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Abstract 

Background: Large geographical variations in the intensity of the HIV epidemic in sub-Saharan Africa call for geo-
graphically targeted resource allocation where burdens are greatest. However, data available for mapping the geo-
graphic variability of HIV prevalence and detecting HIV ‘hotspots’ is scarce, and population-based surveillance data are 
not always available. Here, we evaluated the viability of using clinic-based HIV prevalence data to measure the spatial 
variability of HIV in South Africa and Tanzania.

Methods: Population-based and clinic-based HIV data from a small HIV hyper-endemic rural community in South 
Africa as well as for the country of Tanzania were used to map smoothed HIV prevalence using kernel interpola-
tion techniques. Spatial variables were included in clinic-based models using co-kriging methods to assess whether 
cofactors improve clinic-based spatial HIV prevalence predictions. Clinic- and population-based smoothed prevalence 
maps were compared using partial rank correlation coefficients and residual local indicators of spatial autocorrelation.

Results: Routinely-collected clinic-based data captured most of the geographical heterogeneity described by 
population-based data but failed to detect some pockets of high prevalence. Analyses indicated that clinic-based 
data could accurately predict the spatial location of so-called HIV ‘hotspots’ in > 50% of the high HIV burden areas.

Conclusion: Clinic-based data can be used to accurately map the broad spatial structure of HIV prevalence and to 
identify most of the areas where the burden of the infection is concentrated (HIV ‘hotspots’). Where population-based 
data are not available, HIV data collected from health facilities may provide a second-best option to generate valid 
spatial prevalence estimates for geographical targeting and resource allocation.
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Background
Human immunodeficiency virus (HIV) prevalence in 
sub-Saharan Africa (SSA) is characterized by large geo-
graphical variation [1, 2]. The overall HIV epidemic has 
been shown to be concentrated across clustered micro-
epidemics of different geographical scales [3–6]. This 
evidence has been aligned with the Joint United Nations 
Programme on HIV/AIDS (UNAIDS) concept “know 
your epidemic, know your response” for the identification 

of geographical populations at higher risk and burden 
of HIV [4]. Previous studies have explored the impact 
of focusing resources and control interventions using a 
spatially-targeted allocation strategy [7–9]. Results from 
these studies have supported this strategy and shown 
that spatial targeting of interventions can substantially 
improve the efficiency of resource allocation, compared 
to a homogeneous distribution strategy [8, 10–12]. Based 
on this evidence, programs such as The United States 
President’s Emergency Plan for AIDS Relief (PEPFAR) 
and UNAIDS Fast-Track strategy have gradually shifted 
its strategy towards optimization of resource allocation 
including geographically relevant data [13, 14].
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The implementation of spatially-targeted intervention 
strategies faces numerous challenges. Population-based 
spatial data are scarce and gathering spatial HIV data for 
identifying areas of high burden of the infection can be 
costly to implement in resource-limited settings. Some 
international agencies such as USAID’s Demographic 
and Health Survey (DHS) collect nationally representa-
tive population-based epidemiologic data from resource 
limited settings [1], but the surveys are not routinely 
conducted, and spatial data are not available for several 
countries where the surveys are implemented. Other sur-
veillance systems such as the Africa Centre Demographic 
Information System (ACDIS), or the Centre for the AIDS 
Programme of Research in South Africa (CAPRISA) also 
include spatial information, but they are conducted in 
selected micro-geographical areas, limiting the generaliz-
ability of their findings to other settings or to larger geo-
graphical scales.

Alternatively, there is a wealth of clinic-based data col-
lected from different healthcare facilities that conduct 
routine HIV testing and other HIV services. The feasi-
bility of using such sources of data to explore the spatial 
structure of the HIV epidemic in a given setting, how-
ever, is unknown. Against this background, we address 
the following question: can routinely collected and read-
ily available HIV testing data, such as those collected 
from healthcare facilities, be used to accurately map the 
broad spatial structure of the HIV epidemic? To assess 
whether clinic-based HIV data accurately capture the 
spatial structure of HIV prevalence and to identify the 
so-called ‘hotspots’ of infection, we conducted a series of 
spatial statistical analyses at two different geographical 
scales (national and local level), thereby offering a poten-
tially rapid and inexpensive approach to understanding 
the spatial structure of HIV epidemics across differently 
geographic scales.

Methods
For comparison, we conducted the analysis using data 
from two different geographical scales, local and national 
scale.

Data sources: South Africa (local level)
Population-based local level data come from one of the 
most comprehensive demographic surveillance sys-
tems in Africa: the ACDIS [5, 15, 16], which is located 
in Hlabisa subdistrict, one of the five subdistricts in the 
rural district of Umkhanyakude in northern KwaZulu-
Natal, South Africa (Additional file 1: Figure S1 A). This 
population-based surveillance system has routinely col-
lected socio-demographic, behavioral and epidemio-
logical information on a population of approximately 
90,000 participants within a circumscribed geographic 

area (438 km2) for over a decade (Additional file 1: Fig-
ure S1 A). Along with the ACDIS is a population-based 
HIV surveillance and sexual behavior survey which takes 
place annually. We included the population-based HIV 
surveillance conducted in 2014 in our analysis. A total of 
5174 homesteads (georeferenced to < 2 m) were included 
in the survey (Additional file  1: Figure S2 A). The esti-
mated HIV prevalence using the in the population-based 
survey data (pHIV) at a sample location i was defined to 
be pHIVi = HHIVi/Ni, where HHIVi denotes the number of 
sampled people from location i who were HIV positive 
and Ni denotes the total number of sampled individuals 
at location i.

Data sources for the clinic-based data for this study 
area come from the district health information sys-
tem (DHIS). Antenatal clinic data from DHIS collected 
in 2014 from 10 healthcare facilities located in the area 
where the population-based surveillance is conducted 
were included in the analysis (Additional file  1: Figure 
S2 B). The antenatal healthcare facility data are collected 
among pregnant women attending the healthcare facili-
ties. These data have provided invaluable information for 
tracking HIV prevalence and trends in most countries 
with generalized HIV epidemics [17]. The estimated HIV 
prevalence using the healthcare facility data (cHIV) at 
a healthcare facility j was defined to be cHIVj = fHIVj/Nj, 
where fHIVj denotes the number of pregnant woman 
from healthcare facility j who were HIV positive and Nj 
denotes the total number of pregnant woman tested at 
healthcare facility j.

Data sources: Tanzania (national level)
National level data come from the DHS conducted in 
Tanzania in 2011–2012 [18]. Subjects were enrolled 
in DHS surveys via a two-stage sampling procedure to 
select households. A total of 568 sampling geo-located 
randomly selected community clusters was included in 
the survey (Additional file  1: Figure S2 C). The global 
positioning system was used to identify and record the 
geographical coordinates of each DHS sample loca-
tion. A total of 17,745 individuals (9756 women and 
7989 men) from the selected households were eligible 
for the study. Further details related to the DHS meth-
odology, study design, and data can be found elsewhere 
[18–20]. The method to estimate the HIV prevalence at 
each DHS sample location was the same as the method 
previously described to estimate HIV prevalence using 
the population-based survey (ACDIS) for the local level 
data. Clinic-based data from Tanzania come from ante-
natal clinic surveillance where HIV testing was routinely 
conducted to pregnant women attending these clinics in 
2010 [9, 21]. Data from 132 healthcare facilities in Tan-
zania were included in the analysis (Additional file  1: 
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Figure S2 D). The method to estimate the HIV prevalence 
at each healthcare facility was the same as the method 
previously described to estimate the HIV prevalence 
using the DHIS antenatal healthcare facility data in South 
Africa. Further description of data sources and maps 
illustrating the sampling locations are included.

Spatial analysis
The prevalence of HIV was estimated at each sample 
location (for ACDIS, DHS, or healthcare facility). We 
used ESRI ArcGIS Desktop 10.3 [22] to generate con-
tinuous surface maps of HIV prevalence from each of 
the four datasets using a kriging interpolation technique, 
a methodology widely used in spatial mapping [23–26]. 
Kriging is a geostatistical method that generates an esti-
mated continuous surface from a scattered set of points 
with z-values (i.e. HIV prevalence) implemented with the 
Geostatistics tool in ArcGIS. Kriging assumes that the 
distance between sample points reflects a spatial corre-
lation that can be used to explain the observed variation 
in the surface. The method fits a mathematical function 
to the data points to determine the output value for each 
location. We used ordinary kriging to predict values of 
HIV prevalence at unmeasured locations by estimating a 
variogram of weighted averages of the data [27]. A sec-
ondary analysis using cokriging method was conducted 
to improve spatial estimations by including covariates of 
population density distribution, distance to the closest 
main road, and distance to the closest healthcare facility.

Data sources comparisons
HIV prevalence estimations from the population-based 
data and clinic-based data derived from both models, 
kriging and cokriging, were extracted at each data point 
included for the ACDIS study area and Tanzania (Addi-
tional file  1: Figure S2 A, C). Partial rank correlation 
coefficient (PRCC) to compare population-based data 

and clinic-based data estimations were conducted for 
both ACDIS study area and Tanzania. Likewise, residu-
als between the two continuous surface maps of HIV 
prevalence generated using both types of data sources 
(population-based and clinic-based data) were estimated 
from the two different scales (local and national). A third 
method included the estimation of the spatial correlation 
between HIV prevalence calculated from the two types 
of data sources using bivariate local indicators of spatial 
autocorrelation (LISA) included in the GeoDa environ-
ment [25]. This method identifies significant spatial clus-
tering based on the degree of linear association between 
HIV prevalence at a given location estimated using the 
population-based and the clinic-based data [26]. Maps 
were generated illustrating the locations with statisti-
cally significant associations along with the type of spatial 
association between both HIV prevalence estimations 
(i.e. high–high HIV, low–low, low–high, and high-low). 
Finally, HIV ‘hotspots’ (areas with HIV prevalence in the 
upper quintile estimated independently for each data 
source, population-based and clinic-based data [2]) were 
identified, then the HIV hotspots identified using both 
sources of data were compared, and the percentage of 
area in which both sources of data consistently identified 
HIV hotspots was estimated.

Results
South Africa (local level)
Table  1 summarizes the estimated measures for map 
comparisons generated using both sources of data. Fig-
ure  1 illustrates the association between HIV preva-
lence estimated from population-based and clinic-based 
data for the ACDIS study area (A, B) and Tanzania (C, 
D). Continuous surface maps of HIV prevalence in 
the ACDIS study area are illustrated in Fig.  2. Semi-
variograms and histograms for pixel density distribu-
tion of HIV prevalence are included in Additional file 

Table 1 Summary of the estimated measures at local and national level estimated using kriging and cokriging methods

a Partial rank correlation coefficient (PRCC) comparisons between population-based data and clinic-based data estimations
b Percentage of area where the local indicator of spatial autocorrelation (LISA) estimations comparisons between population-based data and clinic-based data 
estimations were consistent with statistical significance
c Percentage of area where the local indicator of spatial autocorrelation (LISA) estimations comparisons between population-based data and clinic-based data 
estimations were inconsistent with statistical significance
d Percentage of areas with HIV prevalence in the upper quintile detected by the mode

Measure Local level (ACDIS study area) National level (Tanzania)

Kriging Cokriging Kriging Cokriging

PRCC a (p value) 0.56 (p < 0.005) 0.57 (p < 0.005) 0.76 (p < 0.005) 0.77 (p < 0.005)

LISA consistency  areasb 59% 61% 71% 77%

LISA inconsistency  areasc 32% 30% 16% 10%

HIV ‘hotspot’ areas  detectedd 54% 56% 77% 84%
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Fig. 1 Comparisons between HIV prevalence estimations using population-based HIV prevalence data and clinic-based prevalence data. HIV 
prevalence estimations from the population-based data and clinic-based data derived from both models, kriging and cokriging, were extracted at 
each data point (black dots) included for the ACDIS study area and Tanzania. In A Africa Centre Demographic Information System study area using 
kriging, B Africa Centre Demographic Information System study area using cokriging, C Tanzania using kriging, D Tanzania using cokriging. The line 
in all figures indicates the fitted line between HIV prevalence estimations using population-based HIV prevalence data and clinic-based prevalence 
data

Fig. 2 Continuous surface maps of A the estimated HIV prevalence using the Africa Centre Demographic Information System data, B kriging model 
for the estimated HIV prevalence using clinic-based data, C residuals from the kriging model, D LISA analysis of the kriging model, E cokriging 
model for the estimated HIV prevalence using clinic-based data, F residuals from the cokriging model, G LISA analysis of the cokriging model. Maps 
were created using  ArcGIS® software by Esri version 10.3 [22] (http://www.esri.com/)

http://www.esri.com/
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(Additional file 1: Figures S5, S6 and S7). Mean pixel-level 
HIV prevalence in this area estimated using population-
based data was 30.2% [95% confidence interval (CI) 16.5–
43.9%]. Kriging interpolation maps revealed substantial 
geographical variation of the HIV epidemic in this small 
area of study (Fig.  2A), and identified areas with high 
HIV prevalence, particularly at the center, north-western, 
south-eastern parts of the study region.

Mean pixel-level HIV prevalence in this area estimated 
using clinic-based data was 35.6% (95% CI 21.9–49.3%). 
Kriging interpolation of clinic-based data identified the 
high burden areas of HIV infection located at the south-
eastern part of the study area but failed to identify some 
other areas with high HIV prevalence, particularly at the 
north-western part of the study area (Fig.  2B). Residual 
analysis was consistent with this result and indicated that 
HIV prevalence interpolation using clinic-based data 
underestimated the HIV prevalence in the north-western 
part of the study area, but also overestimated the HIV 
prevalence in the high burden areas (Fig. 2C). LISA anal-
ysis indicated that estimations from kriging interpolation 
using these two types of data sources were consistent in 
identifying high or low burden areas in 59% of the study 
area (Fig.  2C). The estimations from these two models 
diverged in 32% of the study area: kriging interpolation 
using clinic-based data predicted high HIV burden areas 
in low HIV prevalence areas in 12% of the study area, and 

low HIV burden areas in high HIV prevalence areas in 
20% of the study area (Additional file 1: Figure S6). There 
was a non-statistical significant spatial association in the 
remaining 9% of the study area. Inclusion of cofactors in 
the cokriging model moderately increased the accuracy 
of predictions (Fig.  2E, F), correctly identifying high or 
low burden areas in 61% of the study area (Fig. 2G, Addi-
tional file 1: Figure S6).

Map in Fig. 4A illustrates the location of the HIV ‘hot-
spots’ (areas with HIV prevalence in the upper quintile) 
in the ACDIS study area identified using population-
based data. Kriging model map generated using clinic-
based data (Fig.  4B) accurately predicted 54% of these 
high HIV burden areas, whereas cokriging model map 
(Fig. 4C) accurately located 56% of these high HIV preva-
lence areas.

Tanzania (national level)
Continuous surface maps for the HIV prevalence in Tan-
zania are illustrated in Fig. 3. Mean pixel-level HIV prev-
alence in this area estimated using population-based data 
was 5.2% (95% CI 1.0–9.4%). The burden of the infection 
appears to be concentrated in the south-western part of 
the country, between the districts of Mbeya and Iringa, 
where the HIV prevalence can reach more than 9% 
(Fig. 3A).

Fig. 3 Continuous surface maps of A the estimated HIV prevalence using the Tanzania Demographic and Health Survey data, B kriging model for 
the estimated HIV prevalence using clinic-based data, C residuals from the kriging model, D LISA analysis of the kriging model, E cokriging model 
for the estimated HIV prevalence using clinic-based data, F residuals from the cokriging model, G LISA analysis of the cokriging model. Maps were 
created using  ArcGIS® software by Esri version 10.3 [22] (http://www.esri.com/)

http://www.esri.com/
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Mean pixel-level HIV prevalence in Tanzania estimated 
using clinic-based data was 6.5% (95% CI 1.6–11.3%). 
Kriging interpolation of clinic-based data identified all 
high burden areas of HIV infection detected using pop-
ulation-based data (Fig.  3B). However, residual analysis 
indicated that clinic-based data could overestimate the 
HIV prevalence in higher burden areas (Fig.  3C). LISA 
analysis indicated that estimations from kriging inter-
polation using DHS and clinic-based data were consist-
ent identifying high or low burden areas in 71% of the 
area in Tanzania (Fig.  3D). The estimations from these 
two models diverged in 16% of the country area. Krig-
ing interpolation using clinic-based data predicted high 

HIV burden areas in low HIV prevalence areas in 9% of 
the study area, and low HIV burden areas in high HIV 
prevalence areas in 7% of the study area (Additional file 1: 
Figure S7). There was a non-statistical significant spatial 
association in the remaining 13% of the study area. Simi-
lar to the results from the ACDIS study area, inclusion 
of cofactors in the cokriging model moderately increased 
the accuracy of predictions (Fig. 3E, F), consistently iden-
tifying high or low burden areas in 77% of the study area 
(Fig. 3G, Additional file 1: Figure S7).

Figure  4D maps the location of the HIV ‘hotspots’ 
(areas with HIV prevalence in the upper quintile) in Tan-
zania identified using population-based data. Kriging 

Fig. 4 Areas with high HIV prevalence (≥ 80th percentile) in A kriging model for the estimated HIV prevalence in the Africa Centre Demographic 
Information System study area using population-based data, B kriging model for the estimated HIV prevalence in the Africa Centre Demographic 
Information System study area using clinic-based data, C cokriging model for the estimated HIV prevalence in the Africa Centre Demographic 
Information System study area using clinic-based data, D kriging model for the estimated HIV prevalence in Tanzania using population-based 
data, E kriging model for the estimated HIV prevalence in Tanzania using clinic-based data, F cokriging model for the estimated HIV prevalence in 
Tanzania using clinic-based data. Maps were created using  ArcGIS® software by Esri version 10.3 [22] (http://www.esri.com/)

http://www.esri.com/


Page 7 of 9Cuadros et al. Int J Health Geogr  (2018) 17:27 

model map generated using clinic-based data (Fig.  4E) 
accurately predicted 77% of these high HIV burden areas, 
whereas cokriging model map (Fig. 4F) accurately located 
84% of these high HIV prevalence areas.

Discussion
Our results suggest that clinic-based data are able to 
capture the broad spatial structure of HIV epidemics in 
these hyperendemic settings. Analysis of this information 
accurately identified the high HIV burden areas (HIV 
‘hotspots’), thereby offering a less expensive and readily 
available alternative source of data for the geographical 
identification of vulnerable populations at high risk of 
infection.

Accuracy of these predictions varied depending on 
the geographical scale in which the comparisons were 
conducted. Clinic-based HIV prevalence data success-
fully captured the broad spatial structure of the HIV epi-
demic in the areas studied, but the accuracy was reduced 
to some extent when the resolution of the geographical 
scale was increased (i.e. from national to local scale). For 
example, LISA results showed consistency of the HIV 
estimations in 59% of area in the ACDIS study area (local 
level), whereas it showed consistency of the HIV estima-
tions in 71% of the area in Tanzania (national level). This 
discrepancy could be the result of reducing the number 
of healthcare facilities (data-points) in the analysis when 
the resolution of the scale is increased. For example, the 
HIV prevalence map generated for Tanzania included 
data from more than 100 healthcare facilities distributed 
across the country. In contrast, mapping the spatial dis-
tribution of HIV at sub-district level, focusing on a single 
town, only included 10 healthcare facilities. As a result, 
the statistical power and geographic resolution of the 
spatial interpolation could be reduced, amplifying dis-
crepancies between population-based and clinic-based 
estimations. However, it is important to note that ACDIS 
has the unusual aspect of being bordered on the west by 
an uninhabited area, the Hluhluwe–Imfolozi national 
park. For that reason, there were no facility data points to 
improve boundary estimates on these areas. Despite this 
limitation, clinic-based data still captured most of the 
geographical variation of the HIV epidemic at local level, 
and located most of the high burden areas identified in 
previous studies, where the HIV epidemic is largely con-
centrated in the ACDIS study area [4, 5, 15, 16].

Inclusion of cofactors using cokriging method mod-
erately increased the accuracy of spatial HIV prevalence 
predictions, particularly at national level. Nevertheless, it 
is important to note that this was an exploratory analy-
sis, and only few cofactors were included in our study. 
Inclusion of more behavioral and biological cofactors 
associated with the risk of HIV infection such as male 

circumcision, condom use, life time number of sexual 
partners, and wealth index among others could effec-
tively improve model predictions as it has been shown in 
previous studies [2, 9].

The primary limitation of the approach proposed here 
is the comparability across different sources of data col-
lected from different sampled populations. Commu-
nity-level population surveillances target the general 
population, whereas clinic-based surveillance systems 
collect data from specific subpopulations who seek care, 
such as pregnant women, or individuals at high risk of 
infection that are frequently tested or seeking treat-
ment. Furthermore, while clinic-based data usually con-
tain geographically representative of nearby populations, 
catchment areas are variable and HIV positive popula-
tions may be more likely to seek care at specific medi-
cal facilities with specialized services [28]. As expected, 
the clinic-based data over-estimated prevalence [29, 30]. 
Despite the fact that clinics are located following some 
decision rule, which is not completely spatially random 
regarding epidemic burdens, clinic-based data are still 
able to capture the spatial patterns, which is the ultimate 
goal of the approach proposed here. Lastly, we conducted 
our analysis using ESRI ArcGIS software, but alternative 
open access software such as QGIS (https ://qgis.org/en/
site/), GRASS (https ://grass .osgeo .org/), and R (https ://
www.r-proje ct.org/), among others, are suitable to con-
duct similar spatial analyses as the ones conducted in this 
study.

Conclusions
Our results suggest that analysis of clinic-based data 
could provide robust estimations of the broad spatial 
structure of the HIV epidemic in hyperendemic settings. 
However, similar analyses should be conducted in other 
African settings to assess whether these patterns are 
observed elsewhere. Our study illustrates the potential 
utility of routine HIV testing data collected from differ-
ent healthcare facilities to identify and monitor the high 
HIV burden areas. This methodology would overcome 
the challenging methodological and economic issues that 
accompany collecting community-level population-based 
data. Routine HIV testing data collected in different 
healthcare facilities as well as other sources of data from 
local small HIV sample surveys would allow for a rapid 
and cost-effective visualization of the epidemic, facilitat-
ing decision making to redefine resource allocation and 
surveillance systems, focused on the geographical HIV 
‘hotspots’ that could be fueling the epidemic [5, 8, 12]. 
This approach may provide valid spatial prevalence esti-
mates for geographical targeting where the burden of the 
infection is concentrated and where resources are needed 
the most.

https://qgis.org/en/site/
https://qgis.org/en/site/
https://grass.osgeo.org/
https://www.r-project.org/
https://www.r-project.org/
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