prob-
ability gradually decreases with decreasing temperature
t. Fifth, steps 3 to 4 are iterated until a maximum num-
ber of iterations L is reached. Last, once the iteration
number exceeds the maximum L, temperature t is re-
duced. Steps 3 to 5 are repeated until temperature t is
below the cooling temperature.

P Acceptð Þ ¼ Exp −1 � costNext− costCurð Þ=tð Þ ð9Þ

However, this meta-heuristic allocation only considers
travel time as objective for minimization, which may re-
sult in an allocation solution with several facilities over-
loaded in terms of providing service. In practice, a
facility should have capacity constraint in terms of pro-
viding service. Therefore, the capacity constraint of a fa-
cility is modeled as cost in an objective function, which
is explicitly elaborated in the following part.

Modeling capacity constraint
To model the capacity constraint based on the objective
function, we define a variable named shortageRatio for
each facility, which can be expressed as the fraction of
the required capacity value (difference between the value
of the current capacity and allocated demands) over the
current capacity value. The model shows the extent to
which current facilities can satisfy allocated demanding
points. A small value of this variable contributes a small
cost to the objective function, indicating an optimal
Figure 4 Illustration of calculating spatial cost with γ =1000 for a syn
location of the current facility in terms of resource allo-
cation under capacity constraint. For instance, a zero
value of this variable suggests a facility that can satisfy
all of the allocated demands with the current capacity.

f ¼
Xn

j¼1
1þ shortageRatioj
� � �

Xm

i¼1
weightdi � dij

� �
� xij

� �

ð10Þ

Moreover, the modified objective function excludes
spatial cost in terms of spatial compactness. This con-
straint is necessary because capacity constraint could
force a facility to serve further demanding points, lead-
ing to impractical site location and resource allocation.

Modeling spatial compactness constraint
To model the spatial compactness constraint based on
the objective function, we define a variable named spa-
tialCost for each demanding point; this variable can be
described as the product of the number of neighboring
demanding points with the same facility assignment and
a weighting factor γ. This value can be multiplied by −1
to be integrated into the objective function. It reflects
the extent to which the compactness or concentration of
the current demanding point can contribute to the
spatial compactness of a facility-demanding network. A
low value of this variable suggests an appropriate loca-
tion of the current demanding point in terms of spatial
deployment of demanding points and likely reduces
costs in an objective function. Thus, this variable pro-
vides a way to avoid spatial intersections of supplying
lines from different facilities and may lead to a plausible
planning of the site location and resource allocation. As
shown in Figure 4, spatialCost is calculated with γ =1000
for two different spatial deployments of demanding points
in a synthetic network. However, the value of this variable
thetic location allocation network in scenario (a) and (b).
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can be adjusted according to γ, ultimately affecting opti-
mal solution.

f ¼
Xn

j¼1

�
1þ shortageRatioj
� � �

Xm

i¼1
weightdi

� dij

� �
� xij

þ spatialCostj γð Þ
�

ð11Þ

Results and analysis of optimal healthcare centers
In this section, optimal healthcare centers are presented
by applying the method to the aforementioned dataset.
The results are specifically elaborated regarding three
Figure 5 Spatial deployment patterns of healthcare centers with min
(c) 600, (d) 800, (e) 1000, (f) 1200, (g) 1400, (h) 1600, (i) 1800, (j) 2000
aspects. First, the result of γ evaluated under spatial
compactness constraint is presented. Second, the potential
optimal healthcare centers are shown on the basis of mul-
tiple cost variables. Last, the result as to how the proper-
ties of transportation network affect optimal healthcare
center locations is presented.

Weighting factor γ of spatial compactness constraint
Spatial compactness constraint is modeled as a spatial
cost in the objective function and affected by γ. Spatial
cost gradually decreases as γ increases. Thus, γ should
be selected such that a plausible spatial deployment of
demanding cities and supplying healthcare centers can
imum spatial cost in terms of different γ values: (a) 200, (b) 400,
.
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be achieved. To tackle this issue, we show spatial deploy-
ment patterns with a minimum spatial cost in terms of
different γ. In Figure 5, no spatial intersections of sup-
plying lines from different healthcare centers are gener-
ally found. For the cities, Zhengzhou, the capital city of
Henan Province, is selected as one of the three health-
care centers in most cases. This selection is not surpris-
ing because this city has the largest medical resource
capacity and lies in the transportation hub. For the
spatial distribution of the healthcare centers, healthcare
centers with γ = 600 are evenly distributed in space,
thereby preventing inequity in geography. In addition,
this value provides a local minimum of the sum of travel
and capacity costs.

Optimal healthcare centers on account of multiple cost
variables
Once γ is determined, optimal healthcare centers with a
minimum value in the objective function can be selected.
However, the result obtained in this manner suffers from a
Figure 6 Choosing optimal healthcare centers in a hybrid transportat
geomap, and (c) space filling raster. (Note: Two variables, namely, total c
represented with a color ramp from gray to purple and travel cost is ascen
non-trivial deficiency, indicating that healthcare centers
with minimum cost are not necessarily superior to those
with the second minimum cost. For instance, decision
makers would likely trade-off between the minimum cost
and the spatial deployment pattern to choose optimal
healthcare centers to avoid geographic inequity. To over-
come this deficiency, we adopt an explorative visual analytic
technique and vividly present the alternative healthcare
centers, and decision makers are provided with a number
of graphic interfaces to choose optimal solutions.
In the present study, the GeoViz Toolkit developed by

Frank Hardisty [33] is utilized to help select optimal
healthcare centers. This toolkit provides a geovisualiza-
tion environment to allow users to utilize coordinated
exploratory and analytical tools to investigate the geo-
graphic data with multiple variables. In the present
study, three exploratory visualization tools, namely, par-
allel coordinate plot, bivariate geomap, and space filling
raster, are applied to the dataset containing all of the
possible combinations of the three healthcare centers.
ion network with (a) parallel coordinate plot, (b) bivariate
ost and travel cost, are visualized in space filling raster. Total cost is
dingly sorted with a scan line from left to right and bottom to top.).
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Each combination is considered as an observation with
values corresponding to the five aforementioned vari-
ables. Figure 6a shows that each parallel line connects
the five variables and it can be highlighted to show the
corresponding values. The line with the minimum total
cost is specifically highlighted as red for a visual analytic
and simultaneously reflected in the two other tools. The
bivariate geomap shown in Figure 6b displays the spatial
deployment of the healthcare centers and cities with
bold demanding lines, indicating a plausible spatial
pattern. In addition, the space filling raster shown in
Figure 6c identifies this solution with a green pixel,
suggesting the minimum value of the total cost and the
second minimum value of the travel cost.
Three healthcare centers, namely, Zhengzhou, Xinxiang,

and Nanyang, are suggested as optimal solutions with a
visual analytic procedure. This solution significantly re-
sembles the previous solution elaborated in Section 4.1, al-
though Xinyang instead of Puyang is considered as a
healthcare center. To further understand the difference
between the two similar solutions, we use a map and scat-
ter plot matrix with four variables (Figure 7), in which the
two solutions are symbolized with large dots. The two so-
lutions have relatively small travel, spatial, and capacity
costs and capacity investment. These results are repre-
sented by the large dots in the lower left corner of the
scatter plots in Figure 7. Compared with the previous so-
lution, the current solution has smaller travel and capacity
costs and capacity investment but a larger spatial cost.
Figure 7 Visual comparison between two competitive solutions highl
and (b) solution with minimum spatial cost. (Note: This is a map and sc
matrix denote the scatter plots of any two variables, and we found that tra
decreases. Diagonal entries in the matrix show the histograms of the corre
power law-like distribution. Other variables follow a normal or mixed-norm
deployments of any selected solution).
However, whether the current solution is more effective
than the previous solution depends on the situations at
hand or the purpose of decision makers.
Optimal healthcare centers in a road network and their
transportation usage
We have reported the results after we select the optimal
healthcare centers in a hybrid transportation network
comprising roads and railways. However, we did not
delve into issues as to how the optimal healthcare centers
can be affected by the types of transportation network and
consequently how they utilize the transportation to pro-
vide services. With comparative analysis, we derive the op-
timal healthcare centers for a road network by excluding
the railway network. Figure 8 shows that the optimal
healthcare centers are identified using the solution with
the minimum total cost. This solution includes the health-
care centers of Xinxiang, Nanyang, and Luohe, and it ex-
hibits a plausible spatial pattern and reasonable medical
resource allocation among the demanding cities. However,
Luohe, instead of Zhengzhou, has been suggested as a
healthcare center compared with the solution for the hy-
brid transportation network, thereby undoubtedly increas-
ing the inputs of the medical resources as seen the high
value of capacity investment in Figure 8(a). In addition,
the travel cost is increased by approximately 33.2%, indi-
cating that railway network is highly utilized by residents
traveling to healthcare centers.
ighted with large dots: (a) solution with the minimum total cost
atter plot matrix of the four variables. Elements in the upper triangular
vel cost gradually increases as spatial cost increases or capacity cost
sponding variables, and capacity cost can be approximated with a
al distribution. Elements in the lower triangular matrix are the spatial



Figure 8 Identification of optimal healthcare centers in a road network highlighted as (a) a red line in parallel coordinate plot, (b) bold
demanding lines in bivariate geomap, and (c) a green pixel in space filling raster.

Jia et al. International Journal of Health Geographics 2014, 13:42 Page 11 of 15
http://www.ij-healthgeographics.com/content/13/1/42
To quantitatively understand the transportation usage
in the two scenarios, we calculate the proportion of the
travel length with respect to different means of transpor-
tation in each supplying route. Five means of transporta-
tion are utilized in the hybrid transportation network,
and these include the railway, high-speed railway, high-
way, primary way, and secondary way; three means of
transportation are used in the road network encom-
passing only the three latter means of transportation.
Figure 9a shows that high-speed railways are exten-
sively used compared with the other means of transpor-
tation, and account for approximately 58% of the travel
length of all supplying routes. The usage of a high-
speed railway is inversely proportional to the usage of rail-
way (Figure 9b). In a road network, the highway is more
often used than the two other means of transportation
and accounts for an average usage of 72% (Figure 9c).
Similarly, highway usage is inversely proportional to the
usage of primary way (Figure 9d). These findings suggest
that people are more likely to utilize faster available means
of transportation to travel.

Discussions
First, the modified P-median model proposed in the
present study should be discussed. This model is based
on a conventional model by incorporating two proce-
dures. In the first procedure, the capacity constraint im-
posed on each facility point is modeled and this model
assumes that each demanding point is not necessarily
assigned to the closest facility. In the second procedure,
the spatial compactness constraint imposed on the as-
signment of demanding point to the facility is modeled,
and this model can improve the geographic equity. A γ
is utilized to calculate spatial cost, which reflects the



Figure 9 Transportation usage according to different means of transportation in (a) and (b) a hybrid transportation network and (c)
and (d) a road network.
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degree of spatial compactness. A larger γ suggests a lar-
ger degree of spatial compactness. The present study
adopts an exploratory analysis to specifically determine
γ, although studies have reported that different solutions
may be derived with the same γ because of the fuzziness
of simulated annealing meta-heuristic approach. More-
over, the result obtained from this model is a series of
potential solutions that allows visual analysis to select an
optimal solution. However, the applications of this model
are narrowed into problems with small sizes and are im-
practical for a large problem.
Second, the modified P-median model is used to solve

a real location allocation problem in terms of choosing
optimal healthcare centers, which should perform better
than the conventional P-median model. To verify this
statement, we compared the solution from the conven-
tional P-median model to the one from the modified
P-median model. As shown in the following Figure 10,
we find that the optimal healthcare centers using the
modified P-median model are more reliable and plaus-
ible than the other solution. First of all, the solution
with our approach displays a better spatial deployment
pattern, which can be seen from a smaller value of
spatial compactness cost. Then, it suggests a better
medical service quality, which can be observed from
the smaller values of both capacity cost and capacity
investment. In the last, the value of total cost is less
than the one from the conventional method, although
it has a larger value of travel cost.
Third, geographic factors in general or transportation

networks in particular are known to impose a large in-
fluence on the determination of the optimal locations of
facilities in terms of spatial accessibility. A homogeneous
transportation network with a unique speed limit likely re-
sults in an even spatial distribution of facilities whereas a
hybrid transportation network with various speed limits
possibly leads to an uneven distribution of facilities in
space. The present study reports that high-speed railways
in the hybrid transportation network are highly utilized
and serve a significant role in aggregating the demanding
cities along the railway to the same healthcare centers,
such as Zhengzhou. This finding presents a different pat-
tern from that in a road network, in which highways are
extensively used for traveling. However, in reality, resi-
dents in demanding cities have diverse choices for trans-
portation types utilized for traveling. Therefore, studies
have yet to determine a method to simulate travel behav-
ior of residents in demanding cities and incorporate this



Figure 10 Comparative results between the solution with the conventional P-median model and the one with the modified
P-median model.
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behavior into a classic location allocation model. Besides,
to enhance the reliability of our model, other factors, such
as, natural environment factors, built environment factors,
and policy environment factors, should also be considered
in the future work.
Fourth, the result obtained from a visual analytic per-

spective could allow decision makers to select the opti-
mal healthcare centers according to the situations at
hand or specific purposes. Visual analytic has been ap-
plied to solve complex problems with multiple variables
in numerous domains, such as crisis management [34]
and social network analysis [35]. To the best of our
knowledge, this work presents a benchmark study by
applying this technique to the problem of location allo-
cation. In the present study, three healthcare centers,
namely, Zhengzhou, Xinxiang, and Nanyang are con-
sidered optimal. First of all, the three healthcare centers
exhibit a relatively even spatial distribution. For in-
stance, Xinxiang is located in the north of Yellow River,
Table 2 Comparative results between optimal cities and othe

Residents Available beds

Optimal cities 26.6% 45.0%

Other cities 73.4% 55.0%
Zhengzhou is at the heart of the province, and Nanyang
is found in the south of the study area. Then, the three
healthcare centers have the largest amount of medical
resources compared with the other solutions, and need
only an additional 14% of the medical resources to sat-
isfy such demands. Last, as shown in Table 2, compared
with other cities, the three healthcare centers can pro-
vide more than 40% of the total medical services but
occupy around 26% of the entire population. However,
whether the above solution can be accepted is deter-
mined by decision makers because they can utilize a
visual analytic technique to choose an alternative
solution.

Conclusions
This study focused on the problem of locating three
healthcare centers in Henan Province, China. We demon-
strated that optimal healthcare centers should be located
for spatial accessibility, enhanced service, and plausible
r cities

Key special departments Physicians

55.8% 42.4%

44.2% 57.6%
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spatial pattern. Thereafter, a modified P-median model
was proposed; this model applies a meta-heuristic simu-
lated annealing to allocate medical resources to minimize
total travel, capacity, and spatial costs. The capacity cost is
modeled on the basis of the deviation from supplying
medical resources to demanding medical resources; hence,
a smaller capacity cost likely corresponds to enhanced
medical service. In addition, spatial cost is modeled on the
basis of the compactness of the spatial deployment of de-
manding cities, and a small spatial cost could avoid the in-
tersections of supplying lines. Moreover, we measured the
value of capacity investment on each solution, and a large
value leads to an impractical solution.
This study iterated each candidate in the solution

space; thus, visual analytic can be used to evaluate cost
variables. Our results suggested that γ in spatial com-
pactness constraint could be vividly determined to ob-
tain a plausible spatial pattern of the optimal healthcare
centers. Three cities, namely, Zhengzhou, Xinxiang, and
Nanyang, are suggested as optimal healthcare centers,
and required lower travel cost, a smaller capacity cost,
and a relatively even spatial distribution. Last, the loca-
tions of the optimal healthcare centers in two scenarios,
namely, a hybrid transportation network and a road net-
work, are visually compared. The results suggest that
high-speed railways and highways are highly utilized in
the two scenarios and that the solution in the former
scenario outperforms that in the latter scenario. How-
ever, our model did not consider the impacts from other
geographic factors, such as terrain and human behavior,
which are points for future studies.
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