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Spatial identification of potential health 
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Abstract 

Background and aims:  Large metropolitan areas often exhibit multiple morbidity hotspots. However, the identifica-
tion of specific health hazards, associated with the observed morbidity patterns, is not always straightforward. In this 
study, we suggest an empirical approach to the identification of specific health hazards, which have the highest prob-
ability of association with the observed morbidity patterns.

Methods:  The morbidity effect of a particular health hazard is expected to weaken with distance. To account for 
this effect, we estimate distance decay gradients for alternative locations and then rank these locations based on the 
strength of association between the observed morbidity and wind-direction weighted proximities to these locations. 
To validate this approach, we use both theoretical examples and a case study of the Greater Haifa Metropolitan Area 
(GHMA) in Israel, which is characterized by multiple health hazards.

Results:  In our theoretical examples, the proposed approach helped to identify correctly the predefined locations 
of health hazards, while in the real-world case study, the main health hazard was identified as a spot in the industrial 
zone, which hosts several petrochemical facilities.

Conclusion:  The proposed approach does not require extensive input information and can be used as a preliminary 
risk assessment tool in a wide range of environmental settings, helping to identify potential environmental risk factors 
behind the observed population morbidity patterns.

Keywords:  Source-oriented models, Receptor-oriented models, Systematic search approach, Disease hotspots, Wind 
adjustment, Multivariate regression analysis
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Background
Air pollution from motor traffic and industrial facilities 
is known to be linked to respiratory, cardiovascular and 
cancer morbidity [1–9]. However, since urban areas are 
often characterized by multiple sources of air pollution, 
the identification of specific environmental hazards asso-
ciated with the observed morbidity patterns is not always 
straightforward [10–13].

Traditional methods, used to identify the specific 
sources of air pollution, include the residence time analy-
sis (RTA) and the chemical mass balance (CMB) method 
[14–22]. The former method is based on measurements 
of different air pollutants at the receptor sites [15, 18, 

20, 23], while the CMB method investigates the chemi-
cal composition of air particles, by comparing them with 
particles emitted from different emission sources [14, 
16, 22]. However, the empirical implementation of these 
methods requires a considerable amount of information 
on the concentration of specific particles, detailed wind 
regime assessments and topographic attributes, which 
are not always available to researchers [14, 24–26].

In this study, we suggest an empirical approach to the 
identification of specific health hazards, which have the 
highest probability of being associated with the observed 
morbidity patterns. The proposed approach does not 
require extensive input information and can be imple-
mented at a preliminary risk assessment stage, using 
basic geo-statistical tools. The proposed method is based 
on an expectation that the morbidity effect of a particu-
lar health hazard weakens with distance [9, 27–29]. As a 
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result, people living in a close proximity to a morbidity 
source, are expected to exhibit, ceteris paribus, a higher 
rate of morbidity than those living at a distance from 
that source [11, 30]. To account for this effect, we esti-
mate distance decay gradients of morbidity for alterna-
tive potential “source” locations and then rank these 
locations based on the strength of association between 
the observed morbidity patterns and wind-direction 
weighted proximities to these locations.

Spatial identification of pollution sources 
and morbidity hotspots
Empirical implementations of morbidity source assess-
ments can be classified into two groups: source-oriented 
approaches and receptor-oriented methods [14, 15, 20, 
23, 24, 26, 31–33]. The first group of methodologies uses 
data from different pollution sources and then computes 
the concentrations of different air pollutants in a given 
point of space, by taking into account local meteoro-
logical conditions and topography [32, 34]. By contrast, 
the second group of methods uses data on air pollution 
measured at the pollution receptors’ sites and then esti-
mates probable pollution sources, by taking into account 
the backward wind trajectory and other relevant meteor-
ological conditions (see inter alia [14, 20, 35]).

In an early study [15], an identification method of 
potential emission sources of sulphur dioxide (SO2) was 
developed. The method uses SO2 concentrations meas-
ured at the receptor site and then calculates a backward 
trajectory leading to the potential emission source. In 
a separate study, [36] discuss the results produced by a 
chemical transport modeling of particulate matter (PM2.5), 
using data available for Northern Italy. According to the 
proposed method, ambient air pollution is partitioned 
between road transport, industries and domestic heating.

In several health geography studies, distances from 
residential locations to pre-identified environmental haz-
ards are commonly used as proxies for unknown (or uni-
dentified) exposures [37–40]. Potential health hazards, 
to which this exposure assessment method was applied, 
included highways, industrial sites, nuclear power plants 
and gas wells.

Thus, in a recent study, McKenzie et  al. [6] estimated 
the health risk associated with areal proximity to natu-
ral gas wells in the Garfield County, Colorado. In a 
separate study, Sermage-Faure et  al. [38] investigated 
the risk of childhood leukemia around nuclear power 
plants. The total of 32,753 study subjects were subdi-
vided into groups, according to their residential proxim-
ity to the existing power plants, and the observed cancers 
incidence rates across different proximity bands were 
mutually compared. The results suggested an excess of 
leukemia in close proximity to nuclear power plants.

Zusman et al. [11] used proximity to an oil storage site, 
as a proxy for residential exposure to unknown levels 
of emissions of volatile and semi-volatile organic com-
pounds from the site. As the study revealed, the rates 
of lung and non-Hodgkin lymphoma (NHL) cancers 
declined in line with distance from the storage site, espe-
cially among the elderly (P  <  0.01). A similar methodo-
logical approach was used by [30], who investigated the 
link between NHL morbidity and residence near heavy 
roads. In the study, the geographic distribution of NHL 
patients was adjusted by the overall density of population 
residing in the study area. The analysis indicated a steady 
decline in the density of NHL patients as a function of 
distance from main thoroughfare roads.

Although in the above mentioned and other studies 
(see inter alia [6, 41–43]), areal proximities were used for 
assessing the adverse effects of different health hazards 
on human morbidity, this method was mostly applied to 
pre-identified health risk sources, that is, health hazards 
found at known locations—such as roads, industrial sites, 
etc.

In the past decades, several geo-statistical tests have 
been also developed to assess disease clusters around 
predefined sources of environmental hazards. These tests 
include Stone’s Maximum Likelihood Ratio Test [44], 
Tango’s Focused Test [45], Bithell’s Linear Risk Score Test 
[46], and the Lawson-Waller Score Test [47], also known 
as the “focused tests”. Although these tests can be used 
to identify cluster of events around a single or several 
pre-specified locations, they cannot be used effectively if 
the source (or sources) of exposure is unknown, the task 
which the proposed identification method, based on a 
systematic areal comparison of alternative risk-source 
locations controlled for confounders, is designed to 
achieve.

Methods
Identification methodology
Assuming that the rate of morbidity observed in the ith 
point of space (morbi) depends on the distance from the 
potential source of exposure, j, the relationship between 
morbi and distji can be expressed by the following linear 
function, reflecting a monotonic decline in morbi as a 
function of distji:

where b0, b1 are coefficients, εi = random error term.
As long as the relationship between morbi and distji 

follows (1) and the locations of specific sources of expo-
sure (e.g., roads, industrial facilities, etc.) are a priori 
known, the calculation of the strength of association 
between morbi and distji is technically simple. However, 
if actual sources of exposure for morbi for are unknown, 

(1)morbi = b0 + b1 · distji + εi.
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alternative locations, j, can be assessed, one by one, as 
potential exposure sources. Such alternative locations 
can then be ranked by their “probability” of being the 
exposure source (Pji) for morbi using the coefficient of 
determination, R2

ji, between morbi and distji:1

The interpretation of (2) is relatively simple: values 
of R2

ji close to 1 (when b1 is negative) would indicate a 
high “probability” that exposure originating from point 
j is associated with morbidity observed in i, while val-
ues of R2

ji close to 1, when b1 is positive, would indicate 
a “protective” effect, and values of R2

ji close to zero will 
point out at the absence of any significant association 
between the two variables.

Since the dispersion of air pollutants from a potential 
risk source is likely to be affected by the wind frequency 
of from j to i [48, 49], the pairwise Euclidian distances 
(distji) can be adjusted:

where d̃istji  =  distance between i and j adjusted by 
wind frequency (Wji) between the points (measured 
as e.g., annual or seasonal averages of directional wind 
frequencies), and T

(
distji

∣∣Wji

)
 is a distance transforma-

tion function (e.g., linear, quadratic and exponential 
transformations can be used; see “Appendix 2”).

To account for the above wind-adjustment effect, (1) 
can be rewritten as follows:

Considering that the association between the 
observed health effect and proximity to a given health 
hazard can be confounded by other factors (such as 
e.g., socio-economic status of the local population, 
residential densities, ethnicity, etc. [5, 13, 50–52]), the 
confound relationship between the rate of morbidity 
observed in i and d̃istji can be adjusted as follows:

where b0,…, b4 are regression coefficients; GEO = vec-
tor of geographical attributes of i (e.g., distance to main 
roads, elevation above the sea level, etc.); SES =  vec-
tor of socio-economic attributes of i, including e.g., 
socio-economic status and ethnic makeup of the local 

1  For explanation of mathematical symbols used in the paper, see “Appendix 3”.

(2)Pji → R2
ji

(
morbi, distji

)
, ∀b1 ∈ (−∞, 0).

(3)d̃istji = T
(
distji

∣∣Wji

)
,

(4)morbi = f
(
d̃istji

)
.

(5)

morbi = b0 + b1 · d̃istji + b2 ·GEO+ b3 · SES+ b4 · POL+ εi,

population; POL = vector of air pollution levels meas-
ured at the ith point, and εi = random error term.

As with (1), the coefficient of determination obtained 
for (5) can be considered as a measure of probability that 
morbidity observed in i and originated from j:

The interpretation of (6) is similar to that of (2): in par-
ticular, values of R2

ji close to 1 (when b1 is negative) indi-
cate a high “probability” that exposure originating from 
point j is associated with morbidity observed in i, while 
values of R2

ji close to 1 (when b1 is positive) would indi-
cate a “protective” effect, and values of R2

ji close to zero 
will point out at the absence of any significant association 
between the variables. The essential difference between 
(2) and (6) is that the former equation is uncontrolled for 
potential confounders, while the latter Eq. (6) takes such 
confounders into account.

Empirical validation
We tested the proposed identification approach in two 
stages. During the first stage, we designed several theo-
retical examples in which loci of morbidity rates were 
positioned around pre-defined sources of exposure. In 
particular, we generated two identical, regularly spaced 
arrays of 100 “reference” point each, surrounding two pre-
defined sources of exposure—either a point or a line (see 
Fig. 1; left panel). These arrays of “reference” points served 
in our tests as both disease observations and points from 
which potential exposure could have been generated. The 
rates of morbidity were arbitrarily assigned to each refer-
ence point using one simple rule: in line with the expected 
distance decay relationship, reference points with higher 
morbidity rates were positioned closer to the pre-defined 
sources of exposure, while places with lower morbidity 
rates were positioned farther away from these sources (see 
Fig. 1; left panel). Then, we estimated bivariate regressions 
to assess the strength of association between morbi and 
distji for each “reference” point (a total of 100 equations, 
one for each reference point).

We also incorporated a stochastic element into our 
analysis. In particular, in order to test the sensitivity of the 
models under varying levels of inputs, we used a random 
number generator to generate stochastic noise around the 
input morbidity rates in our “point” and “line” examples 
(see Fig. 1). Next, we ran 100 regressions for each of the 
simulated samples. The test did not change the regres-
sion results substantially. In particular, in the case of the 
“point” source (see Fig. 1b), the estimates for the distance 
variable were as follows: B  =  −11.17 (95% CI −11.71, 
−10.63), t-stat = −40.84, (95% CI −41.163, −40.76), and 

(6)

Pji → R2
ji

(
morbi, d̃istji,GEO, SES,POL

)
, ∀b1 < 0.
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for the “line” source (Fig. 1d): B = −5.90 (95% CI −7.98, 
−3.82), and t-stat = −5.47 (95% CI −5.63, −5.36). This 
confirms that our estimates are essentially robust.

Lastly, we interpolated the Rji
2 values, to create continu-

ous “probability” surfaces, differentiating between areas 
with high and low values of the coefficients of determi-
nation (see Fig. 1; right panel). To this end, we used the 
Empirical Bayesian Kriging (EBK) method, a kriging 
interpolation technique, which differs from classical krig-
ing methods by accounting for the error introduced by 
estimating the semivariogram model [17, 53]. The EBK 
parameters were set to the default values used by the 
ArcGISTM10.x software [54].

At the next step, we applied the proposed identifica-
tion method to the real world case of the Greater Haifa 

Metropolitan Area (GHMA) in Israel (Fig. 2), character-
ized by multiple health hazards. Background information 
on the study area, its location and geographic attributes 
is reported in the Additional file 1.

We started our analysis of morbidity patterns in 
GHMA by geocoding residential addresses of lung and 
NHL cancer patients, obtained from the Israel National 
Cancer registry for the year 2012 [55], which are the 
latest annual records available in the database at the 
time of the study initiation.2 Next, we calculated cancer 
rates in different areas of the GHMA, using the Double 
Kernel Density (DKD) tools (see Additional file 2).

2  Geocoding is a process of converting street addresses into geographic (X, Y) 
coordinates suitable for mapping [56].

Fig. 1  Input morbidity patterns (left panel) and risk source estimates (right panel). Notes: Green dots in the left panel diagrams indicate morbidity 
observations with the size of each dot set proportional to the morbidity prevalence rate observed in a given location; the triangle and the solid line 
in the left panel diagrams indicate predefined sources of environmental pollution (see text for explanations)
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In order to convert the obtained continuous DKD 
surfaces of cancer density into discrete observations, 
suitable for a multivariate analysis, we generated 1000 
randomly distributed “reference” points covering the 
entire study area (i points). Following the analysis pro-
cedure suggested in [11], the reference points created 
thereby were “spatially joined” with DKD surfaces of 
both types of cancer under study, enabling us to esti-
mate the cancer morbidity rate for each “reference” 
point. Using the “spatial join” tool in ArcGIS™10.x soft-
ware [54], we next assigned the values of several varia-
bles, either drawn from small census areas (SCAs) data 

(such as socio-economic status, percent of residents 
employed in manufacturing, the share of total popula-
tion over 65yo and neighborhood level smoking rates) 
or generated from NOx and PM2.5 air pollution sur-
faces, to each reference point.

The air pollution surfaces were interpolated by krig-
ing using annual averages of air pollution obtained 
from air quality monitoring stations. According to pre-
vious studies, cancer latency period can vary substan-
tially, ranging from several years to several decades 
[57]. To account for this effect, annual averages of NOx 
and PM2.5, obtained from 20 Air Quality Monitoring 

Fig. 2  Map of the GHMA study area, showing residential buildings, main industrial facilities (1–5) and thoroughfare roads
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Stations (AQMSs) [58], were lagged by 10 years, which 
is a temporal lag, commonly used in epidemiological 
studies of cancer [59–61]. That is, cancer DKD rates 
estimated for the year 2013 were mutually compared 
with air pollution data for the year 2003 (see Appendix 
1).

We considered the above mentioned variables as 
potential confounders for the observed cancer rates, as 
commonly done in epidemiological studies of cancer 
morbidity [5, 13, 51, 52]. Descriptive statistics of the vari-
ables used in the analysis are reported in “Appendix 1”.

At the next step, we generated a map (layer) of 1000 
evenly distributed points, representing locations of 
potential environmental hazards (j points). For the arrays 
of i and j, we next calculated Euclidian distances (distji), 
from each morbidity point (i) to each source points (j). 
After these distance pairs were calculated, we introduced 
them into regression models as potential explanatory 
variables, in addition to the above mentioned socio-
demographic and geographic attributes, considered as 
controls. To address the issue of multicollinearity, indi-
vidual distji were introduced into the models separately, 
one by one, in addition to the constant set of controls, 
and changes in the coefficient of determinations were 
traced. The models were estimated separately for two 
dependent variables—NHL and lung cancer DKD rates.

Because simple Euclidian distances may not be a truly 
accurate proximity matrix, considering wind frequency 
and direction, we adjusted these distances by applying 
a wind frequency transformation discussed in “Appen-
dix 2”. By way of this transformation, we calculated wind 
weighted distances between each pair of i and j 

(
d̃istji

)
 

and then used these wind-adjusted distances in the 
regression analysis as alternatives to simple Euclidean 
distances, used during the initial phase of the analysis.

Next, for each morbidity reference point (i), we ran 
multivariate regressions for both types of cancer under 
study (that is, lung and NHL cancer separately), using 
the constant set of the above mentioned socio-demo-
graphic explanatory and adding one d̃istji at a time. For 
1000 multivariate regressions obtained for each type of 
cancer (that is, one regression equation for each j point), 
we used the coefficient of determination (R2

ji) to generate 
the “probability” surface, covering the entire study area 
and estimating how well the constant set of socio-demo-
graphic variables and wind weighted distance from each 
potential source point j, to the disease observation point i 
explain cancer rates observed at i’s.

In the initial stage of the analysis, d̃istji were introduced 
by their linear terms. However, as our analysis revealed, 
the relationship between the observed cancer morbidity 
and industrial proximities was best captured by a non-
linear (parabolic) function (see Fig.  3), apparently due 

to the fact that plumes of air pollution from tall indus-
trial smokestacks land at some distances from the emis-
sion sources. To take this non-linear effect into account, 
we introduced a quadratic term of d̃istji into the models, 
in addition to its linear term, and repeated the analysis. 
To estimate parameters in Eq. (5) multivariate regression 
models, incorporating linear and non-linear terms, were 
used. In the following discussion, only non-linear models, 
providing better fits and generality compared to ordinary 
linear models, are reported.

The probability surfaces were generated using the EBK 
interpolation technique in the ArcGIS™10.x Software 
[54], while the multivariate regression analysis was per-
formed using the SPSSv.23™ software [62]. The probabil-
ity level of less than 0.01 (<1%) was set as the accepted 
statistical significance level.

Results
Theoretical examples
Figure  1 features morbidity rates, marked by dots sur-
rounding two pre-defined sources of exposure—a triangle 
(Fig. 1a) and a line (Fig. 1c). As mentioned previously, in 
these diagrams, dots, marking morbidity observations, 
are sized proportionally to the predefined morbidity 
rates: the higher the morbidity rate: the bigger the dot 
that marks it. In line with the expected distance decay 
relationship, larger dots are positioned closer to the 
pre-defined sources of exposure, while smaller dots are 
placed farther away from these sources (see Fig.  1a, c). 
Concurrently, maps in the right panel (Fig. 1b, d) feature 
morbidity source estimates, calculated using the estima-
tion approach described in  “Empirical validation” sec-
tion. As Fig. 1b, d show, the spots of high probability of 
being the source of exposure, marked by orange and red 
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colours in the right panel, correspond, fairly accurately, 
to the actual locations of the pre-defined health hazards 
(Fig. 1a, c).

GHMA study
Figure 4a, b shows raster surfaces based on the determi-
nation coefficients (R2

ji), obtained from bivariate regres-
sion models, estimated separately for lung (Fig.  4a) and 
NHL cancers (Fig.  4b). Concurrently, Fig.  4c, d shows 
source identification surfaces based on the determination 
coefficients obtained from multivariate regression mod-
els. The best performing regression models (both con-
trolled and uncontrolled), are reported in Tables 1 and 2.3

Figure 4 has similar coloring such as that used in the theo-
retical examples, discussed in “Theoretical examples” sec-
tion and shown in Fig. 1. In particular, warm-coloured pixels 
in these diagrams correspond to the highest improvements 
in the models’ determination coefficients, observed by add-
ing wind-adjusted distances from these pixels to the models, 
containing a constant “pre-set” of socio-demographic vari-
ables, discussed in the “Empirical validation” section. Con-
currently, blue and green colours in these maps mark pixels 
adding proximity to which result in relatively small changes 
in the models’ determination coefficients.

As Fig. 4 shows, there are two most probable loci asso-
ciated with the observed morbidity—the central business 
district saturated with traffic routes located in the north-
eastern part of the study area (for lung cancer cases) and 
a spot located in the central part of the study area (for 
both cancer cases under the study) (see Figs.  1, 4a, b). 
Adding proximities to these spots results in increases in 
the models’ determination coefficients by up to 14–29% 
in bivariate models and by up to 7–13% in multivariate 
models, depending on the cancer type under analysis (see 
Tables 1, 2).

Several interaction effects were also tested. Among them, 
two effects (i.e., the side of the Carmel mountain vs. eleva-
tion above the sea level and the side of the Carmel moun-
tain vs. distance to the identified hotspot), were found to 
be statistically significant. Regression models incorporating 
these interaction effects are reported in Table 3.

Discussion
Empirical studies use several methods for the spatial 
identification of potential health hazards. Such meth-
ods are mostly based on the measurements of air pol-
lutants at the receptor sites, followed by a comparison 
of the results of such measurements with the chemical 

3  The models reported in Tables 1 and 2 feature distances to the pixels add-
ing which resulted in the largest changes in the models’ determination coef-
ficients. Such pixels are marked by deep red colors in Fig. 4.

composition of particles emitted from different emis-
sion sources [14, 15, 20, 23, 24, 26, 31, 32, 35]. However, 
the empirical implementation of these methods requires 
a considerable amount of information on the concentra-
tion of specific particles, detailed wind regime assess-
ments and topographic attributes, which are not always 
available to researchers [14, 20, 26].

As an alternative approach, proximities of various 
health hazards, such as roadways, industrial sites, nuclear 
power plants and gas wells, are commonly used in epi-
demiological and health geography studies as proxies for 
unknown exposures (see inter alia [11, 27, 28, 30].

In the present study, we extend this distance gradient 
method to the spatial identification of a priori uniden-
tified hazards. The underlying assumption behind the 
proposed identification approach is that people living in 
a close proximity to a morbidity source, tend to exhibit, 
ceteris paribus, a higher rate of morbidity than those liv-
ing at a distance from that source [11, 30]. To account 
for this effect, we estimated distance decay gradients of 
morbidity for alternative potential "risk source" locations 
and then ranked these locations based on the strength of 
association between the observed morbidity patterns and 
wind-direction weighted proximities to these locations.

In empirical studies, several measures are commonly 
used to estimate the improvement of regression models 
attributed to changes in the predictors’ set. Such meas-
ures include the log-likelihood criterion, the Akaike 
information criterion  (AIC), the Bayesian information 
criterion  (BIC), the  Schwarz criterion  (SBC), Mallow’s 
Cp statistic, and several others. These criteria moni-
tor changes in the regression residuals and thus help to 
select the combination of explanatory variables and the 
functional form of the model best fitted to the data under 
analysis [63]. In this study, we used R2, a commonly used 
measure of model fit, also known as the coefficient of 
determination. Our preference for this measure was 
motivated by the fact that this measure does not depend 
on the order of variables, has a specific interval of change 
(0; 1); it also does not depend on the functional form of 
the regression equation used [64]. Using this measure 
and applying it to the constant set of control variables, 
we monitored changes in the regression fit attributed to 
changes in wind adjusted distances to alternative hazard 
locations, which were introduced into the models one by 
one. Since the set of control variables used in the study 
included main factors known to affect cancer incidence 
rates in urban areas [51, 61, 65, 66], we did not consider 
it feasible to alter this predetermined set of controls. 
In other words, according to the proposed identifica-
tion approach, the coefficient of determination, R2, was 
considered a likelihood criterion, using which we com-
pared several combinations of input parameters. These 
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combinations included the constant set of confound-
ers and a number of vectors of wind-weighted distances 
between alternative potential health risk sources and 
morbidity observations.

In several theoretical examples we designed, the pro-
posed approach helped to identify correctly the prede-
fined locations of health hazards, while in a real-world 
case study, the main health hazard were identified as a 
spot in the industrial zone, which hosts petrochemical 
facilities, and a major transportation hub in the cen-
tral business district of the city. According to previ-
ous studies (see inter alia, [11, 38, 67]), petrochemical 
industries are known to be associated with evaluated 
cancer morbidity in surrounding residential areas. In a 

separate study, [67] investigated morbidity near nuclear 
power plants and found it to be linked to childhood 
cancer.

The results of the present study also correspond 
to the findings of other studies which revealed geo-
graphic concentrations of cancer morbidity near heavy 
roads [30, 40, 41, 68], and in proximity to industrial 
areas [11, 38]. Thus, [69] identified the link between 
traffic-related pollution and respiratory morbidity, 
measured by lung function impairment.

Several limitations of our study need to be men-
tioned. First and foremost, the present study is an 
ecological analysis, in which explanatory variables are 
measured at the group level or as distance gradients, 

Fig. 4  Risk source assessment for lung cancer (left panel) and NHL cancer (right panel) by uncontrolled (a, b) and controlled regressions (c, d). Note: 
Black triangles mark the points, distances to which are used in the regression models reported in Tables 1 and 2
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and not estimated for individuals. Therefore, we 
cannot attribute causality in the relationships we 
observed. However, the strength of population-level 
studies is that they represent large population groups 
and reflect varying levels of exposure. The purpose of 
such studies is not to prove the relationships but rather 
to generate hypotheses which can further be examined 
using individual level data [70].

Conclusions
This paper contributes to the existing body of literature 
by extending the traditional distance gradient method 
(DGM) to the identification of potential health hazards, 
which geographic location is a priori unknown. The 
results of the study demonstrate the utility of the pro-
posed method for epidemiological studies which goal 

is to identify potential sources of exposure to which the 
observed morbidity is related. We also consider it impor-
tant that the proposed approach does not require exten-
sive input information and can be used as a preliminary 
risk assessment tool, helping to identify potential envi-
ronmental risk factors behind the observed population 
morbidity patterns.

The proposed approach can be used by researches 
worldwide in cases in which specific sources of locally 
elevated morbidity are unclear or cannot be identified by 
traditional methods. For instance, the proposed method 

Table 1  The association between  double kernel density 
(DKD) of lung and NHL morbidity rates (cases per 100,000 
residents) and  distance to  the revealed exposure sources 
(Method—bivariate regression, distance variables—linear 
and quadratic wind-adjusted distance terms)c

Model 1: Bivariate linear model

Model 2: Bivariate quadratic model

* indicates a 0.01 two-tailed significance level
a  Regression coefficient
b  t-statistics in the parentheses
c  The models reported in the table are estimated for the distances to the “best 
performing” source locations, marked by small triangles in Fig. 4, that is, source 
locations distances to which help to improve the models’ fits most significantly 
(see text for explanations)

Variables Model 1 Model 2
Ba and (tb) Ba and (tb)

A. Lung cancer

 (Constant) 13.935 (58.947*) 1.131 (7.965*)

 Distance −5.500E−0.40 
(−19.350*)

0.002 (4.364*)

 Distance2 – −1.115E−07 (−4.152*)

 No. of reference 
points

1000 1000

 R2 0.286 0.301

 R
2
adjusted

0.285 0.299

 F 374.419* 133.819*

B. NHL cancer

 (Constant) 4.656 (17.237*) −3.697 (−5.219*)

 Distance 3.380E−04 (8.409*) 0.003 (13.916*)

 Distance2 – −2.189E−07 
(−12.791*)

 No. of reference 
points

1000 1000

 R2 0.070 0.205

 R
2
adjusted

0.069 0.204

 F 70.714* 120.722*

Table 2  The association between  double kernel den-
sity (DKD) of  lung and  NHL morbidity cancer rates (cases 
per  100,000) and  distance to  the revealed exposure 
sources (Method—multivariate regression, distance varia-
bles—linear and quadratic wind-adjusted distance terms)c

Model 3: Multivariate linear model

Model 4: Multivariate quadratic model
a  Regression coefficient
b  t-statistics in the parentheses
c  The models reported in the table are estimated for the distances to the “best 
performing” source locations, marked by small triangles in Fig. 4, that is, source 
locations distances to which help to improve the models’ fits most significantly 
(see text for explanations)
d  The models are controlled for distance to the nearest main road (m), elevation 
above the sea level (m), percent of Jewish population in the SCA, SCA Socio-
economic status, distance to the sea (m), manufacturing employment (% of 
total population of SCA), NOx (ppb), PM 2.5 (ppb), total population over 65 
(%),smoking rate in the SCA (%) and distance to the nearest main road (m)
e  F-test of R2-change compared to model without hazard source distances (i.e., 
Models 3A or 3B, respectively)

Variables Model 3d Model 4d

Ba and (tb) Ba and (tb)

A. Lung cancer

 (Constant) 6.661 (2.591*) −12.629 (−3.959*)

 Distance −5.159E−04 (−7.470*) 0.003 (8.235*)

 Distance2 – −2.620E−07 (−8.159*)

 N of reference 
points

1000 1000

 R2 0.393 0.458

 R
2
adjusted

0.386 0.450

 ΔR2 – 0.065

 F changee – 36.658*

B. NHL cancer

 (Constant) 9.119 (5.231*) −9.144 (−4.388*)

 Distance −2.862E−04 (−5.991*) 0.003 (13.359*)

 Distance2 – −2.415E−07 (−12.791*)

 N of reference 
points

1000 1000

 R2 0.242 0.369

 R
2
adjusted

0.234 0.361

 ΔR2 – 0.127

 F changee – 92.855*
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can be used in empirical studies in which available epi-
demiological data can help to map the existing morbid-
ity patterns, and then to identify potential sources of 
exposure to which the observed morbidity patterns are 
related. However, future studies will be needed to extend 
the theoretical justification of the proposed approach, 
and to determine its applicability to other urban areas 
and to other health outcomes.
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Appendix 1
See Table 4.

Table 3  The association between double kernel density (DKD) of lung and NHL morbidity rates (cases per 100,000 resi-
dents) and distance to the revealed exposure sources (Method—multivariate regression, distance variables—quadratic 
wind-adjusted distance terms; interaction terms added)c

See comments to Table 2

Model 5: Multivariate quadratic model with the Side of Mountain Carmel vs. elevation above the sea level interaction term

Model 6: Multivariate quadratic model with the Side of Mountain Carmel vs. Distance to the identified hotspot interaction term

Model 7: Multivariate quadratic model with both interaction terms added

Variables Model 5 Model 6 Model 7
Ba and (tb) Ba and (tb) Ba and (tb)

A. Lung cancer

 (Constant) −15.663 (−7.937*) −15.125 (−4.832*) −15.791 (−4.948*)

 Distance 0.004 (8.591*) 0.004 (9.314*) 0.004 (8.109*)

 Distance2 −2.689E−07 (−8.258*) −2.945E−07 (−9.067*) −2.715E−07 (−7.587*)

 No. of reference points 1000 1000 1000

 R2 0.478 0.480 0.480

 R
2
adjusted

0.470 0.471 0.472

 F 56.308* 56.582* 56.790*

B. NHL cancer

 (Constant) −9.890 (−4.709*) −9.233 (−4.402*) −10.001 (−4736*)

 Distance 0.003 (13.563*) 0.003 (13.119*) 0.003 (12.436*)

 Distance2 −2.438E−07 (−12.930*) −2.457 (−11.995*) −2.486E−07 (−11.079*)

 No. of reference points 1000 1000 1000

 R2 0.373 0.374 0.374

 R
2
adjusted

0.364 0.364 0.364

 F 39.311* 39.288* 36.704*

http://dx.doi.org/10.1186/s12942-017-0078-8
http://dx.doi.org/10.1186/s12942-017-0078-8
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Appendix 2: Wind weighted transformation 
of distances
Adjustments for wind frequency and directions were 
implemented in a number of studies dealing with the 
measurements of directional concentrations of urban air 
pollutants (see inter alia, [48, 49, 71, 72]). The empirical 
literature reports several approaches to distance transfor-
mation, based on the seasonal analysis of data [48] or on 
the amount of precipitation, solar radiation, maximum 
and minimum temperatures [49] and average wind speed 
[71].

For the purpose of wind adjustment, we used the wind 
frequency rose of the study area, plotted at a one-degree 
angular resolution and showing the average annual dis-
tribution of wind frequencies for each one-degree angle. 
Since the probability of wind from point j to point i (wji) 
was assumed to be random, we used the probability den-
sity function (PDF) instead of a fixed distribution func-
tion. PDF describes the relative likelihood for the random 
variable, e.g., wind frequency to take on a given value 
(wji):

where wji is annual wind frequency from point j to point 
i, wj  - average annual wind frequency from point j, n - is a 
number of i points, �j > 0 is the parameter of the distribu-
tion, also known as the rate parameter.

Next, distances between j and i (distji) were adjusted for 
wind frequency and direction as follows:

(7)

PDFw
(
wji, �j

)
= �j · e

−�j ·Wji , ∀Wji ∈ (0, 1),

�j =
1

wji
, for wj =

1

n

n∑

i=1

wji.

(8)d̃istji = T
(
distji

∣∣Wji

)
= distji · PDF

(
Wji, �j

)
.

According to this transformation, distances between 
point j and i with frequent winds are reduced, while dis-
tances between points with infrequent winds remain 
unchanged.

Appendix 3 Description of mathematical logic 
symbols used in the manuscript
∀—symbol indicates “for all”, “for any”, “for each”;
→—symbol indicates domain and codomain of a 

function;
∈—symbol indicates affiliation to any set of elements.
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