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Abstract
Background: Space-time interaction arises when nearby cases occur at about the same time, and
may be attributable to an infectious etiology or from exposures that cause a geographically localized
increase in risk. But available techniques for detecting interaction do not account for residential
mobility, nor do they evaluate sensitivity to induction and latency periods. This is an important
problem for cancer, where latencies of a decade or more occur.

Methods: New case-only clustering techniques are developed that account for residential
mobility, latency and induction periods, relevant covariates (such as age) and risk factors (such as
smoking). The statistical behavior of the methods is evaluated using simulated data to assess type I
error (false positives) and statistical power. These methods are applied to 374 cases from an
ongoing study of bladder cancer in 11 counties in southeastern Michigan, and the ability of the
methods to localize space-time interaction at the individual-level is demonstrated.

Results: Significant interaction is found for induction periods of ~5 years and latency ~19.5 years.
Data are still being collected and the observed clusters may be attributable to differential sampling
in the study area.

Conclusion: Residential histories are increasingly available, raising the possibility of routine
surveillance in a manner that accounts for individual mobility and that incorporates models of
cancer latency and induction. These new techniques provide a mechanism for identifying those
geographic locations and times associated with increases in cancer risk above and beyond that
expected given covariates and risk factors in geographically mobile populations.

Background
Cluster analysis provides an objective basis for evaluating
whether geographic cancer patterns are significant [1,2].
Dozens of approaches are now available (e.g., [3-10]);
however, most of these were developed for spatially static
datasets and assume individuals are immobile and that
latency is negligible [11]. Most published studies still rely

only on place of residence at time of diagnosis or of death
to record the locations of health events. But when analyz-
ing cancers, causative exposures may occur many years
prior to diagnosis, and during this interval individuals
may move place of residence. Failure to account for resi-
dential mobility, therefore, can make detecting clustering
of cases in relation to causative exposures difficult or even
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impossible. Recent studies demonstrate that results
obtained using static spatial point distributions can lead
to erroneous conclusions regarding the timing, existence,
extent, and locations of disease clusters [12,13]. Tests for
space-time interaction that account for residential mobil-
ity thus are required when studying cancer.

For cancer, interaction statistics allow researchers to
explore two different types of etiological hypotheses:
infectious processes (e.g. cancers with viral origins), and
geographically and temporally localized exposures to car-
cinogenic agents (e.g. exposure to radon in home environ-
ments). In addition, interaction tests have the substantial
advantage of working with cases-only data, and do not
require the selection of controls. The development of
appropriate interaction tests that account for residential
mobility, risk factors, covariates and reasonable models of
latency and induction periods is expected to be a signifi-
cant methodological advance that will allow researchers
to work directly with data from cancer registries without
the need for the painstaking selection of matched con-
trols.

In 1967 Nathan Mantel [14] proposed a space-time inter-
action test for case data, and represented the observations
as {xi, yi, ti}. Here xi, yi is the place of residence for the ith

case, and ti is the time of diagnosis or death. "Interaction"
arises when nearby cases occur at about the same time,
and may indicate a contagious process such as infection
transmission, or a geographically and temporally local-
ized exposure to a carcinogen. For infection the underly-
ing assumption is that nearby individuals are more likely
to interact and experience infection transmission events.
For a localized exposure the assumption is that nearby
individuals will experience similar exposures such that
their disease risk will be elevated at about the same time.

The proximity metrics underlying Mantel's test are the
spatial and temporal distances between pairs of cases.
Knox [15] used adjacencies, Diggle et al. [16] the K-func-
tion and Jacquez [17] nearest neighbor relationships.
Recent adaptations to Knox's method account for chang-
ing population size [18] and the time required for infec-
tion transmission [19], but do not account for human
mobility. In studies of cancer clustering, methods have yet
to effectively account for latency, perhaps because latency
is difficult to observe, and our knowledge of it is uncer-
tain. This becomes increasingly problematic when we
consider residential mobility. The average American now
moves every 5–7 years, meaning that at time of diagnosis
few cases actually reside where causative exposures may
have occurred [20]. And no tests for interaction simulta-
neously account for human mobility, latency, risk factors
and covariates. This paper introduces novel techniques
that account for residential mobility, cancer latency, risk

factors and covariates, evaluates them using simulations,
and then applies them in a study of bladder cancer in
southeastern Michigan.

Methods
We begin with descriptions of the empirical induction
period (EIP), notation, models of EIP and metrics for eval-
uating residential proximity for mobile individuals. We
then derive space-time interaction tests that incorporate
EIP and residential mobility. Next, we extend these to
adjust for risk factors and covariates. We then define the
algorithm used to evaluate sensitivity of the interaction
statistics to specification of the EIP. Finally, we apply the
new methods to (a) simulated data for which the extent of
interaction is known and (b) residential histories of blad-
der cancer cases in Michigan.

Rothman [21] recognized that illness in an individual
may have a multiplicity of causes, none of which alone
may be sufficient to cause the disease. This makes defini-
tion and observation of disease latency problematic. He
recommended that one explore sensitivity of latency-
based metrics by evaluating a range of plausible empirical
induction periods. We define the EIP as an induction
period, ω, in which causative exposures occurred, and a
lag, τ, the latency. In practice ω and τ are unobservable,
and we therefore explore sensitivity of interaction to spec-
ification of these parameters.

Let di represent the time of diagnosis of case i. This could
be time of death or another event in the life course, but for
exposition we use time of diagnosis. The locations where
a person resides during ω is called the exposure trace [12].
We subscript the induction period, ωi, and latency, τi, so
that they can differ across cases. Now consider cases i and
j. Define ωij as the interval when ωi overlaps ωj (Figure 1,
Equation 1).

ωij = ωi ∩ ωj (1)

A measure that accounts for residential mobility and co-
occurrence of induction periods is then

It is 1 if the places of residence of cases i and j were ever k-
nearest neighbors during ωij. Hence ηijkω is 1 if cases i and
j lived near one another at some time when their induc-
tion periods overlapped. If their induction periods never
overlapped or if they were not k nearest neighbors then
ηijkω is zero.

η
ω

ωijk
i j k

=
1 iff  and  were ever  nearest neighbors during iij

 0 otherwise






.

(2)
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Local test accounting for residential mobility and EIP
Let N be the total number of cases. A local statistic for
mobile individuals that accounts for the induction period
is

We call this the local Vesta statistic after the Roman God-
dess of the hearth. It is the count of the k-nearest neigh-
bors of case i whose induction periods overlapped those
of case i. This statistic is evaluated about the residential
history for each case, and assesses whether and where
there is interaction about that case's exposure trace. Its sta-
tistical significance is assessed by holding the residential
histories constant, and by randomizing the dates of diag-
nosis with equal probability across the residential histo-
ries. The null hypothesis is that an observed date of
diagnosis is equiprobable across the N cases.

It is possible for Vikω to exceed k, since the geometry of the
residential histories changes through time and Vikω is
incremented over case i's exposure trace. To illustrate in
Figure 2 x and y indicate geographic space and the vertical
axis is time. The residential histories for case i, j, and l are
shown as vertical lines. Case i never moves and is shown
as a continuous, vertical line through time. Exposure
traces are shown by long rectangles about a residential his-

tory. For example, ωi is indicated by the rectangle about
the residential history for subject i from t0 to t4. Notice
case l moved place of residence at t3, and that case j moved
at t2 during its induction period ωj. Using k = 1 nearest
neighbors we see that:

Vi1ω = 1, since ηij1ω = 1 from t1 to t2 when i and j were 1st

nearest neighbors.

Vj1ω = 2, since ηji1ω = 1 from t1 to t2 when i was the 1st near-
est neighbor of j, and ηjl1ω = 1 from t3 to t4 when l was the
1st nearest neighbor of j.

Vl1ω = 0, since case m, the first nearest neighbor to l, did
not have an active exposure trace and ηlm1ω = 0.

Vm1ω = 0, since case m's exposure trace never overlapped
any others.

Duration-weighted local interaction statistic
We can extend this to account for the duration of residen-
tial stays. Define the duration of time when the induction
periods for i and j overlapped and when j was a k nearest
neighbor of case i, and write it as ∆ηijkω. A duration
weighted local Vesta is

The units on this statistic are person time (e.g. case days).
It quantifies the number of days during case i's induction
period when its k-nearest neighbors were also in their
induction periods. Suppose ∆Vi2ω = 2. This means the
induction period for one of its k = 2 nearest neighbors was

Vik ijk
j
j i

N

ω ωη=
=
≠

∑
1

. (3)

∆ ∆Vik ijk
j
i j

N

ω ωη=
=
≠

∑
1

. (4)

Dynamic topology of residential histories and exposure tracesFigure 2
Dynamic topology of residential histories and exposure 
traces. See text.
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Model of empirical induction periods. The date of diagnosis 
for the ith case is di. τi is the temporal lag between initiation of 
the disease (e.g. appearance of the first cancer cells) and diag-
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dows for cases i and j, ωi and ωj, overlapped.

t

jd

i
τi

ω
id

j
τ

j
ω

ij
ω

Page 3 of 11
(page number not for citation purposes)



International Journal of Health Geographics 2007, 6:35 http://www.ij-healthgeographics.com/content/6/1/35
"active" for 2 days during case i's induction period, or that
both of it's k = 2 nearest neighbors had active induction
periods of 1 day during case i's induction period.

Risk factor and covariate adjustment
We may have knowledge of risk factors and covariates as
when a case-control study has been conducted on a subset
of the available data. One then can quantify the probabil-
ity of a given participant being a case, given the risk factors
and covariates [22]. Let pi denote the probability of partic-
ipant i being a case given their vector of risk factors and
covariates xi. We would like to construct a version of the
local statistic that is sensitive to interaction above and
beyond that attributable to geographic variation in known
risk factors and covariates. We accomplish this by giving
decreased weight to those individuals whose cancers are
likely attributable to the risk factors and covariates, allow-
ing us to focus our attention on interaction in those cases
whose etiology is largely unexplained. For the local Vesta
adjusted for covariates

and

for the duration-weighted version. Here pi denotes the
probability of participant i being a case given their vector
of risk factors and covariates xi. Hence the terms (1 - pj)
and (1 - pi) effectively discount the contributions of cases
j and i (respectively) when their cancers reasonably might
be attributable by known risk factors and covariates. In
practice one will want to calculate the statistics twice, the
first time using Equation 4, and the second time adjusting
for risk factors and covariates using Equation 6. Compar-
ison of the results identifies cases for which space-time
interaction is explained by the risk factors and covariates,
and those that are significant both before and after statis-
tical adjustment.

Global interaction statistics
Equations 3 and 4 quantify local interaction about spe-
cific cases. Global tests that assess interaction when all of
the cases are considered simultaneously are

and

Equation 7 is an integer count and Equation 8 is duration-
weighted. In practice the duration-weighted version is pre-
ferred since the duration when exposure traces overlap is
of epidemiological interest. When information regarding
the probability of being a case is available the global sta-
tistics are

and

Here the subscript kωx denote the number of k nearest
neighbors being considered (k), the induction period (ω)
and the vector of covariates and risk factors x for that case.

Local spatial clustering of exposure traces at time t
Equations 3–6 are accumulated over the exposure traces
in the individual life histories. We calculate these local sta-
tistics through time, then inspect time plots for shape and
inflection points on these monotonically increasing step
functions. But because the local Vesta statistics are accu-
mulated over time, they are not particularly sensitive to an
ephemeral clustering of exposure traces, since the "signal"
added by such clustering is diluted by all that has gone
before. We therefore desire a test for local spatial cluster-
ing of exposure traces at any given time t. We would like
this statistic to tell us, when considering case i, whether its
k-nearest neighbors tend to have "active" exposure traces.
Define

The spatial clustering test is then

The summation is over case i's k nearest neighbors. We call
this the Janus statistic, after the Roman God who guarded
the doorway to the home. Janus is the count, at time t, of
the number of k nearest neighbors of case i with overlap-
ping induction periods. Notice the statistic can be non-
zero only when case i is in its induction period. If we
define the time interval ∆t such that the geography of the
residential histories doesn't change (e.g. none of the cases

V p pik i ijk
j
i j

N

jω ωηx = − −
=
≠

∑( ) ( ),1 1
1

(5)

∆ ∆V p pik i ijk
j
i j

N
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=
≠

∑( ) ( )1 1
1

(6)
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1
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moves place of residence, and whether case i and its
neighbors are in their respective induction periods doesn't
change) we may consider the time weighted version of the
statistic

This statistic is measured in case-time units, e.g. case-days.

Focused spatial clustering of exposure traces at time t
Suppose we know the address history of a putative source
of a carcinogen, such as an industry. Given focus f we
denote this address history as Ff. Further suppose we have
information regarding the emission volume per unit time,
such as might come from EPA's TRI (Toxic Release Inven-
tory) data. Call this Ef(t). The ith case has induction period
ωi that begins at ti0 and ends at ti1. An emission-weighted
focused Vesta statistic is then

Here the summation is over the cases that are k nearest
neighbors of focus f. This statistic will be large when the
emission volume of the focus tends to be elevated during
times that coincide with the induction periods of its k-
nearest neighbors.

Sensitivity of interaction statistics to specification of the 
EIP
At least two instances may arise regarding specification of
ω and τ. The first arises when we are able to model ω and
τ as a function of individual-level characteristics such as
genetics, life course, covariates and risk factors. The sec-
ond arises when we have little knowledge of how ω and τ
may vary from one individual to another. One then may
specify ω under the simplifying assumption that ω1 = ω2 =
... = ωN. The remainder of this paper deals with the second
instance, since it is more generally applicable in the
absence of the ability to directly observe ω and τ, and
since models of induction period as a function of genetics,
risk factors and covariates are typically not available.
Given a model of EIP, we follow these steps to assess sen-
sitivity of the interaction statistics.

1. Define the model of EIP and the values of the parame-
ters to explore.

a. Example: For the bladder cancer study we will explore
110 combinations of the induction
(1,3,5,7,9,11,13,15,17,19) and latency
(5,7,9,11,13,15,17,19,21,23,25) periods.

2. For each parameter set evaluate the distribution of the
test statistics under the null hypothesis.

a. Under the null hypothesis of no association between
residential history and age at diagnosis allocate the ages at
diagnosis with equal probability across the residential his-
tories, calculating the tests for interaction each time. This
step is repeated 999 times to generate the distribution of
the test statistic under the null hypothesis. For Janus one
uses a conditional randomization that keeps the date of
diagnosis for the case being considered the same (not ran-
domized). For the Janus statistic, which is a local test, the
randomization is conditional in the sense that the date of
diagnosis for the case being considered is held constant to
be the observed date of diagnosis for that case. The dates
of diagnosis for the remaining cases are randomized.

b. Compare the value of the test statistic for the original
data to the distribution of the test statistic under the null
hypothesis from step 2a. A p-value for a given statistic is
calculated for each parameter set.

3. One then inspects the p-values of the global Vesta to
identify induction and latency periods that result in signif-
icant global interaction. The local statistics may then be
used to identify those locations and times contributing
the most to the significant global interaction.

The diagnostic process
A diagnostic process identifies those induction periods
and latencies that maximize clustering in exposure traces,
while also ameliorating multiple testing (Figure 3). We
first use the probability of the global Vesta to assess
whether a given latency and induction period is signifi-
cant (Figure 3, "Global interaction in exposure traces?").
This step is repeated for all sets of induction and latency
periods being considered. If none are significant, we advo-
cate for the analysis to cease. While local clustering may be
significant [23], as a strategy for ameliorating multiple
testing, we only advise searching for those local clusters if
the signal is strong enough to also produce a significant
global cluster statistic. Those global Vesta statistics (if any)
that result in significant global interaction are retained
(Figure 3, "At what ω, τ?"), and used to identify the cases,
residential locations and times when significant local
interaction occurred (Figure 3, "Over whose life course?").
Finally, Janus is applied to identify the locations and
times of significant spatial clustering in exposure traces
(Figure 3, "When and where do ET cluster spatially?").

The bladder cancer data set
A population-based bladder cancer case-control study is
underway in southeastern Michigan and was used in both
simulated and applied studies. Cases diagnosed in the
years 2000–2004 and living in Genesee, Huron, Ingham,
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Jackson, Lapeer, Livingston, Oakland, Sanilac, Shiawas-
see, Tuscola, and Washtenaw counties are being recruited
from the Michigan State Cancer Registry. Controls from
this study are used by us to quantify the probability of
being a case given risk factors and covariates. Controls are
being frequency matched to cases by age (± 5 years), race,
and gender, and are being recruited using a random digit
dialing procedure from an age-weighted list. At this stage
of recruitment, controls are not adequately matched;
therefore, age, race, and gender are adjusted for in the
analyses. To be eligible for inclusion in the study, partici-
pants must have lived in the eleven county study area for
at least the past 5 years and have had no prior history of
cancer (with the exception of non-melanoma skin can-
cer). Participants are offered a modest financial incentive
and research is approved by the University of Michigan
IRB-Health Committee. The data analyzed here are from
374 cases and 490 controls. Refer to [24] for details on
geocoding residential histories.

The simulation study design
To evaluate type I and type II error we undertook simula-
tions using the residential histories of the cases from the
bladder cancer study, but assigned new times of diagnosis
based on different scenarios for which the modeled degree
of interaction was under experimental control. In each of
our experiments we explored sensitivity of the results to
pair-wise combinations of induction (1, 3, 5, 7 and 9
years) and latency (5, 7, 9, 11, 13, 15, 17 and 19 years).
Three scenarios were analyzed using k = 1 and k = 5 near-
est neighbors.

1) No interaction
This scenario explored the type I error of the global statis-
tic and the sensitivity of the type I error to specification of
induction period and latency. We arbitrarily assigned each
case a new date of diagnosis drawn from a uniform distri-
bution between 1990 and 2005, resulting in a dataset
without space-time interaction. We then plotted the prob-
ability of the global Vesta as a function of the induction
and latency periods. This allowed us to evaluate the sensi-
tivity of the global statistic to specification of these param-
eters when the null hypothesis was true.

2) Cluster of Size 10
We modeled a local exposure in early 1985 that resulted
in cancers in the exposed group with an induction period
of 1 year and a latency of 15 years, resulting in peak years
of diagnosis in 1999–2000. We swapped the diagnosis
dates for the exposed group with randomly selected mem-
bers of the remaining cases whose dates of diagnosis were
in 1999–2000. This maintained the distribution of dates
of diagnosis, and corresponds to an ephemeral exposure
of brief duration.

3) Cluster of size 25
We modeled a cluster of size 25 occurring in 1985 and
incorporating members of cluster size 10 (Figure 4). The
induction period (1 year) and latency period (15 years)
were maintained.

Analysis of bladder cancer in Michigan
Once we had obtained a clearer understanding of the sta-
tistical performance and sensitivity of the new methods
we applied them to the cases from the bladder cancer
study using the original dates of diagnosis. We evaluated
k = 1 and k = 5, but increased the range of the parameters
considered for the induction and latency periods. We
plotted the probability of the global statistic as a function
of the EIP, and for that induction and latency period that
resulted in significant global interaction inspected maps
of the local statistics to identify clusters of high space-time
interaction through time. We then adjusted the tests for
known risk factors (smoking) and covariates using the
methods described in equation 6. Comparison of the
graphs of the probability of the global Vesta as a function
of EIP and maps for the tests before and after adjustment
allowed us to identify (1) possible contributions of the
risk factors and covariates to the induction and latency
periods and (2) those local clusters that cannot be
explained by smoking and covariates. Clusters that cannot
be explained by known factors are of particular interest, as
they may be caused by exposures that were not assessed in
the case-control study.

Diagnostic process for exposure traces, see textFigure 3
Diagnostic process for exposure traces, see text.
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Results
Simulation study
No Interaction
The plot of the probability of the global Vesta as a func-
tion of the parameter values has a minima at 0.107 and a
maxima near 1. At an alpha level of 0.05, one would cor-
rectly conclude there was no space-time interaction.

We then calculated the values of each of the local statistics
through time, and evaluated their significance at each
unique arrangement of places of residence. This allowed
us to construct graphs of the observed proportion of local
statistics that were correctly classified as "not clustered" as
a function of the decision criteria for the test. We
inspected curves for each parameter set. The correct deci-
sion of no interaction is achieved 100% of the time up to
a decision level for the test of over 30%. For the scenario
considered, the risk of false positives is zero and does not
increase until the alpha level of the test is above 0.3.

Cluster Size 10
We applied the global Vesta from Equation 8, repeating
the analysis for each of the 40 parameter sets. We then
plotted its probability as a function of the EIP. A mini-
mum p-value of 0.034 was observed at an EIP of 16 years,
corresponding to induction period 1 year and latency of
15 years, the same induction and latency used when mod-
eling the cluster.

We next used the local Vesta to identify those cases expe-
riencing significant interaction over their life course, and
the local Janus statistic to find those times when exposure
traces clustered. Even though the modeled cluster was
ephemeral and small (10 cases), the Vesta and Janus sta-
tistics correctly identified its timing, the induction and
latency periods used, and found 5 of the cases in the mod-
eled cluster.

Cluster Size 25
The sensitivity analysis to specification of EIP found min-
imum p < 0.01 for the global statistic for an average induc-
tion period of 2.7 years and an average latency of 14.7
years, near that of the modeled cluster. The Janus statistic
correctly localized the cluster in time, and identified 21
members of the cluster, with 4 false negatives and no false
positives. The approach thus appears capable of estimat-
ing with acceptable accuracy the latency, induction peri-
ods and membership of the simulated clusters.

Bladder cancer
We next analyzed the bladder cancer data to better under-
stand how this new approach might be applied to real
data. We analyzed a total of 110 parameter sets using
induction periods 1, 3, 5, 7, 9, 11, 13, 15, 17, 19 and
latencies 5, 7, 9, 11, 13, 15, 17, 19, 21, 23 and 25 years.
This resulted in EIP's from 6 to 44 years. We employed
logistic regression and the case and control data to quan-

Evolution of the cluster of size 25Figure 4
Evolution of the cluster of size 25. Locations of place of residence of cluster members are shown as red circles in 1939 (left), 
during the exposure in 1985 (center) and in 2001 (right).

1939 1985 2001
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tify the probability of being a case given the risk factor
smoking and the covariates age, gender, education and
race (for further description of the logistic model see
[22]). We then ran the analyses taking into account these
case probabilities, employing the method of Equation 6,
and undertook the same analyses without covariate
adjustment. We evaluated k = 1 and k = 5 to explore scale
dependencies in case clustering. The results using k = 5
were not statistically significant, but were for k = 1. After
adjustment, the smallest probabilities of the global Vesta
were for EIP's from 22 to 26 years (Figure 5), with a
minima of p = 0.003 occurring at average induction
period 5 years, latency 19.5 years. We used these as input
to Janus to evaluate local spatial clustering of exposure
traces through time. Significant clustering of exposure
traces begins in 1975 and continues through 1986 (Figure
6).

Discussion
The effects of latency as described in current epidemiolog-
ical literature are often insufficient to address public
health questions, largely because quantitative models of
latency are lacking [24]. Langholz et al. [24] developed
latency models based on bilinear and exponential decay
functions, and fitted these models to case-control data

within a likelihood framework. They defined latency as
the function describing how the relative risk associated
with a known exposure changes through time, and the func-
tion may be estimable in occupational studies. As an
example, they observed that "... relative risk associated
with exposure increases for about 8.5 years and thereafter
decreases until it reaches background levels after about 34
years" in a study of lung cancer in a cohort of uranium
miners. In contrast, Janus and Vesta evaluate whether the
residential histories of cases exhibit interaction during the
induction periods – those times when causative exposures
plausibly might have occurred – but we do not necessarily
know what those exposures might be. We thus must use our
admittedly inadequate knowledge of cancer latency to
define induction periods within which an environmental
exposure might be causally associated with a given case.
This could indicate, for example, those times in a person's
life course when exposures (should they occur) are most
likely to cause cancer. Several authors have suggested, that
when faced with uncertainty, one should explore sensitiv-
ity of the latency-based statistic to plausible specifications
of the induction period [21,25], and that is the approach
used in this paper.

Empirical Induction Period sensitivity analysis, bladder cancer study, k = 1Figure 5
Empirical Induction Period sensitivity analysis, bladder cancer study, k = 1. The probability of the global statistic for space-time 
interaction is on the y-axis, the x-axis is the EIP in years used when evaluating the global statistic. A minimum of p = 0.003 is 
reached at an average induction period of 5 years, and a latency of 19.5 years.
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The Janus statistic is sensitive to ephemeral spatial cluster-
ing of exposure traces, and the simulation studies found
that it can pick up the signal from a cluster of brief dura-
tion. The Vesta statistics are accumulated over the induc-
tion periods, and identify cases who were in close
geographic proximity to other cases during their induc-
tion periods. The global Vesta thus evaluates interaction
in exposure traces at specific induction and latency peri-
ods. When interaction is absent the simulations found the
global Vesta not significant even when a large number of
values of the induction and latency periods are consid-
ered. Hence adjustment for multiple testing may not be
required to correct the type I error when evaluating a range
of empirical induction periods, provided one uses the
diagnostic process and first evaluates whether the global
statistics are significant before proceeding. Additional
simulation studies are needed to evaluate whether this
holds over a range of scenarios.

As noted earlier, the simulations we conducted are lim-
ited, and it may very well be that false positives will arise
under other simulated conditions. Given the simulations
we have conducted to date, one possible explanation is

that the methods are more prone to type II error than they
are to type I error. This kind of a trade off between type I
and type II error is observed for many statistical methods.
Further simulation studies are needed to more fully
explore the trade offs between type I error, type II error,
and statistical power.

Statistical significance of the global Vesta is used to deter-
mine (1) whether the analysis should proceed, and (2)
what induction and latency periods to employ for the
local analyses. The diagnostic framework thus is designed
to detect "big signals" that will result in statistical signifi-
cance of the global Vesta. We do not employ corrections
for multiple testing of the local Vesta once significance of
the global Vesta has been demonstrated; rather we seek to
identify those cases and time periods that contribute the
most to a significant global test statistic. The validity of
this approach is supported by simulation, in which clus-
ters of size 25 and even of size 10 were localized with
small type I error, and returned appropriate induction and
latency periods. Janus found 5 members of the cluster of
size 10 and 21 members of the cluster of size 25, with
cases that were missed occurring on the cluster edge. This

Local spatial clustering of exposure traces for bladder cancer casesFigure 6
Local spatial clustering of exposure traces for bladder cancer cases. Shown are the locations of significant clusters for the Janus 
statistic on 1/1/1979 (left) and 7/1/1982 (right).
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seems to be reasonable performance given the small clus-
ter size and the ephemeral nature of the modeled clusters.

When considering multiple testing, Fuchs and Kenett [23]
argued, in the aspatial case, that a test of the most extreme
local statistic (accounting for multiple testing) can be
more powerful at finding clusters than the use of the cor-
responding global test. This likely may be true for spatial
tests as well, in which case significant local clusters might
be identified even when the global statistic is not signifi-
cant.

Several caveats apply to the simulation design. We con-
structed the simulations to be simple, and yet to pose a
fairly stringent "first test" of the new methods by mode-
ling clusters of short duration and size. We decided to
swap dates of diagnosis when constructing the clusters,
making interaction and clustering of exposure traces the
only aspect of the dataset that would change across simu-
lations – the frequency distribution of dates of diagnosis
was constant. We used a cluster of size 10 and 1 year dura-
tion as the smallest, and were pleasantly surprised to find
the methods indeed were sensitive enough to find that
cluster. Nonetheless, additional simulations are needed to
address the impacts of uncertainty in the residential histo-
ries, multiple clusters, and of heterogeneity in individual
induction and latency periods.

In order to generate bias in interaction of the exposure
traces one would need to preferentially sample a subset of
the population with similar dates of diagnosis that were in
geographic proximity to one another during their induc-
tion periods. This might occur for rural populations char-
acterized by little residential mobility. At first blush a
second potential source of bias might be differential
mobility in different parts of the study area. Localities
with greater residential mobility might have larger varia-
bility in the temporal overlap of exposure traces, since
individuals on average do not stay as long in any given
place of residence. The randomization procedure holds
the residential histories as a given, and permutes dates of
diagnosis across the cases. Differential residential mobil-
ity should therefore be accounted for under the null
hypothesis. Finally, changes in diagnostic procedures
such that risk of diagnosis increases at different times in
different parts of the study area are a potential source of
bias, since this would lead to an apparent overlap in expo-
sure traces. This would definitely create clustering at time
of diagnosis, but we'd expect the cluster to become diffuse
by time of the induction period due to residential mobil-
ity, unless the induction period is close to time of diagno-
sis.

At the time this article was written the bladder cancer
study was in progress and cases were still being enrolled.

A portion of the thumb of Michigan – those counties in
the North of the study area – have yet to be visited by the
field teams for the latest round of sampling. These com-
prise a primarily rural population with recent dates of
diagnosis, a potential source of sampling bias (i.e., differ-
ential sampling across the study area) that could result in
spurious findings of significant interaction. We thus must
wait before attaching further interpretation to clusters of
exposure traces found under the Janus and local Vesta sta-
tistics.

What is the reason for this differential sampling? For the
bladder cancer study differential sampling arose because
of the timeline chosen for household visits to residences
of the cases and controls. These visits included survey
instruments, water sampling to assess arsenic concentra-
tions in the water supply, and biological sampling such as
toenail clippings and bucal samples to assess recent
arsenic exposure and genetic factors. Many of these sam-
ple instruments and assays were tangential to the topic of
the current paper, and are discussed in detail in other
peer-reviewed publications. Differential sampling at the
time of this writing arose because sampling is systematic
geographically in order to reduce expense – the sampling
team goes into an area (say the southern part of the study
area) and visits those residences, at a later date visits resi-
dences in another area, and so on. Hence while the overall
sample is representative, the manner in which the data are
collected is geographically and temporally sequential.
Thus when we analyze data before data collection is com-
plete our sample up to that point in time necessarily is dif-
ferential. This of course will not be an issue when we
conduct analyses after data collection is finished.

If these clusters persist once data collection is complete,
we will need to investigate environmental agents hypoth-
esized to cause bladder cancer that produce an induction
period of five years, followed by a latency period of nearly
twenty years. In addition, the agent or agents responsible
only resulted in clusters using one nearest neighbor, not
the nearest five neighbors, suggesting tight geographic
areas of high exposure. One might conjecture that a possi-
ble cause of this space-time clustering pattern is pollution
from several local industries in the region [12], or a more
disperse contaminant that appears in localized hotspots,
such as arsenic in private well water which is found in ele-
vated concentrations in southeastern Michigan [26].
Examination of these hypotheses will involve thorough
exposure assessment; however, the space-time clustering
approach introduced here can help bring these possible
exposures to light. These analyses will be repeated once
data collection is complete.

The strength of the Janus and Vesta statistics lies in their
ability to help identify induction and latency periods, an
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area of research generally underserved in cancer epidemi-
ology. Most efforts aimed at understanding the temporal
relationship between exposure and cancer have focused
on improving the temporal resolution of exposure assess-
ments [26-28]. In this paper, we take advantage of disease
and residential history datasets for gaining insights about
the temporal dynamics of the exposure-disease relation-
ship. We developed statistics for quantifying space-time
interaction in exposure traces, while allowing the user to
explore a range of induction and latency periods. If clus-
tering is identified after following this approach, this calls
for investigation into temporally characterized exposures
potentially responsible for the clustering.

These new methods raise the possibility of routine surveil-
lance using cancer registry data in a manner that accounts
for individual mobility, identifies plausible values of the
induction and latency periods, and that identifies geo-
graphic locations and times associated with increases in
cancer risk above and beyond that expected given known
covariates and risk factors in geographically mobile popu-
lations.
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