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METHODOLOGY

GridSample: an R package to generate 
household survey primary sampling units 
(PSUs) from gridded population data
Dana R. Thomson1,2,3*, Forrest R. Stevens3,4, Nick W. Ruktanonchai2,3, Andrew J. Tatem2,3 and Marcia C. Castro5

Abstract 

Background:  Household survey data are collected by governments, international organizations, and companies to 
prioritize policies and allocate billions of dollars. Surveys are typically selected from recent census data; however, cen-
sus data are often outdated or inaccurate. This paper describes how gridded population data might instead be used 
as a sample frame, and introduces the R GridSample algorithm for selecting primary sampling units (PSU) for complex 
household surveys with gridded population data. With a gridded population dataset and geographic boundary of the 
study area, GridSample allows a two-step process to sample “seed” cells with probability proportionate to estimated 
population size, then “grows” PSUs until a minimum population is achieved in each PSU. The algorithm permits strati-
fication and oversampling of urban or rural areas. The approximately uniform size and shape of grid cells allows for 
spatial oversampling, not possible in typical surveys, possibly improving small area estimates with survey results.

Results:  We replicated the 2010 Rwanda Demographic and Health Survey (DHS) in GridSample by sampling the 
WorldPop 2010 UN-adjusted 100 m × 100 m gridded population dataset, stratifying by Rwanda’s 30 districts, and 
oversampling in urban areas. The 2010 Rwanda DHS had 79 urban PSUs, 413 rural PSUs, with an average PSU popu-
lation of 610 people. An equivalent sample in GridSample had 75 urban PSUs, 405 rural PSUs, and a median PSU 
population of 612 people. The number of PSUs differed because DHS added urban PSUs from specific districts while 
GridSample reallocated rural-to-urban PSUs across all districts.

Conclusions:  Gridded population sampling is a promising alternative to typical census-based sampling when census 
data are moderately outdated or inaccurate. Four approaches to implementation have been tried: (1) using gridded 
PSU boundaries produced by GridSample, (2) manually segmenting gridded PSU using satellite imagery, (3) non-
probability sampling (e.g. random-walk, “spin-the-pen”), and random sampling of households. Gridded population 
sampling is in its infancy, and further research is needed to assess the accuracy and feasibility of gridded population 
sampling. The GridSample R algorithm can be used to forward this research agenda.
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Background
Household survey data are collected to support prioriti-
zation of national and international issues, allocate bil-
lions of donor and government dollars, track progress 
toward major policy and program goals including the 
sustainable development goals (SDGs) [1, 2], quantify 

needs during disaster responses [3, 4], and follow con-
sumer trends [5]. Household surveys are particularly 
important in countries where census data, or other forms 
of official data such as birth and death registries, are 
outdated, incomplete or inaccurate. Selection of repre-
sentative household survey samples requires definition 
of areal units with up-to-date and accurate population 
counts—typically enumeration areas from a recent cen-
sus—creating a circular dilemma. Where census data 
are not available, outdated, or known to be unreliable, 
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individual survey teams have begun to experiment with 
gridded population sampling as an alternative [6–11], 
and organizations that fund routine surveys are begin-
ning to recommend gridded population datasets as alter-
native sample frames [12]. To date, however, no tools 
exist to support complex survey selection from gridded 
population datasets, and there is scant guidance to use 
these emerging methods. This paper (1) describes how 
gridded population datasets have been used as alterna-
tive sample frames to outdated or inaccurate census data, 
(2) introduces GridSample [13], an R package, for the 
first-stage selection of complex household surveys using 
gridded population data, and (3) summarizes options to 
implement gridded population samples in the field. R is 
an open-source free software environment created and 
maintained by hundreds of developers from many dis-
ciplines worldwide. R contains well-established, user-
created packages to perform statistical analysis and data 
visualization.

Typical household surveys
Since the 1980s, hundreds of nationally-representative 
household surveys have been conducted by governments 
in low- and middle-income countries roughly every five 
years with support from the United Nations (UN) [14, 
15], the US Government [16], and the World Bank [17] 
to monitor social, demographic, economic, and health 
indicators. The UN’s Multiple Indicator Cluster Surveys 

(MICS), the US Government’s Demographic and Health 
Surveys (DHS), and the World Bank’s Living Stand-
ard Measurement Surveys (LSMS) stratify samples by 
sub-national region, and sample roughly 10,000 house-
holds in a two-stage design that is widely used by survey 
implementers to maximize statistical power and feasibil-
ity while minimizing costs and potential biases [14–16]. 
Each of these surveys cost several hundred thousand US 
dollars and approximately two years to implement and 
publish [18].

In standard large-scale household surveys, implement-
ers sample communities first (called clusters, or primary 
sampling units—PSUs) from recent census enumeration 
areas. Then second, list all households in the sampled 
communities during a field mapping exercise before sys-
tematically sampling households [13, 15, 16] (Fig.  1). In 
the poorest settings, household enumeration is still rou-
tinely performed by hand with a pencil and paper [16], 
and satellite-enhanced enumeration has been piloted 
with printed maps of satellite imagery and with mobile 
devices [19, 20]. While these methods are widely adopted 
and considered the gold-standard, they are limited in 
their ability to generate accurate samples when census 
data frames are outdated or inaccurate [21]. At the time 
of this writing in 2017, 37 of 157 countries in Africa, 
Asia, and Central and South America has a census that is 
10 years old or more [22]. Many of these countries have 
experienced population displacement by environmental 

Fig. 1  Comparison of first stage in typical population sampling and gridded population sampling
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disasters, conflict, rapid economic change [23], official 
changes to subnational administrative area boundaries 
[24] and normal demographic shifts due to changing 
birth and death rates.

Gridded population data
Gridded population data may prove to be a viable alter-
native sample frame where census data are outdated or 
inaccurate. Three types of gridded population datasets 
are available. First, standard “top-down” gridded popula-
tion datasets are generated by models that either directly 
disaggregate administrative population counts to grid 
cells using satellite imagery (e.g. land cover and nighttime 
lights) and other spatial data (e.g. road and building loca-
tions), or non-uniformly disaggregate population counts 
using complex modeling approaches. Direct disaggrega-
tion approaches vary from simple areal weighting (e.g. 
GPWv4 [25], UNEP [26]) to use of ancillary data, such as 
urban settlement areas, to inform the location and den-
sity of disaggregated population (e.g. GRUMP [27], GHS-
Pop [28], Facebook [29]). Complex modelling techniques 
(e.g. WorldPop [30], Landscan [31], Demobase [32]) 
include such methods as aggregating input and covari-
ate data at two scales to test and tailor the model to local 
areas.

Multiple top-down global gridded population datasets 
are available to freely download including WorldPop [33], 
GPWv4 [34], GHS-POP [35], GRUMP [36], and UNEP 
[26]. Landscan [37] datasets are free to US Federal Gov-
ernment agencies and some humanitarian, education and 
commercial organizations, upon request. Gridded popu-
lation datasets are published as population estimates per 
pixel, where pixels are measured in decimal degrees and 
are thus slightly smaller and less square-shaped toward 
the earth’s poles compared to the equator. Within coun-
tries, differences in cell size are generally negligible; 
exceptions include Brazil and Russia with large north–
south coverage. WorldPop [33] additionally provides 
population per hectare estimates measured in meters, 
where each pixel is 100 m × 100 m anywhere on earth. 
Gridded population datasets have known inaccuracies, 
particularly at the sub-national and metropolitan scales 
[38, 39]. Although top-down gridded population datasets 
may be based on outdated or incorrect population totals 
from 2nd-, 3rd-, and 4th-level administrative areas, the 
distribution of population estimates within administra-
tive areas might be more representative of the population 
than enumeration area counts in the last census.

Gridded population data need not be based entirely 
on census data. Where census data are grossly outdated 
and populations are reasonably stationary, researchers 
are experimenting with a second type of gridded popu-
lation dataset using “bottom-up” methods that integrate 

population counts from small area surveys with dozens of 
spatial covariates [40]. In areas where large-scale popu-
lation movement has resulted from a major event, such 
as an earthquake or violent conflict, researchers have 
begun to work with mobile phone companies to gain 
anonymized, aggregated call detail records (CDR) and 
generate a third type of CDR-enhanced gridded popula-
tion dataset [41–43].

Gridded population sampling for household surveys
The GridSample package was recently released in R 
CRAN to generate PSUs for household surveys using 
gridded population data rather than census data [13]. 
GridSample supports typical complex sample designs 
including stratification, oversampling in urban or rural 
areas, and sampling of different numbers of households 
within urban and rural areas (Fig. 1). Because grid cells 
are approximately uniform in size and shape within a 
country, GridSample also allows for a population sample 
to be supplemented with a spatial oversample in remote 
areas which is attractive if survey results will be used to 
generate small area estimates or make interpolated sur-
faces [44] (Fig. 1).

The user needs either two or three datasets to use Grid-
Sample. First, a gridded population dataset that covers 
the study area. Gridded population data are produced in 
raster file format. A common example of a raster dataset 
is a photograph which is comprised of pixels, each with a 
single color value. Similar to a photograph, gridded pop-
ulation cells each have one estimated population value. 
Second, the user provides the boundary of the study area 
if the sample is not stratified, or boundaries of geographic 
strata if the sample is stratified. Third, the user option-
ally inputs urban/rural area boundaries if urban and 
rural domains will be represented in the survey. Bounda-
ries are commonly formatted as a shapefile, a type of file 
used to store points, lines, or polygons (areas) and their 
attributes. GridSample requires that all input datasets 
are converted to raster format using the same grid cell 
dimensions as the population dataset. Below, we provide 
a code example to convert shapefiles to rasters.

The input raster datasets, plus a number of survey 
parameters, are used to randomly sample grid cells with 
probability proportionate to estimated population (PPES) 
size in a first step, and then optionally grow PSUs around 
selected seed cells until a minimum population thresh-
old is achieved in a second step (Fig.  2). This two-step 
process ensures both that the desired number of PSUs 
per strata and domain are achieved, as well as desired 
population per PSU. GridSample outputs a shapefile of 
PSU boundaries which can be visualized in a geographic 
information system like QGIS™ or ArcGIS™, or over-
laid on satellite imagery, for example in Google Earth™. 
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The shapefile includes a record for each PSU containing 
the latitude-longitude coordinate of the PSU centroid 
(geographic center), and the PSU and strata population 
counts needed in sample weight calculations.

In the following sections, we provide a technical over-
view of the GridSample algorithm workflow; describe 
how to replicate typical complex survey designs in Grid-
Sample; describe the use of population sampling with 
a spatial oversample; and reproduce an existing DHS 
sample in GridSample. To support use of GridSample, 
we provide sample weight calculation instructions, dis-
cuss practical limitations, outline areas for future grid-
ded population survey research, and offer suggestions to 
improve the feasibility of fieldwork.

GridSample: technical workflow
GridSample is an R CRAN package with four functions—
gs_mode, gs_rasterize, gs_zonal_raster, and gs_sample—
though the user only interacts with the main function, 
gs_sample. GridSample is written for R version 3.2.3 or 
newer, and requires the following libraries: rgdal (≥1.2–
5), raster (≥2.5–8), data.table (≥1.10.4), rgeos (≥0.3–22), 
geosphere (≥1.5–5), sp (≥1.2–4), deldir (≥0.1–12), spat-
stat (≥1.49–0), and maptools (≥0.8-41). Figure 2 visual-
izes how the input datasets and parameters are processed 
in gs_sample. At a minimum, the user must specify the 
input gridded population dataset (population_ras-
ter), household sample size (cfg_hh_per_stratum), 
study area boundary (which is strata_raster, the 
boundary of a single stratum sample), population size per 
PSU (cfg_pop_per_psu), and number of households 
to be sampled per PSU (the urban value cfg_hh_per_
urban is used for all PSUs if a rural value cfg_hh_
per_rural is not specified). Further complexities can 
be added to the survey design including stratification, 
oversampling of urban/rural populations, and spatial 
sampling. GridSample first selects PSU seed cells from 
the dataset, and then optionally grows each PSU by add-
ing neighboring cells until a minimum geographic size 
(cfg_max_psu_size) or population size (cfg_pop_
per_psu) is achieved.

Before using gs_sample, the user must rasterize all 
vector data to match the grid dimensions of the grid-
ded population dataset (population_raster). 
Specifically, the user must rasterize urban/rural bound-
aries and strata boundaries. Urban/rural boundaries 
(urban_raster) may be defined from existing data 
sources such as Global Urban Footprint (GUF) [45], 
Global Rural Urban Mapping Project (GRUMP) [36], 
Global Human Settlement City Model (GHS-SMOD) 
[46], Modis 500  m urban extents [47], and European 
Space Agency Land Cover class for urban areas [48]. 
Alternatively, the user may generate urban/rural extents 

by classifying the population density layer (popu-
lation_raster), or by uploading an urban/rural 
shapefile from another source. Choice of urban/rural 
boundary is highly dependent on the nature of the sur-
vey, as definitions of urban and rural populations dif-
fer across countries and disciplines [49]. The strata 
boundary raster (strata_raster) can be derived 
from administrative area boundaries, for example Map 
Library [50] or DIVA-GIS [51], though the user might 
upload alternative strata boundaries defining, for exam-
ple, ecological regions or a program catchment area.

To select PSU seed cells, gs_sample classifies each 
cell in the gridded population dataset (popula-
tion_raster) by urban or rural location (if cfg_
sample_rururb  =  TRUE and urban_raster is 
specified), and assigns a stratum ID (strata_ras-
ter). Serpentine sampling is used such that cells are 
geographically ordered from west-to-east, north-to-
south, and sampled based on a random starting cell 
and a population increment that produces the desired 
number of PSUs within the stratum, thus facilitating 
a randomized population-weighted sample. The user 
may halt the algorithm at this point leaving just one cell 
per PSU by setting the PSU growth parameter to false 
(cfg_psu_growth = FALSE).

If the PSU growth parameter is set to true (cfg_psu_
growth = TRUE), gs_sample grows PSUs using a dilation 
filter routine to enlarge the area around each PSU seed 
cell by adding neighboring cells one cell at a time until 
the specified population per PSU parameter is met. From 
the seed cell, the dilation routine randomly chooses one 
of the nearest north, east, south, or west cells, and adds 
that population to the PSU. The routine loops over each 
PSU adding more population cells each time until each 
PSU achieves the maximum PSU area in square kilom-
eters (cfg_max_psu_size) or total population per 
PSU value (cfg_pop_per_psu). A valid sample frame 
has contiguous, non-overlapping potential PSUs. Thus, 
GridSample restricts PSUs to being contiguous and non-
overlapping by drawing voronoi polygons around each 
seed cell, defining unique areas in which each PSU can 
grow; the PSU growth routine will not add cells beyond a 
strata or voronoi polygon boundary.

After all PSUs have been selected, the algorithm gen-
erates a polygon shapefile of the PSU boundaries and 
assigns the following attributes to each PSU: PSU identi-
fier, stratum identifier, urban/rural class of the seed cell, 
PSU centroid coordinate, total/urban/rural population in 
PSU, total/urban/rural population in stratum, number of 
cells in PSU, and number of PSUs in stratum (Table  1). 
The algorithm prints to screen the value of the random 
number used to start the sampling process; this value 
can be recorded and manually entered in GridSample to 
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Fig. 2  GridSample workflow
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reproduce an existing sample. The following attributes 
are needed to calculate sample weights (presented later): 
number of selected PSUs in stratum (psus_in_stratum), 
estimated population in stratum (str_pop), and estimated 
population in PSU (psu_pop).

GridSample: clustered sampling
GridSample supports the first-stage of the typical two-
stage cluster design used by DHS, MICS, and LSMS, as 
well as several other common survey designs. The user 
defines the desired total population in each PSU (cfg_
pop_per_psu), ranging from 400 to 600 people in typi-
cal household surveys. Alternatively, GridSample can be 
used to select one-stage cluster samples by setting the 
total population per PSU (cfg_pop_per_psu) equal 
to the number of households to be sampled per PSU 
(cfg_hh_per_urban and cfg_hh_per_rural) 
multiplied by the average household size (available from 
previous surveys). Likewise, GridSample might be used 
to select a random sample of households by setting total 
population per PSU (cfg_pop_per_psu) equal to the 
average household size, and setting the number of house-
holds to be sampled per PSU (cfg_hh_per_urban 

and cfg_hh_per_rural) equal to 1. To implement a 
random sample of households, the user would addition-
ally need to use a method to identify a random dwelling 
within each PSU [8].

GridSample: stratification
Strata should be mutually exclusive geographic areas that 
cover the entire population. In typical household surveys, 
sub-national administrative areas such as provinces or dis-
tricts serve as strata, and sometimes these areas are further 
stratified into rural and urban areas. Independent samples 
will be selected from each stratum allowing strata-level 
estimates to be compared after the survey. While some 
gridded population datasets provide estimates of popula-
tion by age-group and sex [25, 52, 53] or household pov-
erty level [54, 55], GridSample does not currently include 
a mechanism for non-geographic stratification, though the 
user could, in principal, sample from gridded population 
datasets of social-demographic groups.

To generate a geographically stratified sample in 
GridSample, the user defines strata boundaries with 
strata_raster, and specifies the sample size per 
stratum with cfg_hh_per_stratum. This means that 
if the national sample size is 10,000 households from 5 
provinces, then cfg_hh_per_stratum  ==  2000. 
If the survey were additionally stratified by urban/rural 
such that there are 10,000 households sampled from 
10 strata, then strata_raster should include the 
boundaries of both urban/rural areas and provinces, and 
cfg_hh_per_stratum == 1000.

GridSample: urban/rural oversampling
If urban/rural populations are not stratified, they may 
instead be treated as sub-domains. Sub-domains repre-
sent important sub-populations for which representative 
statistics are generated from the survey data, and thus 
each sub-domain should meet the minimum stratum 
sample size requirement (cfg_hh_per_stratum). If 
either the urban or rural sub-domain does not include 
enough households, then the algorithm uses the ordered 
data frame to choose the next cell from the under-rep-
resented sub-domain (from any strata) and swaps out 
an already selected seed cell of the opposite sub-domain 
within that stratum. This process repeats until the sample 
size requirement is met in each sub-domain (cfg_hh_
per_stratum). To implement sub-domain representa-
tion in gs_sample, set cfg_sample_rururb == 1 and 
define urban/rural boundaries (urban_raster).

In practice, rural areas may be more difficult and 
expensive to visit, and thus a greater number of house-
holds might be sampled from rural PSUs than urban 
PSUs. This is why the user may specify different numbers 

Table 1  Summary of attributes in the output shapefile

Label Type Description

PSUid Integer PSU identifier

stratum Integer Stratum identifier

psu_pop Decimal Estimated population in PSU derived by 
summing the seed cell and any growth 
cells selected for PSU

psu_r_pop Decimal Estimated rural population in PSU derived 
by summing all rural cells selected for 
PSU

psu_u_pop Decimal Estimated urban population in PSU 
derived by summing all urban cells 
selected for PSU

psus_in_stratum Integer Number of PSUs in the stratum

str_pop Decimal Estimated population in stratum derived 
by summing all grid cells

str_r_pop Decimal Estimated rural population in stratum 
derived by summing all grid cells classi-
fied as rural

str_u_pop Decimal Estimated urban population in stratum 
derived by summing all grid cells classi-
fied as urban

str_cells Integer Number of total cells in the stratum

xCent Decimal Longitude of PSU seed cell centroid in 
decimal degrees

yCent Decimal Latitude of PSU seed cell centroid in 
decimal degrees

U_R Character Urban or rural label based on whether the 
seed cell was classified as urban or rural
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of households to be sampled from urban PSUs (cfg_hh_
per_urban) and rural PSUs (cfg_hh_per_rural). If 
the same number of households will be sampled from all 
PSUs, then the user only needs to specify households to 
be sampled from urban PSUs (cfg_hh_per_urban).

GridSample: spatial oversampling and other features
Oversampling in space is analogous to oversampling 
urban/rural sub-domains. To select a sample that is both 
representative of the population and of space in Grid-
Sample, set cfg_sample_spatial  ==  1 and spec-
ify the spatial scale (in square kilometers) at which the 
sample should be representative (cfg_sample_spa-
tial_scale). For example, cfg_sample_spatial_
scale == 20 means that a coarse grid system with cells 
20  km ×  20  km will be overlaid on the study area. If a 
coarse grid cell does not contain a PSU seed cell, then the 
first cell within the serpentine ordered data frame located 
inside the course cell will be selected, and another seed 
cell from the same stratum and sub-domain will be ran-
domly dropped. To overcome the issue of slightly smaller 
grid cells toward the poles, GridSample calculates the 
area of the centroid (geographic center) grid cell in the 
study area, and uses that average grid cell size to generate 
the coarse grid with the correct dimensions.

The spatial scale of the survey is ideally linked to the 
scale of planned small area estimates. For example, 
if the sample is stratified by province (level 1 adminis-
trate units), and small area estimates will later be gen-
erated for districts (level 2 administrative units), then 
the median size of districts could be used. Determining 
an appropriate spatial scale may take trial and error. If 
the country has large areas of sparse population, the 
user might need to (a) increase the size of the spatial 
scale (cfg_sample_spatial_scale), or (b) force 
the algorithm to generate more PSUs in each stratum 
by increasing the sample size per stratum (cfg_hh_
per_stratum) and/or reduce the number of house-
holds sampled in each PSU (cfg_hh_per_urban and 
cfg_hh_per_rural).
GridSample offers several additional parameters. (1) The 

user can input a 100 m × 100 m gridded population data-
set, and then aggregate cells for the sample frame (e.g. 
300  m ×  300  m sample frame cells would be generated 
by setting cfg_desired_cell_size = 3). Aggregat-
ing gridded population estimates usually increases the 
accuracy of each grid cell. Note that guidance regarding 
the ideal cell size of gridded population sample frames is 
not yet available. Other parameters include: (2) minimum 
population per cell (cfg_min_pop_per_cell) which 

will exclude grid cells from the sample frame with less 
than the specified minimum population, (3) maximum 
area of the PSU in squared kilometers (cfg_max_psu_
size) to ensure that PSUs can be feasibly enumerated 
during fieldwork, (4) random number value (cfg_ran-
dom_number) to reproduce a previous gridded population 
sample, and (5) halt the PSU growth process (cfg_psu_
growth = FALSE) discussed in detail below.

Results
We replicated the first-stage sample of the 2010 Rwanda 
DHS in GridSample. The 2010 Rwanda DHS sampled 
12,540 households from 492 PSUs comprising rural villages 
and urban neighborhoods [56]. The sample was stratified 
by Rwanda’s 30 districts, urban areas were oversampled 
by adding 12 PSUs in Kigali’s three districts, and 26 house-
holds were sampled from each urban and rural PSU. The 
average village in Rwanda had 610 occupants according to 
the sample frame of 14,837 villages/neighborhoods. To rep-
licate the 2010 Rwanda DHS in GridSample, we loaded the 
GridSample package, the raster package to prepare the data 
for GridSample, and set a working directory:

R> library(gridsample)
R> library(raster)
R> library(rgdal) #if uploading own shapefile boundaries
R> setwd("C:/User/Project")

Next, we called the Rwanda 2010 UN-adjusted grid-
ded population estimates preloaded in GridSample and 
also available at the WorldPop website [33]. This data-
set was generated from 2002 Rwanda Census block data 
and 15 spatial covariates using a random forest model 
with dasymetric redistribution as described in the 
metadata [57] and cited methods paper [30].

R> population_raster <- raster(paste0(path.package("gridsample"),
+ "/extdata/RWA_ppp_v2b_2010_UNadj.tif"))
R> plot(population_raster)

Then we loaded an unprojected shapefile of Rwan-
da’s 30 district boundaries to use as strata. This file 
is preloaded in GridSample, and can be downloaded 
from MapLibrary [50]. We rasterized strata boundaries 
using the WorldPop population raster dimensions and 
assigned strata ID (ADM2_ID) as the grid cell value 
(numeric district identifier values ranged from 1 to 
30):
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R> data(RWAshp)
R> strata_raster <- rasterize(RWAshp,population_raster,
+ field="ADM2_ID")
R> plot(strata_raster)

We considered using GUF, Modis or GRUMP to distin-
guish urban and rural areas, though we decided that these 
global models were not well suited for the largely rural 
context of Rwanda [38]. Instead, we calculated a sensible 
value to distinguish rural and urban cells directly from the 
WorldPop population raster. According to the 2012 Cen-
sus, the National Institute of Statistics in Rwanda classifies 
16% of the population as urban [58]. Thus, we identified 
the cell density value associated with 16% of the popula-
tion living in the most populous cells, and used that value 
(11 people per 100 m × 100 m cell) to create a binary ras-
ter of urban areas (value 1) and rural areas (value 0).

R> total_pop=cellStats(population_raster,stat="sum")
R> urban_pop_value = total_pop*.16 #Table 4, Rwanda 2012 census
R> pop_df = data.frame(index = 1:length(population_raster[]),pop = 
+ population_raster[])
R> pop_df = pop_df[!is.na(pop_df$pop),]
R> pop_df = pop_df[order(pop_df$pop,decreasing = T),]
R> pop_df$cumulative_pop = cumsum(pop_df$pop)
R> pop_df$urban = 0
R> pop_df$urban[which(pop_df$cumulative_pop<=urban_pop_value)] = 1
R> urban_raster <- population_raster >= 
+ ceiling(min(subset(pop_df,urban == 1)$pop)) 
R> plot(urban_raster)

Note that the value used to differentiate urban and 
rural cells was found with the following code.

R> urb_df=subset(pop_df,urban == 1)
R> ceiling(min(subset(pop_df,urban == 1)$pop)) 

The gridded population, rasterized strata, and raster-
ized urban/rural layers are visualized in Fig.  3. We used 
these input data, plus parameters for total household sam-
ple size per stratum (cfg_hh_per_stratum = 416), 
grow PSUs (cfg_psu_growth = TRUE) to a minimum 
population total per PSU (cfg_pop_per_psu = 610), 
and household sample size per urban and rural PSU (cfg_
hh_per_urban  =  26 and cfg_hh_per_rural  =  26), 
to generate a gridded population sample with the same 
design as the 2010 DHS. We prevented sampling of cells 
with very small probability of population (cfg_min_
pop_per_cell  =  0.01), limited the PSU size to 
10 km × 10 km (cfg_max_psu_size = 10), and speci-
fied the name (sample_name = ”rwanda_psu_sam-
ple”) and file location (output_path = ” C:/User/
Project/data”) to save the output shapefile.

Fig. 3  Input datasets to the Rwanda gridded population sample in 
GridSample
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R> psu_polygons=gs_sample(population_raster = population_raster,
+ strata_raster = strata_raster,
+ urban_raster = urban_raster,
+ cfg_random_number = , 
+ cfg_desired_cell_size = NA,
+ cfg_hh_per_stratum = 416,
+ cfg_hh_per_urban = 26,
+ cfg_hh_per_rural = 26,
+ cfg_min_pop_per_cell = 0.01,
+ cfg_max_psu_size = 10, 
+ cfg_pop_per_psu = 610,
+ cfg_psu_growth = TRUE,
+ cfg_sample_rururb = TRUE,
+ cfg_sample_spatial = FALSE,
+ cfg_sample_spatial_scale = ,
+ output_path=" C:/User/Project/data",
+ sample_name="rwanda_psu_sample")
R> plot(psu_polygons)

The Rwanda DHS selected 79 urban PSUs and 413 
rural PSUs from their census sample frame. Grid-
Sample produced a similar sample of 75 urban PSUs 
and 405 rural PSUs (Table 2) which followed a similar 
geographic pattern as the Rwanda DHS (Fig.  4) using 
the WorldPop sample frame. In the GridSample-gen-
erated sample [59], the mean population per PSU was 
620 people with one outlier that had 1479 people, and 
the median population was 612 people per PSU. One 
key difference between the samples was that the DHS 
added PSUs during the oversample, while GridSample 
re-distributed PSUs during the oversample, resulting 
in fewer PSUs. A second key difference was that DHS 
purposefully oversampled in the Kigali metropolitan 
area (Gasabo, Kicukiro and Nyarugenge districts) while 
GridSample oversampled from all urban areas, includ-
ing smaller cities in Gisenyi, Cyangugu, and Gikongoro 
districts.

Discussion
Gridded population sampling methods are in their 
infancy. Several approaches to first-stage sample selec-
tion and to fieldwork have been tried. These approaches 
are promising but have limitations and require further 
research. The GridSample R algorithm provides a tool to 
develop and evaluate emerging gridded population sam-
pling methods.

Modifiable Areal Unit Problem
Gridded population sampling is sensitive to the modifia-
ble areal unit problem (MAUP). A MAUP emerges when 
an arbitrary spatial unit, such as a grid cell, is used to 
summarize continuous population characteristics lead-
ing to apparently different spatial patterns of that char-
acteristic in the population simply by changing the size 
(scale) or zone (grouping) of the spatial units [60]. In 

gridded population sampling, the size and zone of grid 
cells are likely to influence sampling inclusion probabili-
ties, especially when the first-stage sample is based on 
geographically large grid cells, and/or the population is 
heterogeneously distributed. 

Four general approaches to first-stage sampling with 
gridded population data are outlined in Fig. 5. First, the 
segmentation approach involves sampling geographi-
cally large PSUs with probability proportionate to esti-
mated population size, then segmenting by smaller grid 
cells [10] or manually delineate smaller areas using sat-
ellite imagery [6–10]. GridSample can be used to select 
large cells by aggregating the input gridded popula-
tion dataset. In Myanmar, Muñoz and Langeraar (2013) 

Table 2  Number of  primary sampling units in  a Demo-
graphic and Health Survey and equivalent GridSample sur-
vey

District name Alternative name DHS GridSample

Urban Rural Urban Rural

Bugesera Bugesera 16 2 14

Burera Burera 16 1 15

Butamwa Nyarugenge 19 1 15 1

Butare Huye 3 13 3 13

Byumba Gicumbi 2 14 1 15

Cyangugu Rusizi 2 14 5 11

Gakenke Gakenke 16 16

Gasiza Nyabihu 16 1 15

Gatagara Ruhango 3 13 16

Gatsibo Gatsibo 16 16

Gikongoro Nyamagabe 1 15 3 13

Gisagara Gisagara 16 16

Gisenyi Rubavu 1 15 10 6

Gitarama Muhanga 4 12 1 15

Kamonyi Kamonyi 16 16

Kayonza Kayonza 16 16

Kibungo Ngoma 3 13 1 15

Kibuye Karongi 2 14 2 14

Kicukiro Kicukiro 20 13 3

Kigali Gasabo 11 9 8 8

Kirehe Kirehe 16 16

Nogororero Ngororero 16 16

Nyagatare Nyagatare 16 16

Nyamasheke Nyamasheke 16 16

Nyanza Nyanza 4 12 2 14

Nyaruguru Nyaruguru 16 16

Ruhengeri Musanze 2 14 3 13

Rulindo Rulindo 16 1 15

Rutsiro Rutsiro 16 16

Rwamagana Rwamagana 2 14 3 13

Total 79 413 75 405
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Fig. 4  Visual comparison of primary sampling units (PSUs) generated by the 2010 Rwanda DHS [56] and GridSample
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aggregated LandScan 1  km ×  1  km gridded population 
estimates to 3  km ×  3  km “super” cells for selection of 
the first-stage sample. Then they grouped 1 km × 1 km 
grid cells within the selected PSUs to meet a minimum 

population threshold, and then randomly sampled one 
group of cells as a secondary sampling unit (SSU) in each 
PSU. Finally, they manually segmented SSUs into dozens 
of areas with roughly equal population based on satellite 

Fig. 5  Probability sampling approaches with gridded population data
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imagery, and sampled one segment [10]. As a result, the 
sample weights were computationally straightforward 
to calculate because they followed a typical multi-stage 
sampling approach. Additionally, the final sampling units 
had sensible boundaries related to features in the real 
world, making fieldwork feasible. However, sample inclu-
sion probabilities of PSUs and SSUs were sensitive to the 
size and zone of grid cells, which could have smoothed-
out or emphasized population density depending on the 
distribution of the underlying population.

A point approach was used by Thomson and colleagues 
(2012) using LandScan 1  km  ×  1  km gridded popula-
tion data in the eastern D. R. Congo. For this survey, the 
team generated randomly located points within grid cells 
where the number of points was proportional to esti-
mated population. Then they randomly sampled points 
within strata. Finally, they manually delineated sam-
pling units around the nearest dwellings to each point 
using satellite imagery, ensuring that PSU boundaries 
were located within cell boundaries [6]. Sample weights 
were adapted to follow a typical multi-stage sampling 
approach, the final sampling unit boundaries were sen-
sible, making fieldwork feasible, and the use of points 
prevented any effect of the MAUP. However, the manual 
delineation of one sampling unit around each point was 
subject to human bias.

The third approach to gridded population sampling 
is the growth approach, uniquely available in the Grid-
Sample tool. Elsey et  al. [7] in Kathmandu, Nepal used 
an early version of GridSample to select seed cells from 
WorldPop’s 100 m × 100 m gridded population dataset, 
and grew PSUs to a minimum population size. Growing 
PSUs is likely less sensitive to the zone and scale MAUPs 
than segmenting large cells because, in the growth 
approach, the scale of the starting grid cells is closer in 
geographic and population size to the final sampling unit. 
However, the correct calculation of sampling inclusion 
probability weights for the growth approach is unclear. 
Should sample probability weights be calculated from the 
grid cell densities, or the densities of final sampling units? 
Arguments can be made for both approaches. Before dis-
cussing two potential sample weight calculations for the 
growth approach, we describe a hypothetical, but feasi-
ble, fourth approach to gridded population sampling.

Perhaps the most ideal gridded population sample 
frame would group grid cells into “sensible” potential 
PSUs of similar population size before first-stage sam-
pling. Sensible PSU boundaries would be defined in 
terms of geographic features such as roads, rivers, ridges 
or valleys that could be easily recognized and navigated 
in the field. Sensible PSUs would also group similar types 
of populations, for example, by grid cell mean poverty 
level. Generation of a sensible gridded population sample 

frame has only recently become possible as new tech-
niques are developed to estimate population characteris-
tics, such as poverty-level or disease status, in a gridded 
population format [54, 61]. The use of quadtree methods 
to divide dense population grid squares into four smaller 
cells can be viewed as a rudimentary first step toward 
development of sensible potential PSUs [62]. If a grid-
ded population sample frame of sensible potential PSUs 
existed, the survey practitioner would sample units with 
probability proportionate to estimated size, and calculate 
typical sampling inclusion probability weights.

The growth approach to gridded population sampling 
may be conceptualize of as one instance of a sensible 
frame in which only the boundaries of the sampled PSUs 
are known, and the boundaries of non-sampled potential 
PSUs exist but are not drawn. Sample weights calculated 
from the final PSU population densities are straightfor-
ward to calculate, and are provided below.

If, however, the growth approach inclusion probabilities 
need be calculated from grid cell (rather than final PSU) 
population densities, then a complex adaptive sample 
weight needs to be formulated [63]. An adaptive sample 
weight would account for the estimated population of a 
given cell, as well as the probability of being grown into a 
PSU via a neighboring cell. The probability of being grown 
into a PSU would depend on (a) the estimated populations 
of neighboring cells, (b) the parameter for PSU maximum 
geographic size, (c) the parameter for PSU minimum pop-
ulation size, and possibly (d) the location of strata bound-
aries, and (e) the location of voronoi polygon boundaries 
between seed cells in a multitude of sample instances. The 
need for such a complex formulation needs to be evalu-
ated, but is beyond the scope of this paper.

Sample weights
Below, we provide sample weight calculations for the 
growth approach to PSU selection, which is uniquely 
available in GridSample. These weights reflect inclusion 
probabilities in the final PSUs, and not of individual grid 
cells. Sample weights for the segmentation, point, and 
sensible PSU approaches have been described elsewhere 
and are summarized in Additional file  1. These sam-
ple weight formulations parallel typical survey methods, 
reflecting the probability that a household is (1) selected, 
(2) found, and (3) responded [13–16]. While the Grid-
Sample output shapefile includes values needed to calcu-
late PSU selection probabilities, the survey implementer 
must track the number of households enumerated in the 
field in each PSU, and household response rates to cor-
rectly calculate sample weights. The following formulas 
use four indices: 1…k strata, 1…i PSUs, 1…j households, 
and 1…q individuals. The household selection (base) 
weight  for the growth approach to PSU formation—the 
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probability that PSU i is selected, and then household j is 
selected—is given by:

where nk is the number of selected PSUs in stratum k, Gk is 
the estimated total population in stratum k, gik is the esti-
mated population in PSU i in stratum k, mik is the num-
ber of households sampled in PSU i and stratum k during 
fieldwork, and Mik is the number of total households enu-
merated in PSU i and stratum k during fieldwork.

If growth PSUs are manually divided and further sam-
pled, weights are calculated in the same way, except 
that the probability of being in the final sample unit wij.b 
includes bik, the proportion of households located in the 
manually-drawn segment, approximated by counting 
buildings in satellite imagery:

The household response weight—the probability that 
PSU i is found and sampled, and household j is found and 
responded—is given by:

where nk number of selected PSUs in stratum k, nk∗ is the 
number of found and sampled PSUs in stratum k, mik is 
the number of selected households in PSU i and stratum 
k, and mik∗ is the number of found and responded house-
holds in PSU i and stratum k. The individual response 
weight—the probability that PSU i is found and sampled, 
then household j is found and responds, and finally that 
individual q is present and responds—is given by:

where nk is the number of selected PSUs in stratum k, nk∗ 
is the number of found and sampled PSUs in stratum k, 
mik is the number of selected households in PSU i and 
stratum k, mik∗ is the number of found and responded 
households in PSU i and stratum k, and uijk is the number 
of eligible individuals in household j in PSU i and stra-
tum k, and uijk∗ is the number of responded individuals 
in household j in PSU i and stratum k. The household 
sample weight wij is comprised of the household selection 
weight and household response weight:

Assuming that all eligible individuals (e.g., all 
women age 15–49) will be interviewed in the selected 

(1)wij.b =

1

Pi × Pj(i)
=

Gk/gik

nk
×

Mik

mik

(2)wij.b =

Gk/gik

nk
×

Mik

mik
×

1

bik

(3)wij.r =
1

Pi.r × Pj.r(i)
=

nk

nk∗
×

mik

mik∗

(4)

wijq.r =
1

Pi.r × Pj.r(i) × Pq.r(ji)
=

nk

nk∗
×

mik

mik∗
×

uijk

uijk∗

(5)wij = wij.b × wij.r

households, the individual sample weight wijq is com-
prised of the household selection weight and individual 
response weight:

Fieldwork
Four approaches are available for survey fieldwork with 
GridSample output. These four approaches are visualized 
in Fig. 6, and described below.

Gridded PSUs
This option uses gridded PSU boundaries which have 
squared corners and no relation to geographic or 
administrative features in the real world. This approach 
was used in a two-stage cluster survey of households 
in Kathmandu, Nepal [7]. The team used OpenStreet-
Map™, a crowd sourced online map of roads, building 
locations, and other features, via an Android application 
on mobile phones to digitally map households within 
PSUs. OpenStreetMap™ enumeration was chosen over 
typical pen-and-paper mapping, in part, because half of 
their PSUs were already mapped in OpenStreetMap™. 
Households (defined as a group of people who share a 
cook pot) were fully enumerated by knocking on doors 
and talking to neighbors ensuring that lower-income 
households who shared an apartment were not under-
sampled. The team encountered, sometimes substantial, 
differences in the number of households per PSU than 
were expected from the WorldPop sample frame, so 
they planned to interview every 10th household regard-
less of PSU size to achieve a probability sample. The 
team cited geographic accuracy in field maps, feasibil-
ity of mapping in dense, complex urban environments, 
leveraging of existing data, and the ability to contrib-
ute to a crowd-sourced resource as reasons to use this 
approach [7].

We support the use of OpenStreetMap™ enumera-
tion, especially for urban settings where OpenStreet-
Map™ data are likely to exist. However, we strongly 
recommend that implementers employ a method to 
anonymize buildings added to the crowd-sourced map 
such that interviewed PSUs cannot be identified. In 
areas where buildings have already been mapped in 
OpenStreetMap™, minor edits will not reveal PSU loca-
tions. However, in areas of the map without building and 
road locations, implementers should consider mapping 
beyond the edges of the PSU boundaries so that gridded 
PSU shapes do not suggest a gridded household survey. 
Furthermore, if OpenStreetMap™ data are sparse in the 
survey region, implementers should consider enumerat-
ing a number of fake PSUs to preserve the anonymity of 
interviewed communities. Specific guidelines for Open-
StreetMap™ enumeration are not yet available.

(6)wijq = wij.b × wijq.r
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Manually‑drawn PSUs
 A second approach to implement gridded population 
samples is to manually draw PSUs around random points 
within seed cells, or to manually segment gridded sam-
pling units using detailed satellite imagery. Manually-
drawn PSUs were used in a one-stage cluster survey 
in eastern D. R. Congo [6] and a two-stage cluster sur-
vey in Myanmar [10]. A key benefit of this approach is 
that PSUs follow sensible boundaries such as rivers and 
roads, which are easily identified in both satellite images 
and in the field. Because manually-drawn PSUs are easily 
identifiable, field teams are flexible to use hand-sketched 

pen and paper maps, printed maps of satellite imagery or 
OpenStreetMap™ features, or digital maps for field navi-
gation and household enumeration.

Non‑probability samples
Random-walk and “spin-the-pen” sampling methods 
result in non-probability samples of the population and 
are thus not recommended by surveyors [64–66]. None-
theless, these and similar methods are often used in 
rapid or high-security field assessments because they are 
cheaper and faster to implement than typical two-stage 
cluster samples. Random-walk and spin-the-pen gridded 

Fig. 6  Schematic of four field implementation options for gridded population sampling
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sampling methods were used in rapid assessments in Iraq 
[8] and Myanmar [11]. In both studies, gridded popula-
tion datasets were considered to be more accurate sam-
ple frames than other available population data. Because 
random-walk and spin-the-pen methods do not lead to 
probability samples, we do not provide sample probabil-
ity weights.

Simple random sample of households
Researchers sometimes perform simple random samples 
of households in small study areas—for example, a refu-
gee camp or a single city—by digitizing dwelling point 
locations in a satellite image and sampling points at ran-
dom [67–71]. While a simple random sample of house-
holds has not been conducted using gridded population 
sampling, it would be straightforward to implement. Grid 
cells would be sampled with probability proportionate to 
estimated size, and the growth algorithm could optionally 
be switched off to generate single cell PSUs. Then a single 
dwelling would be randomly chosen within selected cells, 
either from mapping all dwellings or using a method like 
the one described by Galway and colleagues in Iraq [8]. 
In the Iraq study, the team overlaid a 10 m × 10 m mini-
grid on Google Earth™ satellite imagery within the seed 
cell, and then randomly selected one mini-grid unit. If 
the 10  m mini-grid unit covered a building, the build-
ing was selected for sampling, otherwise the process was 
repeated until the first building was randomly identified 
in the imagery. If the randomly selected building had 
multiple households or was non-residential, one nearby 
household could be randomly selected as describe by Siri 
and colleagues in Kenya [66]. A simple random sample of 
households would not require sample weights.

Limitations
Gridded population data are increasingly used as an 
alternative survey sample frame in countries where cen-
sus data are outdated or inaccurate. Gridded population 
sample frames may also be used in lieu of census data for 
surveys that need to be representative of both population 
and of space, and where PSUs of a specific population 
size are needed. Next we discuss six areas where research 
is underway, or needed, to address limitations of gridded 
population sampling.

Accuracy of gridded population sample frame
The first major concern in gridded population sampling 
is the accuracy of the underlying gridded population 
data. Gridded population sampling has been tried by 
a number of survey implementers in circumstances of 
outdated or inaccurate census data, however the accu-
racy of gridded population datasets are varied, and often 
unquantified. Accuracy of publically available top-down 

gridded population data is dependent on several model 
components: (1) accuracy of the input census data, (2) 
the geographic scale of the input census data (e.g. cen-
sus tract-level versus district-level), (3) the age, accu-
racy, and type of model covariate data, and (4) the model 
algorithm itself. The geographic scale of the output grid 
also matters for measurement of accuracy; grid cell 
estimates in a 1 km × 1 km gridded population dataset 
will almost always be more accurate than grid cells in a 
100 m × 100 m gridded population dataset. Model errors 
are difficult to estimate, and to even conceptualize, for 
gridded population datasets that rely on simple disaggre-
gation approaches, as they are essentially gridded repre-
sentations of the input census data [24]. While prediction 
errors can be calculated for gridded population datasets 
derived from complex modelling techniques, WorldPop 
is the only dataset to include errors [see, for example, 56]. 
However, it is unclear how survey implementers can use 
prediction errors to quantify or improve the accuracy of 
household survey sample frames.

Numerous studies have evaluated the accuracy of grid-
ded population estimates against ground-collected set-
tlement locations [72], against census data available at a 
finer-scale than the census data used in the model [29, 
73–76], and by comparing old and new gridded popu-
lation datasets where the new dataset uses updated or 
finer-scale population data [38]. Still this evidence is not 
sufficient to assess the accuracy of a specific top-down 
gridded population dataset. Given the number of compo-
nents that contribute to gridded population model error, 
future research should utilize simulation studies to test 
the effects of various model components on gridded pop-
ulation estimates. These studies should also reframe how 
the estimate errors are addressed (e.g. rather than ask 
“how much error is there around the estimate for each 
cell of size X?”, researchers should ask “how many cells 
need to be aggregated to achieve an error of Y?”).

Modifiable areal unit problem
Second, segmentation and growth approaches to sample 
unit selection might be subject to bias from the MAUP. 
Simulation studies should be used to quantify the effects of 
grid cell sizes and groupings on PSU selection probabilities. 
Additionally, development of geographically and socially 
sensible sample frames with gridded population data 
should be pursued. The ability to create a sensible gridded 
population sample frame is highly dependent on availability 
of fine scale, accurate environmental data and gridded esti-
mates of population social-health characteristics.

Adaptive PSU sample weights
Third, where growth approaches are used for selection 
of PSUs, further research is needed to evaluate whether 
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adaptive sample weights should be used, and if so, how 
to formulate them. These questions can be evaluated with 
statistical theory and simulation studies.

Availability of satellite imagery
Fourth, all of the approaches to gridded population sam-
pling described here are dependent on access to fine-res-
olution satellite imagery with good visibility of dwellings 
without extensive tree-cover or cloud-cover. Existing 
gridded population samples have been implemented in 
cities, camps, deserts, savannah, and deforested farm-
lands; methods for implementing gridded population 
samples have not been described for forested areas.

Concealing PSU locations in publications and crowd‑sourced 
maps
Fifth, gridded population samples that use crowd-sourced 
maps in fieldwork must guarantee anonymity of survey 
respondents and their communities. Crowd-sourced maps 
can be incredibly valuable for field navigation and house-
hold enumeration, though the technology and protocols 
to support survey activities are limited. Standard proto-
cols have not yet been established to conceal survey PSU 
locations when mapping buildings and roads in a crowd-
sourced platform such as OpenStreetMap™. Furthermore, 
we are not aware of any applications that allow survey enu-
merators to both update OpenStreetMap™ and separately 
store a confidential household listing linked to building 
locations, which interviewers would need to identify sam-
pled households. As in any survey, PSU boundaries and 
centroid point locations should not be shared publically 
to protect the anonymity of respondents and their com-
munities. PSU point locations can be published if they are 
randomly geo-displaced following methods like those used 
by MeasureDHS [77]. The MeasureDHS project publishes 
PSU centroid coordinates that are displaced up to 2  km 
in urban areas, and up to 5 km in rural areas, with one in 
every 100th rural point displaced up to 10 km.

Fieldwork feasibility
The sixth concern of gridded population sampling is 
feasibility of fieldwork. While there are multiple rea-
sons to use gridded population sampling, protocols to 
use these methods in the field need further develop-
ment. What is the enumeration protocol in a PSU that 
falls on two sides of a river where there is not a nearby 
bridge to cross? Should buildings be enumerated if they 
are intersected by the PSU boundary? Given that grid-
ded PSU boundaries do not follow sensible geographic 
or administrative boundaries, recent satellite imagery is 
almost certainly needed during enumeration. What is 
the minimum image resolution required for sampling in 
rural versus urban areas? How recent should the satellite 

imagery be? What are the tradeoffs of using digital enu-
meration methods over paper-based methods? While 
the use of smart phones or tablets to digitally enumerate 
PSUs increases the cost and skill requirements among 
enumerators, it may also reduce the time and increase 
the accuracy of enumeration compared to pen-and-paper 
methods. Multiple issues related to cost, time, accuracy, 
technology, and staff skill requirements to implement 
gridded population surveys need to be evaluated.

Conclusions
 The GridSample R package facilitates further research 
into the promising field of gridded population sampling. 
Gridded population sampling is an attractive alterna-
tive to typical sampling methods when census data are 
outdated or inaccurate. GridSample supports standard 
complex survey designs including clustered sampling, 
stratification, and oversampling in urban or rural areas. 
GridSample additionally allows users to oversample in 
space, and to specify a desired population size of sampling 
units. We show that GridSample can be used to replicate 
a DHS in Rwanda, providing evidence of a similar number 
of primary sampling units with similar population sizes 
in urban and rural areas. We also summarize four ways 
in which gridded population samples have been imple-
mented in the field, and provide sample weight calcula-
tions for GridSample output. Finally, we discuss several 
areas of current and future research into gridded popula-
tion sampling which can benefit from this tool.
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