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METHODOLOGY

The use of open source GIS algorithms, 
big geographic data, and cluster computing 
techniques to compile a geospatial database 
that can be used to evaluate upstream bathing 
and sanitation behaviours on downstream 
health outcomes in Indonesia, 2000–2008
Stuart E. Hamilton*  , John Talbot and Carl Flint

Abstract 

Background:  Waterborne diseases are one of the leading causes of mortality in developing countries, and diarrhea 
alone is responsible for over 1.5 million deaths annually. Such waterborne illnesses most often affect those in impov-
erished rural communities who rely on rivers for their supply of drinking water. Deaths are most common among 
infants and the elderly. Without knowledge of which communities are upstream of a community, upstream sanitary 
and bathing behaviors can never be directly linked to downstream health outcomes including disease outbreaks. 
Although current GIS technologies can answer the upstream question for a limited number of downstream com-
munities, no systematic way existed of labeling each downstream village with all its upstream contributing villages 
along river networks or within basins at the large national scale, such as in Indonesia. This limitation prohibits macro 
analyses of waterborne illness across developing world communities globally.

Results:  This novel method approach combines parallel computing, big data, community data, and open source GIS 
to create a database of upstream communities for 50,000–70,0000 villages in Indonesia across four differing periods. 
The resultant village database provides information that can be tied to the Indonesian PODES health and behavior 
surveys in each village to connect upstream sanitary behaviors to downstream health outcomes. We find that the 
approximately 250,000 communities analyzed across the four periods in Indonesia have a combined total of 13.7 mil-
lion upstream villages. The average number of upstream villages per village was almost 55, the maximum number of 
upstream villages for any single village was over 5300.

Conclusions:  Advances in big-data availability, particularly high-resolution elevation data, the lowering of the cost of 
parallel computing options, mass survey data, and open source GIS algorithms that can utilize parallel processing and 
big-data, open new opportunities for the study of human health at micro granularities but across entire nations. The 
database generated has already been used by health researchers to compute the influence of upstream behaviors on 
downstream diarrhea outbreaks and to monitor avoidance behaviors to upstream water behaviors across all down-
stream 250,000 Indonesian villages over 4 years, and further waterborne health analyses are underway.
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Background
Waterborne deaths remain one of the primary causes of 
mortality and illness in the developing world [1, 2] with 
diarrhea accounting for over 1.5 million deaths annu-
ally [3]. Such water-borne disease tends to affect the 
young in the poorest regions of the developing world. 
Upstream behavior such as water bathing, water sani-
tation, and waste disposal affects the health of down-
stream populations in areas where drinking river water 
or bathing in river water is commonplace. To account 
for upstream behavior in health analysis, researchers 
and practitioners require databases that can account 
for actions of each upstream community for each com-
munity of observation. That is, what villages or commu-
nities are upstream of my community? Traditional GIS 
methods can answer this question for a limited number 
of communities, but in the cases of Indonesia, the task 
requires new GIS approaches and access to high-per-
formance computing. For example, over 70,000 individ-
ual villages existed in Indonesia in 2008. The question 
of what villages are upstream of every other village is 
the challenge addressed in this paper. For researchers 
and practitioners to fully account for upstream behav-
iors in downstream health outcomes, particularly as 
they pertain to waterborne disease, this question needs 
answering.

Although reliable human health survey exists for all 
Indonesian villages, a comprehensive upstream data-
base for every village is lacking. In rural areas of the 
developing world, precise networks of existing river 
structures, particularly minor rivers that are more likely 
to be used for water consumption, are just not avail-
able [4]. Even when reliable river networks do exist, 
they exist in isolation to the village locations and asso-
ciated health data. Yet, it is household pollution from 
residents that are likely the primary source of river 
pollution, and hence adverse health outcomes, across 
Indonesia. For example, approximately 66% of the Cit-
acum River’s BOD is estimated to come from house-
hold waste [5], far outstripping both agricultural and 
industrial inputs. In addition to the disposal of house-
hold waste, river bathing is likely a source of upstream 
contaminants leading to downstream health issues. 
Within the Ganges River system it has been shown that 
upstream river bathing likely results in increases in 
coliform bacteria which are linked to downstream inci-
dents of nausea, vomiting, diarrhea [6, 7]; with infants 
and those with compromised immune systems. Addi-
tionally, river bathing of infants after soiling is frequent 
and problematic to downstream communities as well as 
river bathing. It worth to mention that the use of rivers 
for household waste disposal remaining almost entirely 
unregulated in Indonesia [8].

Study area
The study area is all of Indonesia. The communities or 
villages are defined as polygonal areas by the Indonesian 
Central Bureau of Statistics Village Potential Statistics 
(PODES) enumeration surveys of 2000, 2003, 2006, and 
2008 and known as Desas. To allow for the realistic gen-
eration of modeled water flow, all countries that share an 
island with Indonesia are included in the hydrological 
analysis but not in the village-level analysis. These coun-
tries are all or parts of Brunei, Papua New Guinea, Timor-
Leste, and Malaysia. An additional geographic constraint 
was inclusion in the Shuttle Radar Topography Mission 
(SRTM) 1  arc-s global void-filled elevation dataset, that 
likely omits some small islands that may be inhabited 
but may not contain many upstream communities due to 
the small size of the islands. The number of villages enu-
merated varies from a low of 56,579 in 2003 to a high of 
71,282 in 2008. In 2008, this equated to 1,654,043 km2 of 
Indonesia’s 1,904,569 km2 land area, or 87%, of Indonesia 
being designated as within an analyzed village. The total 
population analyzed in 2008 is 229,171,551; this is likely 
close to 100% of the population of Indonesia in 2008. The 
national census in 2010 reports 237,641,334 million peo-
ple and an annual growth rate during the 2000s of 1.54%.

Methods
The methodology designed focused on obtaining reli-
able upstream village information for each of the 56,579–
71,282 villages present in Indonesia across the four 
differing years of analysis. The calculation of all upstream 
villages for each village required the construction of a 
digital terrain model (DTM) with hydrologic enforcement 
and then utilizing the resultant DTM to delineate the 
upstream area for each village. The hydrographic model 
of Indonesia had to be constructed as part of this project 
as no systematic, seamless, high-quality and international 
hydrography dataset exists [9] at the required resolution. 
Once the upstream area for each village is delineated, it is 
relatively straightforward to extract all communities that 
are in this upstream area.

Elevation
The core elevation layer for the Indonesian hydrologic 
model created is the recently released SRTM 1  arc-s 
global void-filled elevation dataset [10]. These elevation 
data are derived from the Space Shuttle mission of 2000 
but were only released at a 1-arc-s resolution for South-
east Asia in 2015. These elevation data were obtained in 
10° raster tiles, with a pixel size of approximately 30 m, 
and in an unprojected coordinate system that is based 
on latitude and longitude. The first step was to combine 
the individual tiles into a single seamless digital elevation 
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model (DEM) that contained all the elevation measures 
for Indonesia and for any countries whose islands are 
shared with Indonesia. These additional countries are 
required to create a representative hydrologic model of 
Indonesia as if omitted the hydrologic model may not be 
able to determine flow directions correctly resulting in 
an unreliable representation of upstream villages within 
Indonesia.

Once a singular DEM for the region was created, the 
DEM was reprojected into a suitable equatorial Moll-
weide coordinate system, based on meters, for all of 
Indonesia and surrounding countries. Ninety-meters was 
selected as the most suitable horizontal analysis resolu-
tion after testing a sample of the approximately 30  m 
input data at the raw 30 m resolution as well as at 60 m, 
90 m, and 120 m aggregates of the data. The 90 m selec-
tion was a compromise achieved by comparing the out-
put flow lines generated from each differing resolution 
for the sample area against a river layer provided by the 
World Resources Institute (WRI) that was constructed 
from the manual digitization of aerial photography. The 
desired resolution had to match the WRI river loca-
tions accurately, be substantially smaller than the small-
est village in the PODES, and allow for computation of 
upstream areas within a reasonable timeframe using the 
cluster computing resources available. The final analysis 
DEM at 90  m resolution contains 3.47138 × 108 terres-
trial pixels. This value is the sum of elevation pixels, and 
hence derived drainage pixels, that exist over the totality 
of Indonesia. This DEM value is the number of pixels that 
will have to be queried, at multiple different times, to cre-
ate accurate watersheds for each village in the database. 
This compromise resolution has a large enough cell-size 
to process more rapidly but is resolute enough to allow 
for accurate depiction of drainage at the village scale, as 
well as containing enough detail for even the smallest vil-
lages to contain multiple pixels.

Although the SRTM product is labeled as void-free, 
isolated voids do still exist in the Global SRTM 1  arc-s 
product [11]. We filled these voids using the r.nulls algo-
rithm, this algorithm passes a regularized spline through 
the neighbors of the null pixel and then estimates the 
omitted null value from the interpolated neighborhood 
values [12]. Once void filling is complete, the output is a 
90 m resolution, gap-filled, seamless, and projected DEM 
for all of Indonesia and all islands of which Indonesia is a 
part.

Terrain and hydrology
Once void-filling was complete, hydrologic enforce-
ment was completed using the methods outlined by Tar-
boton et  al. [13]. This process allows for modeled flow 
to be preserved in areas of real or spurious topographic 

depressions. Figure  1 represents the void-filled, hydro-
logically enforced, seamless 90  m resolution DEM for 
all the islands of which Indonesia is a part. Once hydro-
logic enforcement was complete, we used the D8 algo-
rithm [14], within the open-source r.watershed process, 
to assign flow directions across the dataset and obtain 
the number of pixels that flow through every other pixel 
across the entire DEM. These outputs are commonly 
referred to as the flow direction layer and the flow accu-
mulation layer respectively. The r.watershed algorithm 
was selected as it has proven effective in similar studies in 
other countries with high-relief topography when used to 
depict river channels and flow accumulation from SRTM 
data with canopy interference likely to be present [15]. 
Additionally, the r.watershed algorithm is open-source 
and allows us to customize the algorithm for use in a par-
allel processing environment.

Figure  2 summarizes the process from obtaining the 
DEM to the final output hydrology products. The Fig. 3 
flowchart depicts the input data, the processes, the FOSS 
algorithms implemented, the decision points, and the 
output datasets. The full resolution model is available in 
the Harvard Dataverse repository.

Village data
The PODES dataset provides information about village 
characteristics for all of Indonesia [16], and since 1980, 
is managed by The Indonesian Central Bureau of Sta-
tistics. PODES collection complements the population 
census, the economic census, and the agricultural census 
following similar collection procedures. Since 2003, vil-
lage-level data was collected in its entirety. The PODES 
questionnaire consists of two components. They are the 
core data, which is obtained in every census, and the 
module data that is collected only in the implementation 
of agriculture census.

PODES data was provided in polygon shapefile format 
by The Indonesian Central Bureau of Statistics. The data-
set consists of one shapefile for each of 2000, 2003, 2006, 
and 2008. Each village is a row in the shapefile attribute 
table. Preprocessing of the village polygons included 
completing logical topological fixes such as eliminating 
spurious gaps between the villages, correcting overlap-
ping village boundaries, and removing duplicate village 
polygons. To increase computational processing effi-
ciency, all attribute data was transferred away from the 
village polygons at this stage aside from each village’s 
unique identifier. Once this process was complete, the 
village polygon data were then reprojected from their 
unprojected coordinate system into the Mollweide pro-
jection utilized in the SRTM-derived DEM. The final vil-
lage counts, mapped to the provincial level, are depicted 
in Fig. 3.
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Fig. 1  The final DEM used to delineate upstream villages for each of the villages in Indonesia. The DEM contains over 347 million measures of 
elevation and is hydrologically enforced

Fig. 2  The DEM and hydrology process flow chart
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Upstream village delineation
Big-data is generally used to refer to datasets that contain 
so many records that they are too large for traditional 
data analysis hardware, software, and tools to provide 
insights. Large geographic datasets have the increased 
complexity that they are often too large to be opened 
using high-performance desktop computers. It is the 
delineation if upstream villages, for each downstream 
village, that requires big-data approaches as traditional 
approaches cannot process such data promptly. It is not 
the complexity of the delineation of upstream villages 
that is the issue, it is the sheer number of computations 
required, and the data storage requirements that make it 
problematic.

The number of upstream villages determination 
likely requires both big-data, and cluster computing 
approaches. To tabulate the number of upstream geog-
raphies that exist for each downstream village is both 
an unknown and potentially in the many billions range. 
The maximum theoretical number of upstream vil-
lages would be achieved if all individual villages were 
on a single long river, with no river branches, running 
downhill with the villages in a sequence one after the 
other. In this scenario, the village with the highest ele-
vation would have no upstream villages. The next vil-
lage down the river would have one upstream village 
associated with it; the net village downstream would 
have two upstream villages associated with it, the next 
village three upstream villages, and so on. Such a rela-
tionship can be written as a simple arithmetic sequence 
(Eq.  1). Using Eq.  1, we can calculate the theoretical 
maximum number of upstream villages. The theoretical 
maximum number of upstream villages is 1,647,695,715 

for 2000, 1,600,619,910 for 2003, 2,151,319,215 for 
2006, and 254,0597,403 for 2008. As each year is 
treated as a separate event, the theoretical number of 
potential upstream village boundaries to be extracted, 
for each downstream village across the entire dataset is 
6,294,184,223.

The minimum theoretical number of upstream vil-
lages is merely the sum of the villages. In this scenario, 
imagine each village sitting on a small river with no 
upstream villages, it may help to envision the villages 
evenly spaced along the shoreline of a circular island 
that increase in elevation towards the center of the 
islands, such as a volcanic island. In this hypothetical 
scenario, no villages would have upstream neighbors. 
Therefore, before processing it can be assumed the 
number of upstream villages falls between 250,860 and 
6,294,184,223. Each of these villages has a distinct poly-
gon boundary, numerous attributes, and will require 
an upstream tale for all upstream villages to be con-
structed. This number of geographies, relations, and 
attributes fall squarely in big geodata analysis.

The delineation of upstream areas for each village 
requires an origin point within each respective vil-
lage from which to delineate its upstream area. Within 
hydrologic analyses, such locations are most often 
referred to as pour points. To create pour points, the 
village polygons were converted into points, and the 
points were then located on the highest flow accu-
mulation pixel within each village boundary. This was 
achieved using a simple zonal maximum function 
combined with a conditional statement using simple 

(1)an = a1 + f(n− 1).

Fig. 3  The distribution of villages used in this analysis. The village data is from 2006 and aggregated to the province level
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QGIS map algebra. That is, the village pour points were 
located on the highest possible flow location within 
that village polygon. Placing the village points on 
the highest possible accumulation site allows for the 
future upstream areas generated to capture all poten-
tial upstream regions. For example, if two major riv-
ers come together in a village then using a pour point 
location in any other position within a village than the 
highest flow accumulation has the potential to result 
in large upstream areas being omitted from the final 
upstream delineation for that village. Finally, the point 
files were deconstructed into a simple table with each 
village assigned a unique coordinate pair based on their 
maximum potential flow pixel retaining their unique 
identifier. This simple three-column village table, con-
taining all 71,000 village coordinate pairs and unique 
identifiers, provided the input to the hydrologic analy-
ses. The combining of the village data with the hydro-
logical data is modeled in Fig.  4. Figure  3, output A3, 
carries across to this model as the primary input. 

Figure 4 flowchart depicts the input data, the processes, 
the FOSS algorithms implemented, the decision points, 
and the output datasets. The full resolution model is 
available in the Harvard Dataverse repository.

From this point forward, all operations are conducted 
in the cluster environment. Once an Indonesia-wide flow 
direction, Indonesia-wide flow accumulation, and each 
village pour point had been created, we used the r.water.
outlet algorithm in GRASS in conjunction with the flow 
direction output from the D8 algorithm to delineate the 
entire portion of Indonesia where water could originate 
that potentially flowed into each village via overland flow. 
The D8 process resulted in an upstream area polygon for 
that particular village. From the village’s upstream area, 
we then extracted all other villages that were wholly or 
partially contained within the upstream region of the 
village being analyzed. Once extracted, the upstream 
village unique ID was stored in a simple table structure 
with a one-to-many relationship with each village poten-
tially having many villages upstream. This process was 

Fig. 4  The hydrology and input village data flow chart
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conducted iteratively for all 57,405 villages defined in 
the 2000 data, and next for all 56,579 villages in the 2003 
data, then for all 65,594 in the 2006 data, and finally for 
all 71,282 villages in the 2008 data. The process had to be 
repeated for all years due to village redistricting between 
years. The villages are most numerous around the islands 
of Java, North and South Sumatra, and Southern Sulawesi 
with fewer villages on Papua, Eastern Kalimantan, and 
other remote islands.

Spatial processing
The process of calculating the upstream area for deline-
ated each village involved a version of the GIS operation 
most often referred to as a watershed or basin analysis 
[17]. Watershed delineation, involves an iterative search 
of the flow direction layer, beginning at the pour point 
and iterating away from this region until all flow can be 
assigned as away or towards the pour point. The com-
bined area that flows into the pour point is defined as 
the upstream area. As our pour points are located on the 
highest modeled flow passing through each village, a siz-
able upstream area is likely returned for all villages with 
flow, and those on the coast will return upstream areas 
covering vast tracts of land on the island scale.

Testing on the dataset revealed that it would take more 
than 10 min to delineate the upstream area of a coastal 
village with a large upstream area and the average time 
was found to be slightly less than two minutes per vil-
lage across all villages. This test was conducted on 100 
randomly selected villages using commercial off-the-
shelf ArcGIS 10.3.1 and ArcGIS Pro software on a 64-bit 
quad-core high-performance desktop computer with 
64  GB of available memory in a 64-bit processing envi-
ronment. This time factor is not surprising, as, at 90  m 
resolution, the flow direction raster that required search-
ing contains 3.47138 × 108 terrestrial pixels, as described 
above. Although many of these pixels are located on 
other islands or outside of the village basin and could be 
excluded this still leaves 1.38855 × 109 pixels to be ana-
lyzed across all 4-years to ascertain the upstream areas. 
This value is merely the number of elevation pixels, and 
hence drainage pixels, present multiplied by the number 
of years within the analysis.

The test indicated it would require almost 1  year 
of processing time to process the 250,860 villages’ 
(which is the sum of all villages across the four analy-
sis years) unique upstream areas, although this could 
theoretically be reduced by approximately to 120-days 
by preserving the upstream output area for each vil-
lage in 2010 and using this for prior years, this though 
could lead to errors due to redistricting. Even if pres-
ervation of upstream villages from year-to-year was 

attempted, it did not provide the substantial time sav-
ing required, as 120-days per processing run remained 
unsatisfactory. Additionally, storing each polygonal 
watershed would require writing each of the village 
upstream areas to physical media. This process was 
found to substantially increased the time per deline-
ation and still resulted in processing time between 6 
and 8 months, requiring many thousands of large hard 
drives.

To overcome this issue, we used a parallel pro-
cessing solution across 64 physical cores, and 64 
hyper-threaded simulated cores in a wholly 64-bit envi-
ronment allotting 8  GB of ram per village. Each out-
put was temporarily stored in RAM with only the final 
upstream table being written to physical media. Use 
of this environment reduced the processing time from 
approximately 1-year in off-the-shelf GIS packages 
to just under 48-h using open-source solutions in an 
embarrassingly parallel environment.

GRASS 7 was utilized as the GIS engine within a 
Linux environment. GRASS operations were managed 
using bash and input data distribution was handled 
with a Python script. All processes were run in paral-
lel using GNU parallel management software. Within 
GRASS 7, r.water.outlet was used as the upstream 
algorithm and r.watershed as the hydrologic enforce-
ment, flow accumulation, and flow direction algorithm. 
Once the upstream GIS analysis was complete the data 
for the villages was reconnected to the village census 
data using the primary and foreign keys for analysis 
in STATA. C++ was used to calculate distances and 
STATA to assign macro-basin identifies. ESRI ArcGIS 
10.3, in a windows environment, was used for data vali-
dation tasks. The compiled DEM, the tabular output 
data, and all code are available for download at https​
://datav​erse.harva​rd.edu/datav​erse/Indon​esian​_Water​
sheds​ and are available for use under CC BY-SA license.

Figure  5 represents the cluster computing analysis 
that is at the core of this methodology. Figure  4, item 
B1 is passed to each of the computers using python, 
Fig.  3, A1, A2, and A3; the hydrology output data, 
from Fig. 3 reside on each machine before processing. 
All Grass processes are run in RAM, and no data is 
retained from each process once it is created aside from 
the final CSV that is a simple listing of the input Desa 
and then all upstream Desas delimited by a comma. The 
64-individual output CSVs are merged into 8 CSVs at 
the computer level before being moved to one machine 
and merged into a single output CSV for all Desa. Fig-
ure 5, is iterated four times, one four each analysis year. 
Hence, the final result is 4 CSV files, each of which is 
made available in the Dataverse.

https://dataverse.harvard.edu/dataverse/Indonesian_Watersheds
https://dataverse.harvard.edu/dataverse/Indonesian_Watersheds
https://dataverse.harvard.edu/dataverse/Indonesian_Watersheds
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Results
This manuscript only presents the results of the method; 
it does not discuss the results of the health outcomes.

The complete analysis process was reduced in time 
from approximately 1  year via traditional methods, to 
2-days using FOSS algorithms, cluster computing, and a 
variety of different coding environments. Each Desa was 
coded with its entire upstream Desa list which allows for 
analysis of health outcomes with appropriate Desa-level 
ancillary survey data. The model can be applied to any 
location where regions are defined by a polygonal bound-
ary, for example, US blocks, block groups, zip codes, 
tracts, or cities.

The analysis approach taken allows for accurately 
answering, over large-nation states, the question of 
which upstream communities contribute to a down-
stream community across all potential communities. This 
relationship follows an anticipated exponential pattern as 
depicted in Fig. 6 with most villages having few upstream 
villages and a smaller number of downstream villages 
having a considerable amount of upstream communi-
ties. The most common number of neighbors was only 4 
(Fig. 7), but one coastal village had as many as 5411 vil-
lages upstream of it and its adjacent upstream village one 
less and so on.

The upstream analysis found that the 13.7 million 
upstream villages existed for analysis across all years and 
the average number of upstream villages per village was 
approximately 55 (Table 1). This is only a small portion of 
the approximately 6.3 billion combinations of upstream 
villages theoretically possible if all villages existed on 
a single linear river network as described above, but 
this is to be expected in a nation consisting of approxi-
mately 17,508 islands which severely limits the maximum 
upstream villages possible.

We constructed two qualitative and one quantitative 
method to validate the GIS hydrological process. Firstly, 
we visually compared the flow accumulations to a digi-
tized river network provided by the World Resource 
Institute (WRI) to ensure our high flow accumulations 
and the river data provided by WRI were in close prox-
imity. Although slight deviations of rivers occurred, 
no major river systems were omitted or had incorrect 
flow paths. This validation increased confidence in our 
upstream delineation process.

The digitized rivers layer provided by WRI addition-
ally evidences this facet of our approach. When com-
paring the upstream village omissions to the river layer, 
it is apparent in lower quality DEM areas the ArcGIS 
approach often ceases to count upstream villages even 

Fig. 5  The cluster computing and parallel processing analysis flow chart
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when these villages are upstream and located along rivers 
that exist the digitized river layer provided.

Secondly, we repeated the entire methodology in ESRI 
ArcGIS software using the more traditional proprietary 
version of each of our algorithms. Due to the processing 
time restraints noted above, we conducted this validation 
test on a random sample of 14,000 villages. We asked the 
question; do the upstream villages returned from ArcGIS 
match those generated by the open-source parallel pro-
cess selected? ArcGIS consistently returned a lower num-
ber of upstream villages per year varying between 23 and 

34% lower across the four analysis years. The mismatch 
rate can also be viewed as a match rate of between 66 and 
77%.

Examining why the proprietary and open source 
upstream village count differs, it appears to be in areas 
of core SRTM inconsistency, likely caused by canopy 
interference or SRTM data omissions. In such scenarios, 
ArcGIS ceases counting upstream villages, even post-
hydrologic enforcement, whereas our process contin-
ues to accumulate upstream villages. The r.watershed 
approach used is built explicitly for SRTM data with 
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Fig. 6  Upstream frequency log10(x). The x-axis represents the number of villages. The y-axis represents the upstream count. For example, one Desa 
has 5411 upstream villages
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Fig. 7  Number of upstream villages > 1%. The x-axis represents the number of villages. The y-axis represents the upstream count. For example, 
1.06% of the villages have only one upstream neighbor, and 7.59% of the dataset has 4 upstream villages

Table 1  Upstream village summary for all years and all villages including upstream village counts

The full output tables for each village and year can be downloaded from the accompanying Dataverse

Year Unique villages Number of upstream 
villages

Average number 
of upstream villages

Villages > 100 upstream 
villages

Villages > 250 
upstream villages

2008 71,282 3,894,872 55 6729 2982
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canopy interference whereas the ArcGIS process is a 
more general use algorithm not tailored to this situation. 
ArcGIS appears to fill the DEM in areas of canopy inter-
ference to match the canopy artifacts present whereas 
r.watershed appears to manage such irregularities and 
continues to work upstream accumulating more villages. 
The difference is not an actual error, as no one model 
likely outperforms the other across the varying topog-
raphy of a nation such as Indonesia. Despite this, the 
data produced by the r.watershed approach are likely to 
be more representative than those created by the Arc-
GIS approach as r.watershed is constructed to account 
for canopy interference, which is the dominant issue in 
global SRTM.

Thirdly, we combed our flow accumulation layer, the 
provided river layer, and the ArcGIS flow accumulation 
layer with freely available imagery data such as Google 
Earth, Bing Maps, and the ESRI World Imagery mosaic 
that showed the rivers did indeed continue upstream 
in many locations where our data and the ArcGIS data 
disagreed.

Conclusion
The approach outlined allows for upstream community 
behaviors to be modeled accurately across entire basins, 
nations, or even continents. This allows for downstream 
health outcomes to be rigorously assessed in the light 
of upstream activities in a more robust, qualitative, and 
complete manner. Until now this has only been possi-
ble for small isolated basins or in a primarily descriptive 
manner or in the developed world where drinking from 
rivers is rare. The need to perform such analysis is pri-
marily required in rural areas of the developing world 
where data infrastructure is scarce and using rivers for 
drinking, bathing, and waste disposal are common.

Further enhancement of this process is likely already 
obtainable. For example, additional post-2017 DEM 
products such as TanDEM-X that offer global elevation in 
higher vertical and horizontal resolutions [18] then have 
been traditionally available to researchers may make this 
the outlined method even more accurate. Such high-res-
olution environmental DEMs, the ever-decreasing cost 
of high-performance computing access, and open-source 
GIS algorithms that can take advantage of big-data and 
parallel computing are likely to open a new frontier in the 
use of GIS in macro health research as it pertains to the 
role of the environment.

Other algorithmic implementations are possible 
such as tracing up linear networks, but this does not 
account for small tributaries and creeks further up 
the watershed and is also computationally intensive 
as well as not being as a precise attributing village to 

the correct river network. Another option not pursued 
would be to logically assign upstream villages based 
on logical rules such as assigning a village upstream of 
a downstream village if it the upstream already been 
determined to be downstream of a village the object 
village is downstream of. Such logical rules would 
likely substantially cut processing time but increase 
both search and write times. Other algorithmic refine-
ments to speed up the operation are likely plausible as 
well.

The first significant use of the method and data pro-
duced in this paper in health analysis is already pub-
lished by Garg et al. [8] and use the complete upstream 
database. They combine the upstream database health 
survey data to establish that upstream sanitary prac-
tices can explain 7.5% of diarrhea-related deaths in 
Indonesia. Additionally, they find suggestive evidence 
for differential avoidance behavior in response to dif-
ferent pollutants from downstream communities. The 
analysis conducted also allowed for additional robust-
ness checks of the database presented such as; Do 
downstream sanitary behaviors affect upstream health? 
The negative finding here suggests increased confidence 
in the database as constructed as upstream health rela-
tionships should not be possible.
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