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Abstract 

Background:  Air pollutants have been associated with various adverse health effects, including increased rates of 
hospital admissions and emergency room visits. Although numerous time-series studies and case-crossover studies 
have estimated associations between day-to-day variation in pollutant levels and mortality/morbidity records, studies 
on geographic variations in emergency department use and the spatial effects in their associations with air pollution 
exposure are rare.

Methods:  We focused on the elderly who visited emergency room for cardiovascular related disease (CVD) in 2011. 
Using spatially and temporally resolved multi-pollutant exposures, we investigated the effect of short-term exposures 
to ambient air pollution on emergency department utilization. We developed two statistical models with and without 
spatial random effects within a hierarchical Bayesian framework to capture the spatial heterogeneity and spatial auto‑
correlation remaining in emergency department utilization.

Results:  Although the cardiovascular effect of spatially homogeneous pollutants, such as PM2.5 and ozone, was 
unchanged, we found the cardiovascular effect of NO2 was pronounced after accounting for the spatially correlated 
structure in emergency department utilization. We also identified areas with high ED utilization for CVD among the 
elderly and assessed the uncertainty associated with risk estimates.

Conclusions:  We assessed the short-term effect of multi-pollutants on cardiovascular risk of the elderly and demon‑
strated the use of community multiscale air quality model-derived spatially and temporally resolved multi-pollutant 
exposures to an epidemiological study. Our results indicate that NO2 was significantly associated with the elevated ED 
utilization for CVD among the elderly.

Keywords:  Cardiovascular disease (CVD), Emergency department (ED) visits, Hierarchical Bayesian model, 
Community multiscale air quality (CMAQ), Ambient air quality, Spatial effects
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Background
Adverse health effects of air pollutants have been docu-
mented in numerous past studies, investigating the asso-
ciations between various health outcomes and exposures 
to ambient air pollution [1–4]. Some studies focused 
on the impact of long-term accumulated exposures on 
chronic health outcomes, whereas others focused on the 
acute effect of exposure by exploring the associations 

between short term changes in air pollution exposure 
and daily deaths or hospital admissions. A number of 
studies of emergency department (ED) utilization, which 
is a relatively sensitive health outcome for respiratory 
conditions and cardiovascular illnesses [5], have also 
demonstrated the effect of increased ambient particulate 
matter on acute health outcomes [4, 6, 7].

It is worth noting, however, that the majority of stud-
ies that have investigated associations between air pol-
lution exposure and emergency department visits 
were conducted using case-crossover or time-series 
designs [7–12], whereas little to no attention was given 
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to geographical variations in ED use. In our review of 
167 studies on health effects of air pollution published 
between 1999 and 2017, a total of 55 studies (33%) used 
a case-crossover approach, 106 studies (64%) used a 
variant of time-series design, and 4 studies utilized both 
study designs [13–16]. Our search was conducted in Pub-
Med and ScienceDirect databases up to November 2017 
using a combination of the following keywords: emer-
gency department/room and air pollution. Among these 
studies, spatially and temporally varying air pollution 
exposure were considered only in 14 studies and these 
following studies by Carlin et  al. [17], Zhu et  al. [18], 
Wannemuehler et al. [19], and Sarnat et al. [20] assessed 
the effect of air pollution on geographical variations of 
ED utilization.

Perhaps the popularity of these two modeling 
approaches compared to spatial models might be due to 
the well-established associations between ambient air 
pollution and respiratory outcomes [21], but also the 
limited availability of spatially and temporally resolved 
air quality data. The population-weighted spatial average 
of measurements from monitoring sites have been used 
in both time-series analysis and case-crossover stud-
ies to approximate city-wide or regional average ambi-
ent concentrations. This approach is relevant as long 
as the spatial homogeneity assumption is met, but can 
lead to increased uncertainty and potential bias in their 
estimates of health risk when the spatiotemporal het-
erogeneity of pollutants is pronounced [20]. Meanwhile, 
considerable improvements have been made in spatially 
and temporally dynamic air quality modeling efforts, 
which include community multiscale air quality (CMAQ) 
model [22] and optimal aerosol depth values retrieved 
from remote sensing [23]. CMAQ is one of the most 
widely used regional air quality modeling systems, which 
has been used to evaluate pollution control measures 
and to determine source contributions to air pollutants, 
but also to provides air pollution exposure estimation in 
epidemiological studies [24, 25]. Recently Environmental 
Protection Agency (EPA) released fine scale predictions 
of pollutant levels, which were obtained by fusing moni-
toring data with the CMAQ model outputs. Although 
these spatially and temporally resolved pollutant surface 
estimates are subject to calibration bias and uncertainties 
[26–28], there is the potential of improving the quality of 
individual and population exposure to ambient pollution. 
Meanwhile, the applications of CMAQ related air quality 
data to population-level epidemiological studies are still 
rare with a few exceptions [29, 30].

The other issue in epidemiological studies on cardiovas-
cular and respiratory effect of air pollution is that health 
associations with exposure to air pollutants are affected 

by neighborhood effects. A recent study by O’lenick et al. 
[31] reported that neighborhood-level socioeconomic 
status (SES) is a key factor that contributes to short-term 
vulnerabilities to air pollution-related respiratory mor-
bidity, such as asthma, among children (5–18 years old). 
Likewise, Winquist et al. [32] argued that this SES effect 
is generalizable based on their multi-city study. However, 
it is still questionable if their neighborhood-level SES 
effects hold for different study locations, study periods, 
or health outcomes other than respiratory disease. Given 
that the vulnerability of subgroups to CVD is more pro-
nounced than other types of diseases [33–35], it is neces-
sary to account for the effect of neighborhood-level SES 
to identify the vulnerabilities among the most susceptible 
individuals to air pollution related CVD.

From a statistical standpoint, a Poisson process model 
appears to be a natural choice to explore geographic 
variation in ED use with respect to neighborhood health 
effects. However classical Poisson regression models may 
be problematic for ED visit counts aggregated over spa-
tial units, such as zip codes. First, there might be miss-
ing or confounding variables that were not captured at 
the scale of analysis, which consequently may yield over-
dispersion problems. Second, cardiovascular effects of air 
pollution are not likely to occur along the spatial bounda-
ries of zip code units but rather smoothly change across 
boundaries of areal units. To reduce a bias in the model 
estimation and inference of cardiovascular effect of air 
pollution associated with a specific scale of analysis in 
the present study, we need a spatial model that explicitly 
address issues of spatially correlated structure in data.

In this paper, we aim to fill the gap in the literature 
by evaluating the short-term cardiovascular effect of 
ambient air pollution to the elderly, while increas-
ing our understanding of the spatio-temporal patterns 
of CVD risks. We focused on the elderly in the present 
study because CVD related mortality is the most pro-
nounced among this age group both in our preliminary 
data analysis and CVD related literature [4]. The associa-
tions between exposure to air pollution and CVD risks 
will be assessed after controlling for neighborhood char-
acteristics that potentially impact patients’ health. To 
achieve our goal, we linked ED visit records for CVD of 
individuals age 65 years and above to spatially and tem-
porally resolved multi-pollutant exposures derived from 
CMAQ models in Western New York, US, in 2011. We 
used a Bayesian hierarchical model to assess the effect 
of patients’ residential environments for physical activ-
ity and diet, as well as exposure to air pollutants on CVD 
risk, while accounting for spatial effects and uncertainty 
in the model inference.



Page 3 of 16Yoo et al. Int J Health Geogr  (2018) 17:18 

Methods
Data and study area
The study area encompasses the Buffalo-Niagara region 
within Erie and Niagara counties of western New York, 
U.S. The records of Emergency Department (ED) visits 
for cardiovascular disease (CVD) were obtained from 
Statewide Planning and Research Cooperative System 
operated by New York State Department of Health. We 
focused on the records collected between January, 1, 
2011, and December, 31, 2011. The original records con-
tain information on admission date, discharge date, date 
of birth, 5 digit zip code of residence and demographic 
information (age, gender, ethnicity, and race) of individu-
als. We used residential 5 digit zip code and the day of 
visit as the finest spatial and temporal unit, respectively, 
for subsequent statistical analyses. The records also 
include the primary and secondary international classifi-
cation of disease 9th (ICD-9) revision codes for diagno-
sis. Using the primary ICD-9 diagnosis code, we defined 
several cardiovascular disease groups. The diagnosis of 
CVD incorporates few sub-categories: hypertensive dis-
ease (401–405), ischemic heart disease (410–414), pul-
monary heart disease (415–417), other forms of heart 
disease (420–429), cerebrovascular disease (430–438), 
and atherosclerosis (440). Our grouping and selection of 
records are largely based on published studies [3, 36].

Daily particulate matter with an aerodynamic diam-
eter less than or equal to 2.5µg/m3 (PM2.5) and ozone 
(O3 , in ppb) surfaces were obtained from the Down-
scaler (DS) model (https​://www.epa.gov/air-resea​rch/
downs​caler​-model​-predi​cting​-daily​-air-pollu​tion). The 
DS model fuses output from a gridded atmospheric 
model, the community multi-scale air quality model 
(CMAQ), with point air pollution measurements from 
fixed monitoring network, and predicts spatially and 
temporally resolved air quality, such as daily concentra-
tion at U.S. census tract centroid locations. To address 
the known issues of CMAQ estimates—CMAQ calibra-
tion bias and uncertainties [26–28], the DS model used 
a spatially-varying weighted model that regresses moni-
toring data on a derived regressor obtained by smooth-
ing the entire CMAQ output with weights that vary both 
spatially and temporally. The DS model provides only 
PM2.5 and ozone, so we directly derived daily nitrogen 
dioxide (NO2 , in ppmv) levels from CMAQ model at 
12× 12 km resolution. Our research team conducted an 
extensive accuracy assessment of CMAQ model across 
western New York for 2011 [37]. To resolve the differ-
ences between the spatial unit of analysis—5 digit zip 
code units (Zips) and those at which pollutant data are 
available, we processed daily average of these multi-pol-
lutant concentrations using GIS polygon overlay, more 
specifically, using the maximum function, to estimate 

daily air quality at Zips. Daily meteorological data were 
obtained from National Center for Environmental Infor-
mation Climate Data Online system (http://www7.ncdc.
noaa.gov/CDO/cdopo​emain​.cmd?datas​etabb​v=DS350​
5&count​ryabb​v=&geore​giona​bbv=&resol​ution​=40) for 
two land-based monitoring stations within Erie/Niagara 
counties from January, 1, 2011 to December, 31, 2011. 
They include average temperature, dew point tempera-
ture, apparetus temperature, as well as relative humidity, 
wind speed and wind direction.

Socioeconomic data of the study region were obtained 
from 2010 Census and 2012 American Community 
Survey (ACS) at Zips. We summarized information 
on age- and gender-specific background population, 
and considered median household income, housing 
vacancies, education level less than high school gradu-
ate degree among adults over 18 years old, and health 
insurance coverage as proxy measures of poverty and 
economic status of each Zip. Health insurance coverage 
was quantified by calculating the percentage of popula-
tion in each Zip who does not have health insurance 
coverage based on five year estimates between 2008 and 
2012. Other SES variables were obtained from ACS five 
year estimates between 2007 and 2011. The one year gap 
between the health insurance coverage and other SES 
variables was due to the ACS data availability, as health 
coverage for the study area was published since 2012.

We also included the total number of healthcare 
facilities within Zips, which included hospitals, medi-
cal centers, federally qualified health centers, and home 
health services except nursing homes. The data from 
Department of Health and Human Services in 2012 
were exploited to generate the locational information 
of healthcare facilities. The local food environment was 
characterized by the total number of grocery stores in 
each Zip. We obtained a list of businesses from 2016 
InfoUSA (https​://www.infou​sa.com) and identified gro-
cery markets based on their business types, such as gro-
cery-retail, grocery-wholesale, and food market. Using 
the information on their geographical coordinates, we 
counted the total number of grocery markets in each Zip. 
Similarly we assume that the spatial variation of local 
environment may promote a range of elderly popula-
tions’ physical activities [33, 38] and quantified the avail-
ability of areas designated as state, county, or municipal 
parks per Zip. Specifically, we quantified the availabil-
ity of physical activity resources based on the following 
two GIS data sources—boundary of state parks and the 
tax parcels data of Erie/Niagara counties. Both of them 
were obtained from New York State GIS clearinghouse 
(https​://gis.ny.gov). We extracted parcels of county/
municipal park based on the property types of parcels, 
including public parks, playgrounds, picnic grounds, and 

https://www.epa.gov/air-research/downscaler-model-predicting-daily-air-pollution
https://www.epa.gov/air-research/downscaler-model-predicting-daily-air-pollution
http://www7.ncdc.noaa.gov/CDO/cdopoemain.cmd?datasetabbv=DS3505&countryabbv=&georegionabbv=&resolution=40
http://www7.ncdc.noaa.gov/CDO/cdopoemain.cmd?datasetabbv=DS3505&countryabbv=&georegionabbv=&resolution=40
http://www7.ncdc.noaa.gov/CDO/cdopoemain.cmd?datasetabbv=DS3505&countryabbv=&georegionabbv=&resolution=40
https://www.infousa.com
https://gis.ny.gov
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recreational facilities. For each Zip, the total areas of the 
parks was calculated and divided by the area of the Zip, 
then multiplied by a hundred to derive the percentage of 
park areas.

Ecological analysis: spatio‑temporal models
Ecological time-series is a statistical approach estab-
lished in environmental epidemiology to investigate the 
acute effect of air pollution [10]. Disease mapping has 
been used to elucidate the geographical distribution of 
underlying disease rates and to identify areas with low 
or high rates of incidences or mortality. However, the 
consideration of both spatial and temporal aspects of 
health outcomes with respect to the spatially and tem-
porally varying air pollution is relatively rare. To fully 
explore the effect of air pollution while controlling spa-
tially and temporally varying confounding factors, we 
developed a Bayesian hierarchical Poisson linear model 
for total counts of daily ED visits for CVD and used inte-
grated nested Laplace approximations [INLA, see 39] for 
estimation.

Our goal was to assess potential cardiovascular effect 
of ambient air pollution exposure on the elderly and to 
identify areas with unusually high or low ED use. Total 
count of daily ED visits for CVDs among the elderly 
per Zip based on patients’ home address was used as a 
response and denoted as Yit , i = 1, . . . 84 , t = 1, . . . , 365 . 
Given that the fraction of the population suffering from 
serious cardiac emergency on a given day is quite small, 
we assume that the count of independent events of ED 
visit that are randomly occurring in time follows the 
Poisson distribution [40]. Specifically, the observed 
daily ED visit counts Yit for CVD at a Zip was modeled 
using a Poisson likelihood as Yit ∼ Poisson(Ei�it) , where 
Ei denotes the expected counts of daily ED utilization 
from unit i and �it is the corresponding relative risk on 
day t. An expected count for Zips can be derived either 
from known national rates for CVD or from a more local 
standard population [41], but we obtained Ei from age-
specific standardized mortality ratio (SMR) using our ED 
records as Ei =

∑J
j=1 nj,ip̂j where p̂j =

∑

i Yj,it/
∑

i nj,i 
denotes the observed overall visit rate for the age-group 
category j = 1, . . . , J .

For the log-relative risk log(�it) , we identified poten-
tial risk factors of ED utilization for CVD via explora-
tory data analyses, which include a set of spatially and 
temporally resolved air pollution exposure variables 
Xk , k = 1, . . . , 3 . Our exploratory analysis indicated that 
there are considerable amounts of multicollinearity 
among weather conditions with a linear trend/a within-
year cyclical pattern and among SES variables including 
housing vacancy/education achievements and median 
household income, and we omitted variables with weak 

correlation with ED visits. The final model consisted of 
temporal variables Tl , l = 1, . . . , 12 to capture temporal 
pattern of ED utilization among the elderly, and spatial 
variables Zm,m = 1, . . . , 5 to represent socioeconomic 
conditions of patients’ residential location and their local 
environments for physical activity and diet, and is written 
as

Here, β0 is an intercept term, and β1,β2,β3 denotes the 
effect of daily NO2 , ozone, and PM2.5 exposure in Zip 
i during day t. Regarding the daily pattern of ED utili-
zation among the elderly, we found that a within-year 
cyclical pattern is present, visits vary by day of the week, 
and there appears to be an overall declining trend. Spe-
cifically, the explanatory variables included in Tl are 
following:

• • a within-year cyclical pattern, represented as two 
sine and two cosine functions with periods of 12 and 
6 months evaulated at time t;

• • a day of the week effect with 8 levels (7 days plus one 
level for holidays) at time t;

• • a linear trend;

Following Diez-Roux [34], we hypothesized that geo-
graphic variations of ED utilization are associated with 
socioeconomic status, the accessibility to healthcare 
facilities, and local environments for physical activities 
and diet. These Zip-specific covariates Zm include

• • Median household income and health insurance cov-
erage at the Zip i

• • Total number of healthcare facility, except nursing 
homes

• • Percentage of park area
• • Total number of grocery markets

The spatial random effects, denoted as Ui , are fully 
structured to accommodate spatial dependence 
through a Besag-York-Mollie [or BYM, see 42 model as 
(U1 . . .UN )

′ ∼ BYM(σ 2
1 , σ

2
2 ) , where the Zip-specific ran-

dom effects Ui are designed to capture extra-Poisson 
variability in the observed ED visit rates. These random 
effects Ui are modeled as a sum of a spatially struc-
tured component Vi (or more specifically, a first-order 
Markov random field) and a spatially independent term 
Wi . The independent term is modeled as Wi ∼ N (0, σ 2

2 ) 
thus modeling overall heterogeneity [18], while the 

(1)

log(�it) = β0 +

3
∑

k=1

βkXk ,it +

12
∑

l=1

αlTl,t +

5
∑

m=1

ηmZm,i +Ui
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spatial term is defined using a conditionally autoregres-
sive (CAR) specification as

where j ∼ i indicates that j-th Zip is a neighbour of 
region i with at least one boundary point in common. 
Following Simpson et al. [43], c is a scaling factor making 
σ 2
1  approximately equal to the marginal variance of Vi and 

penalized complexity prior distributions are assigned to 
combinations of the two variance parameters. The sum of 
the variances (square-rooted) has an exponential prior 

distribution with pr
(

√

σ 2
1 + σ 2

2 > 0.5

)

= 0.1 , a fairly 

uninformative prior which on the upper end of 0.5 will 
give log relative risks as large as 1.0 and as small as − 1.0 
with corresponding relative risks close to 3 and 1 / 3. The 
fraction of the variation due to the spatial process has a 
penalized compliexity prior with 

pr

(

σ1/

√

σ 2
1 + σ 2

2 < 0.1

)

= 0.8 , favouring a spatially 

independent model (where this fraction is zero) but 
allowing for a large degree of spatial dependence (with 
the fraction close to one) should the data warrant it. The 
BYM model was fitted using the diseasemapping package 
(v 1.4.2) in R (v 3.4.0).

As a diagnostic tool, a zero-inflated Poisson distribu-
tion was substituted for the Poisson distribution for inci-
dence counts. A large portion of the daily visit counts are 
zero, and the zero-inflated model introduces an addi-
tional parameter to induce more zeros than the Poisson 
distribution allows for. Were the Poisson model correct, 
and zeros are meerly the result of small expected counts 
for daily data at the Zip level, the estimate of the zero-
inflation parameter would be expected to be small. This 
model was implemented as the zeroinflated1 distri-
bution in INLA, with the zero-inflation parameter having 
a Beta(1,9) distribution.

Results
Descriptive statistics of data
The characteristics of ED utilization in the study area 
during 2011 are summarized in Table 1. The gender dif-
ferences in the ED visit for CVD are not substantial 
unlike the differences by age group. Individuals age over 
65 take the majority of the 2011 ED utilization (46.0 %) 
compared to their demographic composition (15.8%) 
in this region. The seasonal differences of ED utiliza-
tion are not substantial. Although the proportion of ED 
utilization in summer and winter (33.0 and 33.2%) are 
about twice large as those of spring and fall (16.7 and 

(2)[Vi|Vj , j �= i] ∼ N

(
∑

j∼i Vj

|j ∼ i|
,

cσ 2
1

|j ∼ i|

)

17.0%), the summer and winter months are defined as 
four months, whereas the spring and fall are defined as 
two months based on the seasonal variability in the study 
region. The effect of the day of week is more noticeable 
such that Tuesday and Wednesday are the lowest (12.3 
and 11.6%) and Sunday and Monday are highest (16.2 and 
15.2 %).

The spatial distribution of the ED utilization in 2011 
was examined under the consideration of the underlying 
population at risk, the spatial distribution of the elderly 
age over 65 at each Zip. The size of the elderly per Zip 
varies from 17 to 12,680 people with the mean of 2192 
and the standard deviation 2370. The spatial distribution 
of the elderly in Fig.  1 shows that the elderly resides in 
suburbs around the city of Buffalo forming a ring pat-
tern centered at the city center. The Zips with more 
than 2829 elderly residents (75th percentile) have the 
median household income between $31,383 and $80,302, 
which correspond to 0.25 quantile and 0.75 quantile of 
the regional median household income levels. The raw 
counts of daily ED visit per Zip vary from zero to three 
with an average 0.09 with a standard deviation of 0.31 

Table 1  ED utilization by age group, sex, season, and day 
of week

Patients (%) Population (%)

All ages 5798 1,135,474

Sex

Female 2997 (51.7%) 587,469 (51.7%)

Male 2801 (48.3%) 548,005 (48.3%)

Age

0–64 3136 (54.1%) 955,556 (84.2%)

65–74 983 (17.0%) 87,569 (7.7%)

75+ 1679 (29.0%) 92,349 (8.1%)

Aged over 65 2662 179,918

Sex

Female 1549 (58.2%) 106,292 (59.1%)

Male 1113 (41.8%) 73,626 (40.9%)

Season

Winter 879 (33.0%)

Spring 445 (16.7%)

Summer 885 (33.2%)

Fall 453 (17.0%)

Day of week

Sunday 431 (16.2%)

Monday 404 (15.2%)

Tuesday 339 (12.7%)

Wednesday 313 (11.8%)

Thursday 393 (14.8%)

Friday 409 (15.4%)

Saturday 373 (14.0%)
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Fig. 1  Spatial distribution of population age over 65 and ED visits for CVD
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(see Table  2). The spatial distribution of ED utilization 
was quantified by aggregating counts of ED visits per Zip 
over the year 2011 and visualized in bubble plot of Fig. 1. 
The size of bubbles is proportional to the total counts 
of cadiovascular ED visit in 2011. As expected, this pat-
tern is strongly correlated (r = 0.92) with the spatial dis-
tribution of the elderly. A few exceptions were found in 
the south and south west areas of the Erie county, where 
relatively high ED visits were observed despite their small 
population. The temporal distribution of ED utilization is 
characterized by a mean of 7.29 cases per day with the 
standard deviation 2.75. The day with the highest uti-
lization in 2011 had a total of 16 cases across the study 
region.

The distribution of the three air pollutants are sum-
marized in Table 2 and mapped in Fig. 2. Zip level daily 
NO2 ranged from 0.38 to 24.29 ppmv with a mean of 
6.26 ppmv and the standard deviation of 4.31. Similarly, 
daily PM2.5 concentrations at Zip ranged from 1.13 to 
29.22µg/m3 with a mean of 9.48µg/m3 and standard 
deviation of 4.76. Both PM2.5 and NO2 have relatively 
small variability year-round as shown in monthly time 
scale of box plots (see Fig. 2), although their spatial pat-
terns are quite different from each other. High con-
centrations of NO2 are centered at the city of Buffalo 
where high traffic volume exists, while PM2.5 is high at 
the north west of the study area including Tonawanda 
in which a violation of the Clear Air Act by Tonawanda 
Coke Corporation was reported [44, 45]. Daily ozone 
concentration shows a cyclical pattern—high in summer 
months with a peak in July and low in cold months with 
the mean and standard deviation 39.63 ppm and 10.81, 
respectively, and a wider range of lowest value 13.77 and 
maximum 87.21 ppb. This seasonal variability is observed 
in both PM2.5 and ozone, but is slightly different as 
ozone is lower in both spring and winter whereas the 
PM2.5 is lowest in spring and fall. The spatial pattern of 
ozone is quite different from PM2.5 and NO2 , as the high 
concentration of ozone is found in east side of the study 
area and lowest at the city of Buffalo (see Fig. 2).

Spatio‑temporal ecological models
To allow a proper assessment of the spatio-temporal eco-
logical model, we began fitting a Poisson generalized lin-
ear model (GLM) with the full set of covariates used for 
the spatio-temporal random effect model in Eq. (1). The 
model fits are summarized in Table 3.

Compared to the ED utilization on Mondays, a low 
utilization of emergency department visits for CVD was 
observed on both weekend and holidays with statisti-
cal significance. A cyclical term for sine 12 was also sig-
nificant. Figure 3 shows the estimated seasonal effect for 
both the Poisson GLM and the spatial random effects 
model. The estimated coefficients for the sine and cosine 
functions in Table  3 determine these seasonal effect. 
Both models agree that the period of peak ED use is from 
September to November, with February to June being the 
time of year with the fewest ED visits.

Among the spatial covariates associated with socioec-
onomic status, both the median household income and 
the total number of healthcare facilities located in each 
Zip have statistically significant associations with ED 
utilization. Strong and negative association with median 
household income corroborates the previous finding that 
high ED utilization pattern is an indicator of poor eco-
nomic status at community level [46], meanwhile a small 
but positive association with healthcare facilities might 
be associated with the fact that our study is purely based 
on the elderly who prefer to reside near healthcare facili-
ties. In terms of neighborhood environments for physical 
activities, we did not find the percentage of green space 
in each Zip being significant at 95% credible intervals. 
The number of grocery stores in each Zip was negatively 
associated with the high ED use as one would expect. In 
the Poisson GLM, none of the three air pollutants were 
significant. For a purpose of model validation, we exam-
ined the residuals of the Poisson GLM for the possible 
presence of autocorrelation in space and time. First we 
computed the temporal autocorrelation function of daily 
residuals aggregated over the entire study area and found 
no significant temporal auto-correlation remaining in the 

Table 2  Spatio-temporal distribution of cardiovascular ED visits and air pollutants

Mean ± SD Min. 1st Q. Median 3rd Q. Max.

ED visits

Daily counts per zip 0.09 ± 0.31 0.00 0.00 0.00 0.00 3.00

Total counts per zip 31.69 ± 32.39 0.00 7.75 22.50 45.75 153.00

Total counts per day 7.29 ± 2.75 0.00 5.00 7.00 9.00 16.00

Air pollutants

NO2 (ppmv) 6.26 ± 4.31 0.38 2.87 5.15 8.59 24.29

PM2.5 ( µg/m3) 9.48 ± 4.76 1.13 5.88 8.60 12.00 29.22

Ozone (ppb) 39.63 ± 10.81 13.77 31.87 38.65 45.44 87.21
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Poisson GLM. On the other hand, Moran’s I index [47], 
a summary statistic widely used to evaluate the presence 
of spatial autocorrelation, was 0.381 with the p-value of 
0.0001. This result suggested that there is considerable 
spatial autocorrelation in the residuals and an inclusion 
of a spatial correlation structure in the model will be 
appropriate.

For the spatial random effect model in Eq. (1), the 
model coefficient estimates are similar to the Poisson 
GLM for the temporal covariates but not for neighbor-
hood health effects, including daily exposure to air pol-
lutants. The positive associations observed in Poisson 
GLM between the neighborhood level accessibility to 
healthcare facilities/the percentage of residents without 
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1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12

0

25

50

75

Month
Fig. 2  Spatial and temporal variability of ambient pollutant concentrations
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health insurance coverage and high ED use are no longer 
significant, but the positive effect of NO2 exposure 
became significant after accounting for the spatial corre-
lation in ED utilization at Zips. An increase of 10 unit of 

NO2 exposure is associated with an increase of 15.00 % 
in the relative risk of ED utilizations for CVD among the 
elderly according to the Bayesian hierarchical model.

The estimate of the spatially-structured contribution to 
the Zip-level variation in ED use, shown as σ̂1/

√

σ̂ 2
1 + σ̂ 2

2  

in Table 3, suggests that non-trivial spatial patterns exist 
in ED utilizations. The moderately large estimate of 0.76 
and the very large upper 97.5% quantile of 0.98 indicate 
the spatial model should be trusted over the Poisson 
GLM. The latter ignores all this spatially structured ran-
dom error, which is likely to result in incorrect (nar-
rower) estimates of uncertainty intervals of parameters 
that we are interested in, such as NO2.

The zero-inflated model produced estimates nearly 
identical to those of the Poisson model (results appear 
in the Appendix), with the zero-inflation parameter hav-
ing a posterior mean of 0.04. This suggests the Poisson 

Table 3  Fitted relative risk for the parameters of interests via Poisson regression and spatial random effect model

The significance of italics was determined based on the 95% credible intervals for the fixed effects (known risk factors)

Poisson regression model Spatial random effect model

Mean 0.025Q 0.975Q SD Mean 0.025Q 0.975Q SD

(Intercept) 1.16 1.04 1.29 1.06 1.19 1.06 1.35 1.06

sin12 0.89 0.80 0.99 1.05 0.92 0.83 1.02 1.06

cos12 1.02 0.95 1.09 1.04 1.00 0.93 1.07 1.04

sin6 0.99 0.92 1.07 1.04 0.99 0.92 1.06 1.04

cos6 0.98 0.92 1.03 1.03 0.97 0.91 1.02 1.03

Tuesday 1.00 0.86 1.15 1.07 0.99 0.86 1.14 1.07

Wednesday 0.90 0.78 1.04 1.08 0.91 0.79 1.05 1.08

Thursday 0.97 0.84 1.12 1.08 0.97 0.84 1.12 1.08

Friday 1.05 0.91 1.21 1.07 1.06 0.92 1.21 1.07

Saturday 0.80 0.69 0.93 1.08 0.82 0.71 0.96 1.08

Sunday 0.76 0.65 0.88 1.08 0.79 0.68 0.92 1.08

Holidays 0.68 0.49 0.93 1.18 0.71 0.51 0.98 1.18

Day 0.77 0.58 1.01 1.15 0.78 0.59 1.04 1.15

Median Income 0.88 0.81 0.95 1.04 0.80 0.70 0.92 1.07

% No-insurance 1.13 1.03 1.24 1.05 1.00 0.86 1.16 1.08

No. Health Fac. 1.04 1.01 1.07 1.01 1.05 0.98 1.12 1.03

% Green space 0.99 0.94 1.04 1.03 1.01 0.92 1.12 1.05

Grocery stores 0.94 0.90 0.99 1.02 0.97 0.88 1.06 1.05

NO2 0.93 0.83 1.04 1.06 1.15 1.01 1.30 1.06

PM2.5 1.00 0.95 1.05 1.03 1.00 0.95 1.06 1.03

O3 0.97 0.87 1.07 1.05 0.92 0.83 1.02 1.06

Non-spatial 1.40 1.29 1.55
√

σ 2
1 + σ 2

2

Spatial 2.14 1.40 2.66 1.19

σ1/

√

σ 2
1 + σ 2

2

DIC 16427.89 16264.55
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Fig. 3  Estimated seasonal effect for Poisson regression (straight line) 
and spatial (dashed line) models
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assumption is appropriate and there are no ’structural’ 
effect inducing excess zeros.

Mapping relative risk of cardiovascular disease
In a Bayesian hierarchical model the relative risk of a dis-
ease is estimated as a posterior distribution instead of a 
single value. However, Bayesian disease mapping analy-
sis results are typically presented as a map of a point 
estimate (usually the mean or median of the posterior 
distribution) of the relative risk for each area. To inter-
pret such maps, one needs to understand the extent to 
which the statistical model is able to smooth the risk esti-
mates to eliminate random noise while at the same time 

avoiding over-smoothing that might flatten any true vari-
ations in risk [48]. Figure 4a presents the posterior mean 
for the Zip-level random effect of relative risk estimates 
of cardiovascular disease of elderly in Erie/Niagara coun-
ties. The total number of Zips with relative risk above 
the overall average (Relative Risk > 1) was a total of 37, 
which corresponds to 44.04 %. The majority areas in the 
north and south of the study area have the high relative 
risks including one Zip in the south whose risk is above 
more than double of the region-wide overall risk. It is 
also noticeable that areas around the city of Buffalo have 
a relatively lower risk of CVD despite the considerable 

Rel.Risk (RR)
0.5 to 1.0
1.0 to 1.5
1.5 to 2.0
2.0 to 2.5
2.5 to 3.0

pr[RR > 1]
0.0 to 0.2
0.2 to 0.4
0.4 to 0.6
0.6 to 0.8
0.8 to 1.0

Fig. 4  Posterior mean E[exp(U)|Y] and risk-exceedance probabilities pr[exp(U) > 1|Y] of the spatial random effects. The white thick line denotes 
the Zips with significant relative risk according to 95% credible intervals
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number of elderly residents as shown in the background 
map of Fig. 1.

To assess the uncertainty associated with the point 
estimate (posterior mean) of relative risk, we followed 
Richardson et al. [48] and Blangiardo and Cameletti [49] 
and mapped the likelihood of excessive risk based on the 
posterior probability (termed as “risk-exceedence proba-
bilities”). That is, the probability that the relative risks (or 
spatial random effects) are greater than the region-wide 
risk, i.e., p{exp(Ui) > 1|(y1, . . . , yN )} , is visualized in 
Fig. 4b. The risk-exceedence probabilities associated with 
the 37 areas whose Relative Risk > 1 ranged between 0.82 
and 1.00 with mean and standard deviation of 0.97 and 
0.05, respectively. These high risk-exceedence probabili-
ties imply that the uncertainty associated with the rela-
tive risk estimates of these Zips are quite small. We also 
identified Zips with significant relative risks based on 
the 95 % credible intervals of relative risk estimates. The 
results are shown in Fig. 4b using extra thick border lines. 
The results indicated that a total of 9 Zips with statistical 
significance relative risk all also had high risk-exceedence 
probabilities.

Discussion
We explored the spatio-temporal variability of ED uti-
lizations for CVD in relation to the spatial variation of 
daily exposure to air pollutants, such as NO2 , PM2.5 and 
ozone, at Zips. Our study advanced previous findings in 
western New York [50–52] in that we assessed the asso-
ciation between air pollution and ED utilization using 
spatially and temporally resolved air pollution expo-
sure derived from the state-of-art atmospheric models 
(CMAQ). In a closely related study Castner et  al. [52] 
assessed the short-term health effect of daily concentra-
tions of multi-pollutants, including Carbon monoxide 
(CO), NO2 , PM2.5, and ozone, using a region-wide ambi-
ent air quality based on measurements obtained from a 
small number of monitors (two to five depending on the 
pollutant types). We argue that such approach may be 
appropriate for pollutants with limited spatial and tem-
poral heterogeneity, but is problematic for certain pollut-
ants, such as NO2 or CO, which exhibit significant spatial 
heterogeneity [53]. Castner et  al. [52] found no signifi-
cant associations between ED asthma utilization and air 
pollution, but a positive and significant effect of NO2 on 
ED utilization among the elderly for CVD was found in 
the present study. This difference might be due to that 
we have examined only one year (2011) instead of multi-
year data (2007–2012), or the focus on different health 
outcomes, specifically, CVD rather than asthma. How-
ever, it is also possible that the explicit consideration of 
geographic variations of ED utilization and the spatially 
heterogeneity of air pollutant concentrations played a 

crucial role in revealing the CVD effects of NO2 among 
the elderly.

To properly assess the cardiovascular effect of pol-
lutants, we fitted two models with and without spatial 
random effects. Both models indicated that community 
level socioeconomic status is a determinant of ED utili-
zation for CVD. The Poisson GLM also suggested that 
the associations with known spatial risk factors, such as 
the accessibility to healthcare facilities and the reduced 
access to healthy food options in Zips, were significant 
in addition to the temporal trend. Our findings on these 
significant temporal covariates concur with the existing 
literature [54–56] including the recent work by Castner 
et al. [51] that the day of week is the most influential pre-
dictor of ED utilization. As argued by Wargon et al. [56], 
the Monday effect appears to be a common driver that 
increases adult ED utilization across different study areas 
and study periods. This effect might be attributed to the 
return of patients from a weekend absence or return of 
primary care practitioners to their office and sending 
their patients to ED.

We found the spatial random effect model was more 
effective to investigate the spatial pattern of ED uti-
lizations of the elderly in the study area than a Poisson 
GLM from the following reasons. Both the Moran’s I 
index of Poisson GLM and the conditional autoregres-
sive specification parameter estimate from the BYM 
model suggested that there was a statistically significant 
autocorrelation in the residuals of Poisson GLM. We 
suspect that the presence of spatial autocorrelation is a 
natural outcome of using aggregated data—both for ED 
utilization and neighborhood-level covariates. However, 
the presence of spatial heterogeneity and autocorrela-
tion might be associated with the measures of residential 
environments for physical activity, diet, and air quality in 
our study. We used Zip as a unit of analysis and summa-
rized other covariates, including exposure to air quality 
and residential environments for green space and healthy 
food access, within the unit, but other spatial scales 
might have been more relevant to properly capture geo-
graphic variations of covariates. The literature on spatial 
statistics [41, Chap. 4 and 5] warns that the spatial scale 
or unit of analysis may induce the spatial heterogeneity 
and/or autocorrelation, as unmeasured covariates do. 
After accounting for the spatially correlated structure, we 
found that the neighborhood level exposure to NO2 was 
positively associated with the risk of CVD, but several 
spatial risk factors, such as the percentage of people with-
out health insurance, the number of healthcare facilities, 
and the number of grocery stores, were no longer signif-
icant in the spatial random effect model. One may sus-
pect these changes are due to correlations between NO2 
concentration and spatial risk factors or the population 
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at risk considered in our study. However, Fig. 5 indicated 
that the correlation between NO2 and spatial risk factors, 
including the number of healthcare facilities at Zips, was 
low in the range of − 0.27 and 0.14 except the accessibil-
ity to grocery stores (0.45). Meanwhile, the strong nega-
tive correlation between median income and risk factors 
(up to − 0.57 with no health insurance coverage) and the 
noticeable changes in the effect median income from 
− 0.13 in Poisson GLM to − 0.22 in the spatial random 
effect model might affect the results. In addition, the tar-
get population considered in this study was elderly whose 
health insurance is covered by Medicare.

Mapping the area-specific random effects for CVD 
of the elderly suggests that the CVD risk is spatially 

heterogeneous even after we accounted for the geo-
graphic variation of the spatial and temporal risk fac-
tors. Interestingly the areas with high CVD risk above 
the region-wide risk (Relative Risk > 1 ) are concentrated 
in north and south of the study region with one Zip of 
the highest risk 2.92 (almost three times higher than 
the overall ED utilization for CVD) in the south border. 
This result is rather surprising because the raw ED visit 
counts in Fig.  1 show high ED utilization around the 
first ring around the city of Buffalo and small ED visits 
at the outer edges where the elderly is sparse. After tak-
ing into account demographic characteristics and risk 
factors together, the north and south side of the study 
regions were identified as having high ED utilization for 
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CVD among the elderly. To fully understand the outputs 
from the Bayesian hierarchical model, we also visualized 
the uncertainty associated with relative risk estimates as 
shown in Fig. 4b. Based on this uncertainty assessment, 
we concluded that our identification of Zips with high 
cariodvascular risk are almost certain. Our study is not 
free of limitations and a number of issues still remain 
unresolved. First, potential errors in CMAQ-based air 
pollution exposure estimates have not been explicitly dis-
cussed in our study. Our decision is based on the fact that 
many studies including those sponsored by EPA (https​://
www.epa.gov/hesc/rsig-relat​ed-downl​oadab​le-data-files​
) and the Centers for Disease Control and Prevention 
(https​://ephtr​ackin​g.cdc.gov/DataE​xplor​er/#/) have used 
spatially fused air quality surface in their regulation and 
decision making processes, but also our team’s recent 
study was directly related with the sensitivity assessment 
of CMAQ outputs and calibration [37]. We are confident 
that the quality of our CMAQ modeling outputs is suf-
ficient to be used in epidemiological studies. Second, 
the present study related residential environments to 
observed cardiovascular risk, in which individual-level 
characteristics, such as existing chronic conditions, 
smoking and leisure time physical activities, were not 
statistically controlled. This problem, referred to as resid-
ual confounding, is common to ecological studies, and 
requires caution in interpreting results [34]. Third, we 
found that residential environments for diet and physical 
activities were not significant despite the growing litera-
ture supporting their associations. We suspect that the 
lack of associations might be related with measurements 
of such environments and the spatial scale at which those 
characteristics were captured. For example, aestheti-
cally pleasing environment might be more encouraging 
physical activity participation for the elderly rather than 
a mere measure of accessibility to or availability of green 
space [57]. Similarly, the spatial scale of analysis at which 
both health outcome and spatial risk factors are char-
acterized might have played an important role to deter-
mine their associations. The other critical issues lie in the 
potential multicollinearity among covariates. For exam-
ple, Zip level ozone and PM2.5 are strongly correlated as 
median household income is negatively associated with 
health insurance coverage and the percentage of green 
space. These correlated variables may induce bias in the 
estimated model coefficients. The correlation among 
multi-pollutants is of particular concern. Our explora-
tory analysis indicates that the strong positive correlation 
(0.47) exists between O 3 and PM2.5 (see Fig. 5), but the 
correlations between NO2 and the other two pollutants 

are relatively weak as − 0.14 for O 3 and 0.28 for PM2.5, 
respectively. This suggests that our finding on the effect 
of NO2 on the ED utilization for CVD is less likely to be 
affected by the collinearity problem. We also evaluated 
the collinearity problem by running three single-pollut-
ant models and compared these results with those from 
the proposed multi-pollutant models. We found that only 
NO2 was significant at 90 % credible intervals, and none 
of the individual pollutants was significant at 95% cred-
ible intervals. We concluded that the collinearity was pre-
sent among the three pollutants, but it was not influential 
in the present study. Liverani et  al. [58] have developed 
profile regression specifically to address this problem of 
severe correlation among covariates, and we are taking 
this approach in future work to investigate how multicol-
linearity among covariates affects or modifies the cardio-
vascular effect of air pollution. We will be able to better 
understand the role of neighborhood health effects using 
profile regression. Lastly we will extend our study to 
multi-year ED utilization data in future work along with 
corresponding CMAQ driven multi-pollutant profile to 
evaluate our hypothesis on the cyclical patterns of ED 
visits.

Our findings have multiple public health implications. 
We identified neighborhoods with unusually high ED uti-
lization for CVD among the elderly in the present study. 
The investigation of the factors responsible for health 
disparities in the study region and taking measures to 
improve health and healthcare delivery, increase access 
to care should be a topic for further investigation. One 
of our long-term goals is to translate our findings to local 
practice, that is, to improve population health. Our study 
parallels with on-going community efforts, such as Keys 
to Health (http://www.pophe​althw​ny.org/), to develop 
preventive strategies, such as health education or chronic 
care managements, for residents in Western New York 
whose socioeconomic status and quality of health vary 
geographically. Our findings can be further used to effec-
tively reallocate local healthcare resources to address 
population at greater risk, such as the elderly and the 
individuals with chronic diseases. We expect that dissem-
ination of information on alternative healthcare facilities 
other than ED and the improvement on the accessibility 
of the elderly to non-ED health facilities may alleviate the 
ED burden. Lastly, our result suggests that NO2 has sig-
nificant associations with cardiovascular ED utilization 
among the elderly in the study region, and more strin-
gent control for emission sources for NO2 below normal 
health guidelines is needed to protect them.

https://www.epa.gov/hesc/rsig-related-downloadable-data-files
https://www.epa.gov/hesc/rsig-related-downloadable-data-files
https://ephtracking.cdc.gov/DataExplorer/#/
http://www.pophealthwny.org/
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Conclusions
We assessed the short-term effect of exposure to NO2 
on the risk of ED visits for cadiovascular related disease 
among the elderly using a Bayesian hierarchical model. 
The model fit indicated there is a statistically significant 
association between daily exposure to NO2 and the ele-
vated ED utilizations for CVD when the spatial autocor-
relation in the observed ED visit counts is accounted for. 
The results also indicated that there are areas with unu-
sually high ED utilization for CVD compared to region-
wide overall use of ED with little uncertainty. While our 
findings have the potential to be useful to improve our 
understanding of both the CVD risk among the elderly 
in the western New York and spatial disparity in ED 
utilization for CVD, further investigation is warranted 
to explore the multidimensional aspect of associations 
between air pollution exposure and ED visits.

Author’s contributions
EHY developed the study design. EHY and PB conducted the data analysis. 
EHY and YSE provided input on spatial analysis. EHY and PB wrote the manu‑
script. All authors read and approved the final manuscript.

Author details
1 Department of Geography, University at Buffalo, Buffalo, NY, USA. 2 Depart‑
ment of Statistical Sciences, University of Toronto, Toronto, Canada. 

Acknowledgements
We would like to thank to IT supports from the college of Arts and the Center 
for Computational Science atthe University at Buffalo. We also appreciate the 
support provided by the Center for Computational Research and the Research 
and Education in Energy, Environment and Water (RENEW) seed projectfund‑
ing at the University at Buffalo and the University of Toronto. We are grateful 
for helpful comments from Dr. Castner and Dr. Roberts, and Xiangyu Jiang’s 
assistance in producing and sharing the CMAQ model outputs on the manu‑
script. The opinions expressed herein are those of the authors and do not 
necessarily reflect the views of the University at Buffalo.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
The subset of datasets used and analysed during the present study are avail‑
able from the corresponding author on reasonable request. The software used 
in statistical analyses are freely available.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Our study was approved by the Institutional Review Board at the State Univer‑
sity of New York at Buffalo.

Appendix
The ED utilization data have more zeros than expected, 
based on the Poisson distribution. To account for the 
extra zero in daily ED uses we developed a zero-inflated 
Poisson regression model and the results are summarized 
in Table 4. The model fit is nearly identical to the spatio-
temporal model in Table 3, which indicated that the spa-
tio-temporal Poisson model is appropriate for the data.
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