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METHODOLOGY

Characterizing physical activity 
and food urban environments: a GIS‑based 
multicomponent proposal
Alba Cebrecos1,2, Julia Díez1, Pedro Gullón1,3, Usama Bilal1,4, Manuel Franco1,4 and Francisco Escobar1,2*

Abstract 

Background:  Healthier urban environments influence the distribution of cardiovascular risk factors. Our aim was to 
design and implement a multicomponent method based on Geographic Information Systems to characterize and 
evaluate environmental correlates of obesity: the food and the physical activity urban environments.

Methods:  Study location comprised a socio-demographically average urban area of 12 contiguous census sec-
tions (≈16,000 residents), in Madrid, Spain. We conducted on-field audits on all food stores and street segments. We 
designed a synthetic index integrating continuous measures of both environments, by kernel density analyses. Index 
ranges from 0 to 100 (least-most healthy).

Results:  We found a heterogeneous distribution with 75 and 50 % of the area scoring less than 36.8 and 25.5, respec-
tively. Census sections of study area were categorized by Jenks intervals as high, medium–high, medium–low and 
low. 41.0 % of residents lived in an area with a low score, 23.6 % medium–low and 31.1 % medium–high and 4.2 % in 
a high.

Conclusion:  The proposed synthetic index may be a relevant tool to inform urban health interventions, providing a 
feasible way to integrate different measures of barriers and facilitators of healthy urban environments in terms of food 
and physical activity.

Keywords:  Synthetic index, Geographic Information Systems, Healthy food availability, Physical activity, Obesogenic 
environments
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Background
The obesity epidemic is one of the main public health 
concerns of the present century [1]. Prevalence of over-
weight and obesity in European countries ranges from 45 
to 67 %. Spain presents some of the highest levels of over-
weight (60.9 %) and obesity (23.7 %) in Europe [1].

The limited success of current individual-level based 
strategies shows the need for new approaches based 
on population-level determinants of obesity [2]. These 
approaches focus on affecting the fundamental causes [3] 
of the distribution of risk factors in the whole population 

[4]. These fundamental causes were called mass influ-
ences by Rose [4] and are mostly environmental or social 
factors at several levels. There is a large and renewed 
interest in these fundamental causes, especially at urban 
contexts, and particularly at neighborhood level [4–8].

Much of this renewed interest on neighborhood 
research in chronic diseases focuses on cardiovascular 
diseases, diabetes mellitus, and obesity [8–10], given that 
poor access to healthy foods and limited opportunities 
for physical activity are related to potentially health-rele-
vant neighborhood physical and social environments. As 
the place of residence is associated with socioeconomic 
status, neighborhood characteristics can contribute sig-
nificantly to health inequalities [9, 10]. Unlike other stud-
ies focusing on access inequalities to healthy areas as 
green spaces [11], healthy food environment [8] or health 
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facilities [10], our focus is based on neighborhood char-
acterization as the next step within a wider research.

Body weight regulation depends on multiple factors, 
such as physical activity and healthy eating [12]. The con-
textual determinants of physical activity are complex and 
multifaceted, but can be roughly classified into transport-
related physical activity and leisure-time physical activ-
ity influences. The determinants of active transportation 
relate to walking and biking and include features such as 
quality of pavements, safety, mix land use, destinations or 
connectivity [13]. Contextual influences of leisure-time 
or recreational physical activity include sports facilities 
and green spaces [14]. For this work we took into account 
the contextual determinants related to walkability. Con-
textual determinants of healthy eating include all aspects 
of the local food environment that influence dietary 
behaviors [15]. Food stores and their associated acces-
sibility and availability of healthy foods have been previ-
ously shown to affect dietary behaviors [16].

The literature on the associations between contex-
tual determinants of physical activity and healthy eating 
is mixed. The diversity of methodologies used and the 
results obtained [17–19] highlight the complexity of the 
chain of causation linking contextual factors and differ-
ent chronic diseases, as well as the challenges inherent on 
measuring complex social phenomena [20]. Among these 
challenges there is the intertwining of environmental 
features: physical activity environments and food envi-
ronments are not isolated but rather the result of social 
forces that affect neighborhoods [21].

Much of the previous research has focused solely on 
one factor in isolation, such as walkability [22] or healthy 
food availability [23]. Moreover, the strong correlation 
between physical activity and dietary behaviors calls for 
strategies that tackle sedentary and unhealthy choices 
concurrently [24–26]. Interventions may be ineffective 
if only focused on promoting physical activity, ignoring 
a food environment which may promote unhealthy foods 
[24]. Thereby, there is a need of an integrated approach to 
understand contextual factors of both environments.

A potential promising avenue to operationalize the 
contextual determinants of obesity is to aggregate meas-
ures of both physical activity and diet determinants. 
Previous studies have aggregated urban context indica-
tors in a synthetic index, finding significant correlations 
with health outcomes [18, 27, 28]. Kelly-Schwartz et  al. 
[28], found a significant association between a composite 
index (county sprawl index) and obesity, but not between 
their components and health outcomes [28].

Geographic Information Systems (GIS) are rap-
idly becoming a relevant part of the panoply of meth-
ods adopted in Public Health research [29]. GIS is a 
well-suited tool to define healthy urban environments 

allowing to integrate data from different sources and 
scales, both spatial and non-spatial. Our objective is to 
design a multivariable tool based on GIS to integrate 
information from the physical activity and food environ-
ments to better characterize obesogenic environments in 
urban areas.

Methods
This study was conducted within the multidisciplinary 
Heart Healthy Hoods project [30]. The main objective 
of this European project is to analyse the impact of the 
physical and social urban environment in relation to resi-
dents’ cardiovascular health in Madrid, Spain.

Study area
Madrid is the capital city of Spain, located in the central 
area of the country with a population of 3,186,595 hab-
itants [31]. Madrid Metropolitan Region has around 6.5 
million residents, the third-largest in Europe, after Lon-
don and Paris. The City of Madrid is administratively 
divided into 21 districts which, in turn, are divided into 
2412 census sections, the smallest administrative area for 
the Spanish Census (population~ = 1000–1500 per cen-
sus section).

In order to conduct our study in an area that was not 
extreme in sociodemographic or urban form terms, we 
selected these 12 census sections using the Median Neigh-
borhood Index (MNI) [32]. This method selects clusters of 
census sections that are on average closest to the median 
neighborhood in four variables: % above 65 years of age or 
older, % with low education, % foreign-born and popula-
tion density. More details on this method can be found in 
Bilal et al. [32] supplementary material.

Study area is located in the southern part of the district 
of Ciudad Lineal, adjacent to the city ring road (M-30) 
(see Fig. 1). This area has an extension of approximately 
42 hectares with a total population of 14,980 residents 
[31]. The study area was developed in the early twentieth 
century. At that time it was part of the municipality of 
Canillas and was not incorporated to the City of Madrid 
until 1955, when the main city incorporated all its sur-
rounding municipalities [33]. The area has received a 
considerable influx of migration from other rural areas 
from Spain, especially coincident with the rural exodus of 
the 60s. Both urban morphology and building structure is 
relatively homogeneous throughout the area. Most build-
ings are residential and rank from three to nine stories 
being the vast majority five stories tall. Given the small 
size of each census section (~1000–1500 people), there is 
some random variability in socio-demographic as well as 
population density within the area, mostly related to the 
height of the buildings (and hence differential residential 
density).
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According the 2014 Health Report of Madrid City 
Council [34], 41.2  % of the population presents over-
weight or obesity, 30.1 and 11.2 % respectively. Although 

these values are below national measures, 38.4 of over-
weight 18.2  % of obesity conforming the last National 
Health Survey, they values remain alarmingly high. 

Fig. 1  Map of study area. Colored areas represent census sections within the pilot study area
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Regarding risk factors, the Risk Factors Surveillance 
System Associated with Noncommunicable Diseases in 
Adult Population of 2013 [35], indicated that 49.2  % of 
Madrid citizens affirm to be sitting most of their work-
ing time and that 73  % were inactive at leisure time. 
Regarding diet, Madrid citizens eat in average 1.2 rations 
of fresh fruit and 1.1 rations of vegetables per day. These 
rates are far from the recommendations of 5 rations per 
day [36].

Characterizing the urban environment
Food environment
We measured healthy food availability by conducting in-
store audits within all food stores present in the study 
area. We found 40 retail food stores within the selected 
census sections, which were classified by store type as: 
corner stores (small stores with a low variety of items 
and generally no fresh products); grocery stores (mid-
sized stores with higher variety and presence of fresh 
products); supermarkets (large stores with highest vari-
ety and presence of fresh products); specialty stores 
(greengrocers, butcheries, fishmongers and bakeries); 
gas stations; and convenience stores (long opening hours 
and no presence of fresh products). More details of these 
measurements properties have been published in Bilal 
et al. [32].

Trained data collectors used an abbreviated version of 
the Nutrition Environment Measures Survey in Stores 
(NEMS-S), developed and validated by Glanz et al. [23]. 
The NEMS-S has been used in several contexts, includ-
ing the US [37] and Brazil [38]. The abbreviated version 
was developed by the Johns Hopkins Center for a Liv-
able Future for an assessment of Baltimore’s Food Envi-
ronment [39]. This instrument examines the availability 
of healthy options versus less-healthier options over 12 
types of foods, such as skim/low-fat milk (vs whole milk), 
100  % fruit juice (vs juice drinks), lean ground beef (vs 
regular), skinless chicken (vs regular), whole grain bread 
(vs refined bread), or low-regular cereals, as examples 
[23]. From these surveys, we produced a Healthy Food 
Availability Index (HFAI) for each food store. There-
fore, we looked at 12 food groups: milk, juice, fruits, 
vegetables, meats, chicken, seafood, canned goods, fro-
zen foods, packaged foods, bread and cereals. The HFAI 
score in this study could range from 0 to 27.5 points, with 
a higher score indicating a greater availability of healthy 
foods [37].

Physical activity environment
The Systematic Pedestrian and Cycling Environment 
Scan (SPACES) [40] is an observational audit of features 
of the built environment that can influence walking and 
cycling along a street network. We adapted this audit tool 

to the Madrid (M-SPACES) environment and conducted 
a validity and reliability study before [41]. For the pur-
poses of this study, and due to the residual use of bikes in 
the area, only walkability measures were considered.

A trained researcher audited all street segments of the 
study area (n = 145 segments) by foot. A street segment 
is defined as one section of a street that runs between 
two intersections. It is often used as the basic observation 
unit in neighborhood or community analysis. Items of 
the M-SPACES tool are then added up to four domains: 
functionality, safety, aesthetics and destinations. These, 
in turn, can be added to compute a walkability score for 
each street segment (ranging from 0, least walkable, to 1, 
most walkable). Main audited characteristics were func-
tionality, safety, aesthetics and destinations. More details 
on this audit tool and its measurements properties have 
been published before in Gullón et al. [41], and Bilal et al. 
[32].

Spatial datasets
Contextual information on the study area was collected 
from the Spanish National Mapping Agency and Spanish 
National Spatial Data Infrastructure, allowing us to gen-
erate a georeferenced database to integrate and map the 
results from the food and physical activity environment 
assessment. Administrative boundaries (district and cen-
sus sections) and street networks were collected in vec-
tor polygon and line formats, respectively. We also used 
orthophotograpy of the study area obtained from the 
Orthophotography Air National Plan.

ArcGIS 10.1 software was used to integrate, standard-
ize and manage these datasets. First, all information was 
projected to a common system (ETRS89 UTM 30N). The 
physical activity environment data (collected with the 
M-SPACES tool) was associated with the street network 
layer by a relational join. The food environment data (col-
lected with the abbreviated NEMS-S tool) was integrated 
in the system using a point-based layer with a relational 
join. All other layers (administrative boundaries, blocks 
and orthophotos) were introduced to the final maps as 
reference information.

Geospatial analysis
The aim of this study was to integrate data on the physi-
cal activity and food environment in characterizing the 
urban environment by using GIS. Figure  2 summarizes 
our approach. In summary, we converted line and point 
data, linked to physical activity and food respectively, into 
surface-based data on the whole study area, as a means 
of facilitating integration of both environments into a 
single surface. Only after the measures of both environ-
ments were known at pixel level (the minimum spatial 
unit of the newly created surface), a map algebra-based 
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arithmetic operation to combine both measurements 
was possible. Finally, a categorization of the combining 
results was applied in order to ease interpretation.

These steps are detailed as follows; First, line data 
(walkability index for each street segment) and point data 

(healthy food availability index for each food store) was 
extended to the whole study area by applying kernel den-
sity estimation (KDE), resulting on a pixel-based surface. 
Both walkability and health food availability indices could 
have been kept under their original geometric form, 

Fig. 2  GIS model for the construction of a spatial integrated index on walkability and food environment. Kernel interpolation of the Healthy Food 
Availability index (HFAI) was created with data from direct observation of food stores measured with the Nutrition Environment Measurement 
Surveys in Stores (NEMS-S) audit tool. Kernel interpolation of walkability was created with data from direct observation of each street segment 
measured with the Madrid Pedestrian and Cycling Environment Scan (M-SPACES) audit tool
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line and point respectively. However, a surface-based 
approach was adopted in order to facilitate future data 
integration with additional data. Being most statistics 
aggregated under administrative boundaries, the integra-
tion of line or point-based data presents more inconven-
iences than the assumed ones produced by the extension 
of the information to the whole surface. In addition, an 
eventual proposal of a combined index including infor-
mation on green areas reinforced the surface-based 
solution.

KDE fits a mathematical surface (composed of pixels) 
with a normal distribution over each point based on (a) 
the value empirically collected for each point, and (b) the 
distance from each location in the surface to all points in 
the area within defined radius or bandwidth. Essentially, 
the value of each point is smoothed over the study area 
producing a density value that will be the highest at the 
location of every point, and decaying from there with 
distance using a defined bandwidth [42]. KDE is widely 
adopted in spatial analysis where input data present dif-
ferent geometric forms and it is of interest the integration 
of such data with other variables collected on the same 
territory.

We use de KDE integrated in ArcGis 10.1 software 
which employs the quadratic Kernel function of Silver-
man [43]:

where K is the quadratic Kernel function defined by 
K (x) = 3

4

(

1− x
2
)

, x ≤ 1, “x” is the point at which den-
sity is estimated, “xi” is the value of the variable in the 
case “i”, “n” is the number of cases and “h” is the band-
width. The basic idea consists calculated for specific 
points, the averaged sum (hence the estimator involves 
summing over “n” and then divide by this value) of Ker-
nels centred on the observations.

This spatial analysis allows weighting each component 
by their associated attributes, in our case the HFAI and 
M-SPACES scores. For example, if the component has 
associated value attribute equal to 3, the case counts as 3 
cases. Thus, density value in each pixel of the output image 
is calculated summing the values of all overlapping kernel 
surfaces. All surfaces were generated with a pixel size of 
3 m. We used a bandwidth of 100 m, given that the average 
distance from one food store to the closest food store was 
around half that length (improving smoothing). A static 
bandwidth was used because of the small study area and 
the homogeneous population density distribution [42].

The cartographic model presented in Fig. 2 shows the 
development of both continuous density surfaces: one 
from the food stores layer weighted by the value of HFAI; 

f̂(x) =
1
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and the other from the street segments layer weighted by 
the scores obtained from the M-SPACES audit.

After generating both surfaces, we performed a map 
algebra analysis. First, we homogenized data in a range 
from 0 to 100, to make them comparable with each 
other. The operation adopted for map algebra was a local 
unweighted average that computes an average of pixels at 
the same location in both the physical activity and food 
environment surfaces, treating both environments with 
equal weight, generating the synthetic index. To fully 
integrate the synthetic index into the geographic con-
text of the area, we assigned each census section an obe-
sogenic (synthetic index) value. For this, we used zonal 
analysis that calculates a single output value for each 
census section averaging all pixels that fall within each 
area. To improve the interpretability of our results, we 
categorized census sections into four classes according 
to their value in the synthetic index (high, medium–high, 
medium–low and low). For this, we used the Jenks inter-
vals (or natural breaks) approach that reduce the variance 
within classes, while maximizing the variance between 
them.

Results
Figure 3 shows the calculated KDE surface obtained for 
the food and physical activity environment. Regarding 
the food environment, the figure shows a concentra-
tion of food sales scored with high HFAI values in the 
North and South ends of the study area, with patches of 
medium–high density of HFAI distributed throughout 
the area. Most stores with high HFAI were quite close 
to each other and mostly located along important roads, 
creating “islands” of healthy foods. Stores with low HFAI 
were distributed more evenly creating “healthy food 
deserts”. Regarding the physical activity environment, 
the surface resulted from the M-SPACES showed highest 
values at streets intersections, on streets with wide side-
walks, and in the surroundings of squares and parks. In 
consequence, the greater the number of intersections, the 
greater the walkability of the area.

The synthetic index surface resulted from averaging 
the food and physical activity environment is depicted 
in Fig. 4. Figure 5 shows the distribution of values of the 
synthetic index. This distribution is right skewed, with a 
median score of 25.4 (IQR 15.4–36.9) and a mean score 
of 27.7. Around 75 % of the area is below 36.8 of the index 
score and half of the area below 25.5.

Another result is obtained from zonal analysis, where 
we mapped the 12 census sections of the area in Fig.  6 
with single output value for each census section averag-
ing all pixels that fall within each area. Characterization 
created by using natural Jenks grouped the census sec-
tions into four categories about themselves according to 
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the average score: low (17.7–21.6), medium–low (21.7–
30.8), medium–high (30.9–35.1) and high (35.2–43.8). 
Four out of the 12 census sections are classified as low, 4 
medium–low, 3 medium–high and 1 as high.

Table  1 shows basic sociodemographic characteris-
tics of the twelve census sections and the entire study 
area. Around 4.2 % of the population live in areas char-
acterized as “healthy” environments (defined as a “high” 
synthetic index), while 41.0 % of the residents live in an 
area with the lowest rating. Analysing the results by sex, 
40.8  % of women have lower scores than men (41.3  %). 
4.6 % of women and 3.7 % of men live in a section with 
high score. In the case of foreign-born residents, 49.3 % 
of them live in the unhealthiest areas and 3.0  % in the 
healthier. If results are studied by age, the majority of 
young people live in a census section with low score 
(51.5 %) as well as adult people (44.4 %) but in the case of 
elderly people, they live in a high healthy space (27.7 %). 

Only the 1.9, 3.5 and 7.0  % of young, adult and elderly 
people respectively live in a healthy section.

Discussion
This paper documents the development of an innovative 
method to assess the obesogenic environment by using 
a synthetic index that integrates continuous measures of 
both food and physical activity environments generated 
by KDE. The results show a heterogeneous distribution 
of obesogenic determinants in the study area. 36.5 % of 
the census sections have a low synthetic index value, fol-
lowed by medium–low healthy (33.7  %), and medium–
high (22.4  %). Only one census section falls under the 
category of high value in the synthetic index, represent-
ing only 4 % of the study area.

This healthy census section is delimited by the main 
streets of the neighborhood, where healthiest food stores 
were present. Main streets are also designed to be more 

Fig. 3  Development of continuous KDE variables from direct observation data. On the left, is depicts the calculating for the food environment 
starting with the location of all stores, continues with the Healthy Food Availability Index (HFAI) score for each one, and the next is the KDE surface 
weighted by HFAI score. On the right, the development for the physical activity environment. Above the location of all the street segments, contin-
ues with Pedestrian and Cycling Environment Scan (SPACES) score by each one. And in front the KDE weighted by the SPACES
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walkable and have more intersections. Moreover, while 
we did not measure parks, the only park located in the 
study area, was also located within this census section. 
The census sections with the lowest synthetic index value 
were located in the east of the study area. Food store den-
sity is smaller with 3 corner stores, 1 bakery and 1 small 
supermarket, and we found narrow streets residential 
inter-block.

In order to understand the obesogenic environment it 
is necessary to consider the interrelations between the 
food and physical activity environments, as built envi-
ronment metrics are correlated with each other [44]. 
The use of composite indices reduces collinearity and 
over-adjustment, confers ease of interpretation, and may 
reduce measurement errors [18]. Besides, integrating dif-
ferent indicators within an index can detect associations 

Fig. 4  Continuous synthetic index surface. This surface is the local average of the pixels of walkability KDE and the pixels of food availability KDE. 
The size of pixel is 3 × 3 m and the bandwidth selected to the smoothing was 100 meters
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not previously found [28]. In our case, a systematic obser-
vation of a built environment, using validated audit tools, 
provided highly detailed spatial data. This also ensured 
variability on measures of both constructs and statisti-
cal power. The use of an extensive sampling strategy to 
maximize the variation between environmental factors 
reduced the sample sized needed to assess associations 
between built environments and obesity outcomes [45].

Previous studies have considered both physical activ-
ity and food environments to characterize environ-
mental obesogenity, but have not obtained a composite 
score [25, 27, 45]. These urban environment measures 
have been used to evaluate their relation with diabetes 
incidence [46] or cardiometabolic risk factors [47]. The 
method described here considers previously studied vari-
ables, such as food store density, food store type, street 
intersection density, parks or street aesthetic, among oth-
ers. The majority of these studies used GIS to integrate all 
information from diverse sources, mostly from secondary 
databases. On top of these, our study adds other variables 
as availability of healthy foods captured by NEMS-s or 
the aesthetic or safety domains measured by M-SPACES 
tool, which are very difficult to assess from secondary 
administrative databases.

KDE remains underutilized when compared to prox-
imity analysis or to analysis over defined statistical areas 
[48–51], although the number of examples using KDE 
technique to study the obesogenic environment has 
increased in recent years [48–51]. KDE overcomes the 
limitations of binary definitions present in analysis based 
in fixed geographic boundaries (for example, number 

of stores per census section). Smooth transitions across 
(administratively defined) boundaries represent the real-
ity of urban environments better [52]. The resulting KDE 
surface can then be used as an independent variable on 
statistical models [42].

Our study was conducted in the City of Madrid, Spain. 
In Spain, the smallest administrative level where data 
is publicly available is the census section, composed of 
≈1500 people. Our study area is made up of 12 census 
sections, although the estimation of our synthetic index 
creates a smoothed surface over the entire study area, 
regardless of census section boundaries. This method is 
therefore replicable in other settings where the admin-
istrative spatial hierarchies are different, as long as data 
is collected at the appropriate level. This method is also 
replicable at larger units, like municipalities or countries, 
taking always into account the effort associated with data 
collection at any level.

The proposed method has several limitations. First, 
it requires primary data collection through systematic 
observation, which is a resource and time intensive pro-
cess. Thanks to advances in Geographic Information 
Technologies, these costs can be drastically reduced, by 
using available secondary databases with spatial infor-
mation and new geographic remote devices to collect 
geocoded primary data [29]. Second, this work has not 
considered the relative importance of the two domains 
with respect to each other, treating both environments 
with equal weight. The controversy regarding the quan-
tification of the proportion of food or physical activity 
responsible for the obesity epidemic is still very much 

Fig. 5  Histogram of synthetic index surface. It depicts the frequency of pixel values of the study area with a range from 0 to 100 with higher scores 
indicating a healthier environment
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alive [53, 54]. We decided to adopt a local unweighted 
average, but any study using this method to estimate the 
associations between obesogenic environment and health 
outcomes should consider sensitivity analysis that alter 
these weighting decisions.

Conclusion
The proposed synthetic index provides a feasible way 
to integrate different measures of physical barriers and 
promoters of healthy urban environments. This method 

opens new ways to capture inter-relations between 
physical activity and health food availability urban envi-
ronment domains that did not emerge when they were 
studied in an isolated way. Thus, applying this index is 
a preliminary step to promote healthier urban environ-
ments and bridge the health inequalities present in large 
cities like Madrid.

The proposed index, and the cartography associated 
with it, may be useful tools to inform future research and 
urban health recommendations.

Fig. 6  Study area characterization at census section level. Is the result of zonal analysis of each administrative area having in account all the pixels 
of the local analysis within each area
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