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Abstract 

Background:  There is a strong spatial correlation between demographics and chronic diseases in urban areas. Thus, 
most of the public policies aimed at improving prevention plans and optimizing the allocation of resources in health 
networks should be designed specifically for the socioeconomic reality of the population. One way to tackle this chal-
lenge is by exploring within a small geographical area the spatial patterns that link the sociodemographic attributes 
that characterize a community, its risk of suffering chronic diseases, and the accessibility of health treatment. Due to 
the inherent complexity of cities, soft clustering methods are recommended to find fuzzy spatial patterns. Our main 
motivation is to provide health planners with valuable spatial information to support decision-making. For the case 
study, we chose to investigate diabetes in Santiago, Chile.

Methods:  To deal with spatiality, we combine two statistical techniques: spatial microsimulation and a self-organiz-
ing map (SOM). Spatial microsimulation allows spatial disaggregation of health indicators data to a small area level. In 
turn, SOM, unlike classical clustering methods, incorporates a learning component through neural networks, which 
makes it more appropriate to model complex adaptive systems, such as cities. Thus, while spatial microsimulation 
generates the data for the analysis, the SOM method finds the relevant socio-economic clusters. We selected age, sex, 
income, prevalence of diabetes, distance to public health services, and type of health insurance as input variables. We 
used public surveys as input data.

Results:  We found four significant spatial clusters representing 75 percent of the whole population in Santiago. Two 
clusters correspond to people with low educational levels, low income, high accessibility to public health services, 
and a high prevalence of diabetes. However, one presents a significantly higher level of diabetes than the other. The 
second pair of clusters is made up of people with high educational levels, high income, and low prevalence of diabe-
tes. What differentiates both clusters is accessibility to health centers. The average distance to the health centers of 
one group almost doubles that of the other.

Conclusions:  In this study, we combined two statistical techniques: spatial microsimulation and selforganising maps 
to explore the relationship between diabetes and socio-demographics in Santiago, Chile. The results have allowed us 
to corroborate the importance of the spatial factor in the analysis of chronic diseases as a way of suggesting differ-
entiated solutions to spatially explicit problems. SOM turned out to be a good choice to deal with fuzzy health and 
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Introduction
The increase of chronic diseases in recent decades is a 
global concern. According to the World Health Organiza-
tion (WHO), in 2001, chronic diseases caused the death 
of about 30 million people, equivalent to 60% of total 
deaths [1]. In 2016, in a new report, the WHO indicates 
that chronic conditions are associated with the deaths of 
40.5 million people worldwide [2], equivalent to 71% of 
total deaths. This increasing trend is particularly severe 
in developing countries [3]. Chronic diseases affect qual-
ity of life and have a substantial economic impact on 
public and private health systems. Naturally, pressure is 
generated on governments concerning the public policies 
required to prevent and control chronic diseases. Most 
prevention plans focus on promoting lifestyle changes 
related to alcohol consumption, tobacco use, nutrition, 
and exercise, among others. Access to treatment is usu-
ally associated with the capacity and spatial distribution 
of health network providers. A health network is here 
understood as a group of primary, secondary and tertiary 
healthcare establishments in a city.

In this context, public policies aimed at improving pre-
vention plans and optimizing the allocation of resources 
in health networks should be designed specifically for a 
population’s social and economic realities using a multi-
dimensional approach. One way to tackle this challenge 
is by exploring the link between the sociodemographic 
attributes that characterize a community, its risk of suf-
fering chronic diseases, health insurance coverage, and 
treatment accessibility [4–6]. For this reason, and to sup-
port decision making of health planners, particularly 
in large cities, it is necessary to incorporate the spatial 
domain to study this link [7, 8]. Exploring the spatial het-
erogeneity of socioeconomic and health indicators is a 
valuable tool to design and improve health networks [9, 
10].

In large and populated cities, spatial heterogeneity is 
best explored over a small area (i.e. the neighbourhood 
level). However, health indicators are rarely available for 
small areas; for this reason, we suggest the use of spatial 
microsimulation, a powerful statistical technique used 
primarily to disaggregate sociodemographic data at dif-
ferent geographical scales. Microsimulation (spatial and 
non-spatial) has been present in the area of health since 
the 1970s in various studies on topics such as fertility, 
private health systems and cancer [11–14]. Most of these 
studies use census data and specific surveys to generate 

synthetic data at the neighbourhood level. New research 
around spatial microsimulation in public health has been 
applied to study the effects of population ageing and the 
costs associated with public policies [15], including the 
need to improve health services for diseases such as dia-
betes [16] and dementia in the elderly [17].

Due to the inherent complexity of urban systems and 
to approach the problem from a multidimensional per-
spective, we propose using a spatial clustering meth-
odology to find spatial sociodemographic patterns that 
link the population with the prevalence of the most 
frequent chronic diseases. Specifically, we suggest the 
use of a clustering method called self-organizing maps 
(SOM) introduced by Kohonen [18] to determine high-
risk populations and their geographical location. SOM, 
unlike classical clustering methods, incorporates a learn-
ing component through neural networks, which makes it 
more appropriate to model complex adaptive systems (i.e. 
constantly changing systems) such as cities. For this rea-
son, the SOM method has gained popularity in popula-
tion studies of large cities where high sociodemographic 
heterogeneity is present. SOM has previously been used 
in demography and in public health studies [19–22].

In summary, the main objective of this study is to pro-
pose a statistical clustering methodology to support 
decision-making around the allocation of resources, pre-
vention campaigns and the spatial location of primary 
public health establishments in the fight against chronic 
diseases. This type of decision-making process involves 
the use of different kinds of information, either quantita-
tive or qualitative. In this study, we attempt to contrib-
ute to this process through spatially explicit quantitative 
information. We also attempt to contribute to the litera-
ture by creating this methodology in a way that is appli-
cable and adaptable to the reality of other cities. To the 
best of our knowledge, there are no studies combining 
spatial microsimulation and SOM to explore patterns of 
chronic diseases in a spatially explicit manner.

Methods
Study area
For the case study, we chose the city of Santiago, Chile. 
Santiago is the capital and largest city in Chile. The city 
lies in the country’s central valley and has an approximate 
population of seven million inhabitants (35% of Chile’s 
total population). Given its stable economic growth 
since the 1990s, Chile became an OECD country in 2010. 

socioeconomic data. The method explored and uncovered valuable spatial patterns for health decision-making. In 
turn, spatial microsimulation.
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Despite being classified as a high-income country by the 
World Bank, Chile is ranked the highest in inequality 
among OECD countries, with a Gini index of 0.47 [23]. 
Chile is classified as a country with an efficient and well-
organized health system, but challenges like the increase 
of chronic diseases and the ageing population could have 
a severe impact on the health system and the country’s 
economy [24]. Chile also has the sixth highest adult dia-
betes prevalence among OECD countries, as about 10% 
of Chilean adults are diabetics. The Ministry of Health 
of Chile, through its 2016–2017 National Health Sur-
vey, reported that 12.3% of Chileans suffer from diabetes 
(about 1.8 million people), and the prevalence increases 
to 30% in the elderly [25].

Chile has high rates of tobacco and alcohol consump-
tion compared to other OECD countries. Likewise, the 
obesity rate is 34.4% in adults and 44.5% in children. 
Chronic diseases have been the leading cause of death in 
Chile in the last decades [26]. The rise of chronic diseases 
in the elderly population in the last decade also suggests 
that there will be an increase in the demand for medical 
care in the coming decades.

Data
To characterize the population and as input for the 
microsimulation, we used data from the 2017 census at 
the smallest scale available: census zones. These areas 
usually comprise between 1000 and 5000 people residing 
in a group of neighbouring blocks. The city of Santiago 
consists of 34 municipalities, with an average population 
of 176,000 inhabitants each, and 1643 census zones, with 
a mean population of 3600 inhabitants. To obtain health 
data, we used the Chilean Socioeconomic Survey of 2017 
(CASEN). The CASEN survey is composed of seven 
characterization modules for individuals and families: 
resident registry, education, work, income, health, iden-
tities and housing characteristics. Due to the inherent 
complexity of cities with high socioeconomic heteroge-
neity, CASEN used a probabilistic, stratified, multistage 
and conglomerate sample to achieve a good representa-
tion of the population according to the socioeconomic 
diversity in each municipality based on the 2017 census 
cartographic mapping for the sampling method. Detailed 
information on the sample design can be found in the 
official document of the Ministry of Social Development, 
the public agency in charge of carrying out the survey 
[27].

Given that diabetes is a rising burden in Chile and 
because of an adequate response rate to the survey, we 
selected diabetes in adults as the chronic disease in our 
study. Chile included diabetes as one of the diseases 
that qualify for universal access, expenditure protection 
and a guarantee of access to diagnosis and treatment. 

Coverage of diabetes and another 32 high-burden dis-
eases was established by law in the health reform of 
2004 and applied to public and private insurance [28]. 
To measure diabetes, we used the CASEN question that 
requested auto-reporting of diabetes treatment in the last 
12  months, which is available at the municipality geo-
graphical level. The sample size of the CASEN is 35,228, 
of which 4.1% reported diabetes.

It is worth pointing out that the CASEN survey does 
not distinguish between diabetes types I and II in the cor-
responding answer. However, the fact that about 90 to 95 
of people with diabetes correspond to Type II diabetes 
[29] provides us with the confidence to address the prob-
lem in a statistically meaningful manner.

Spatial microsimulation: Methodology to disaggregate 
prevalence of diabetes at census zone level
To disaggregate the prevalence of diabetes from the 
municipality to the census zone level, we used spatial 
microsimulation. This technique generates a synthetic 
population by combining census data available at the 
smaller area scale with data from socioeconomic sur-
veys available at the larger geographical level [30]. The 
synthetic population can be seen as an enriched version 
of the census data containing additional socioeconomic 
attributes, which are typically variables associated with 
income or health indicators [31, 32]. We used years of 
education, age and gender as the link variables between 
the census and the CASEN survey. Spatial microsimula-
tion was performed using an iterative proportional fit-
ting algorithm (IPF) [33] by which the health attributes 
of each simulated individual were calculated using con-
tingency tables from both data sets. The spatial micro-
simulation method generates the input data to be used 
ultimately in the SOM clustering process.

Self‑organizing maps
SOM is an unsupervised neural network method that 
operates by clustering multidimensional input data and 
reducing them to a two-dimensional representation. 
Clusters are formed based on similarities and patterns 
of a series of attributes from the input data. This method 
operates similarly to the traditional k-means clustering 
method in that it looks for similarities by calculating the 
Euclidean distance between the input data attributes. 
SOM’s unsupervised neural network algorithm achieves 
better classification in processes where the high multidi-
mensionality of the attributes makes it difficult to classify 
and distinguish between one cluster and another. This 
type of behaviour is frequently observed in demographic 
and health phenomena, where people with similar soci-
odemographic characteristics have different tendencies 
to suffer from chronic diseases or people with different 



Page 4 of 13Crespo et al. Int J Health Geogr           (2020) 19:24 

sociodemographic characteristics may exhibit similar 
trends.

Figure  1 shows a concise representation of how the 
SOM operates obtained from [34]. The input layer 
includes n vectors of input data, each one containing a 
set of m attributes. The output layer is depicted by the 
coloured grid comprising K neurons, each represented by 
a multidimensional weight vector of length m.

The purpose of the algorithm is to group together 
closely across the 2D grid representation those neurons 
with a similar combination of input attributes. To quan-
tify the level of similarity of the neurons, the algorithm 
calculates for each vector of input data ⇀xn the Euclidean 
distance d(X ,W ) between its standardized attributes and 
each as follows:

where i: 1,…,K.
Each input vector is assigned the neuron associated 

with the smallest Euclidian distance (the winning neu-
ron). Finally, clusters are formed by grouping together 
neurons with similar values; that is, similar colours in 
Fig. 1. This secondary clustering is usually done via hier-
archical clustering techniques. A key point in the SOM 
process is the updating of the initial values of the weights 
of each neuron. As these values are first unknown, they 
must be initialized, usually by assigning small random 

(1)d(X ,W ) = �X −Wi� =

√

√

√

√

m
∑

j=1

(xj − wij)
2

values. To find meaningful clusters, these values must 
thus be updated at each iteration. Basically, the weight 
vectors of the winner and its neighbouring units in the 
output space are adjusted to become more representative 
of the features that characterize the input space.

This clustering method is applied to each of the 1643 
census zones (index m, as indicated above). Each census 
zone must thus be previously characterized on the basis 
of a series of attributes that correspond to the input vari-
ables for the SOM algorithm. The simulated population 
of each census zone is characterized according to the fol-
lowing seven attributes:

1) Education: Percentage of people with professional 
studies.

2) Low income: Percentage of people with low income, 
where low income is defined as below US$360, corre-
sponding to the median of income distribution in the 
study area.

3) Sex: Percentage of people who are male.
4) Age: Percentage of people in the age ranges of 

30–45  years and 46–60  years. These age ranges leave 
children and older adults out of the analysis. Diabetes 
in children differs from the adult. Children mostly tend 
to develop diabetes mellitus (DM) type I, caused by a 
reduced insulin production, due to genetic and immune 
causes. DM II, which more often appears in adults and 
the elderly, is associated with resistance to insulin in 
the body peripheral cells related to lifestyle and habits. 
Accordingly, including children in the analysis could lead 

Fig. 1  SOM map structure (with permission of authors [34])
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us to draw erroneous conclusions. We have also excluded 
older adults because they are probably not receiving 
income, which could also lead to erroneous conclusions. 
Finally, we have concentrated on adults over the age of 
29, an age by which they would have finished their pro-
fessional studies if they had taken them.

5) Accessibility: Euclidean distance from the centroid 
of the census zone to the nearest primary public health 
service within the municipality where the census zone is 
located.

6) Public health system: Percentage of people within 
the public health system.

7) Diabetes: Percentage of people who reported has 
been under treatment for diabetes in the last 12 months.

Results
Spatial microsimulation: Generating the input data 
at census zone level
As a first exploratory analysis, Fig.  2a, b below show at 
municipality and census zone level respectively, the 
spatial distribution of the percentage of people with 
auto-reported diabetes as obtained from the spatial 
microsimulation. Both figures include two zones with-
out census information (corresponding to parks). As a 
reference for a preliminary socio-economical explora-
tory analysis of the city, Fig. 3 shows the spatial distribu-
tion of the average per capita income at the census level 
obtained from [30].

Figure  2a suggests a city with significant spatial vari-
ability in people with auto-reported diabetes, with values 
ranging between less than 2.8% up to 7.3%. A pattern of 
low diabetes prevalence can be observed from the city 
centre towards the northeast, while the rest of the city 
shows a mix of patterns. In turn, Fig.  2b, also reveals a 
significant spatial variability at the smaller spatial level. 
Although a few municipalities (about 10 out of 34) exhib-
ited low or even nil spatial variability, the rest showed 
such variability that, within some municipalities, diabetes 
levels even doubled(or more) from one neighbourhood to 
another.

Concerning the goodness of fit of the spatial microsim-
ulation, we used the standardized absolute error (SAE) 
as recommended by [35]. This method first requires 
the calculation of the total absolute error (TAE) as, 
TAE =

∑

∣

∣y− ŷ
∣

∣ where y and ŷ are the observed and the 
simulated values, respectively. In our case, these values 
equal one if the person reported diabetes and zero oth-
erwise. Next, the SAE is obtained by dividing the TAE by 
the number of observations. In our case, the observed 
values come from the CASEN 2017 survey, as it contains 
the information for diabetes prevalence. Concerning the 
error threshold for rare diseases (e.g. diabetes), the model 

needs to be accurate at a level less than 10%, that is, an 
SAE < 0.1 [36]. In our case, we obtained an SAE of 0.067.

Figure  3 shows the significant spatial pattern links in 
the area of the city with the highest income per capita 
with a smaller number of people who responded that 
they had been under treatment for diabetes in the pre-
vious year. This might suggest that people with higher 
incomes have better access to treatment, and it may also 
indicate that the same people have fewer chances to suf-
fer from diabetes. However, the heterogeneous spatial 
variability of the number of people with diabetes in the 
census zones in Fig.  2b differs greatly from the more 
homogeneous spatial patterns of income in Fig. 3. These 
patterns support the multifactorial nature of diabetes. In 
other words, although the per capita income may have an 
important correlation with the development of diabetes, 
it does not by itself explain the spatial heterogeneity seen 
in Fig. 2b. It is therefore necessary to include other soci-
odemographic variables in the clustering.

SOM: Clustering of adults with diabetes in Santiago, Chile
To proceed with the SOM method, we used the Kohonen 
package for the R statistical software and followed the 
guidelines of [37]. Prior to running the algorithm, the 
number of neurons (K) of the grid arrangement has to 
be determined and this will also determine the number 
of final clusters as depicted in Fig. 1 (groups of neurons 
with similar colour tonality). According to Kohonen [38] 
it is not possible to guess or estimate the exact number 
of neurons in the array beforehand; this must be deter-
mined by the trial-and-error method, after seeing the 
quality of the first guess. One thus has to find a proper 
combination of the number of neurons and the number 
of final clusters to obtain a minimum of meaningful clus-
ters for the study. As a statistical technique, some clusters 
from the SOM method may appear as a result of a purely 
mathematical elaboration, without having a straightfor-
ward and clear interpretation from a socioeconomic and 
health viewpoint. This trial-and-error method must be 
undertaken with care to achieve representative patterns. 
On the other hand, if the number of neurons is too small, 
some pattern characteristics might not be represented, 
while if it is too big, adjacent patterns will be too similar 
and visualization is unwieldy [39].

In our case, after various trial-and-error iterations, we 
selected a 10 × 10 grid containing 100 neurons and 12 
clusters. To obtain these clusters, the complete linkage 
method for hierarchical clustering was used. Although 
there are various types of hierarchical clustering meth-
ods, we selected complete linkage as it produces more 
compact clusters [40], and this may facilitate the under-
standing and visualization of the clusters formed and dis-
played on the 2D grid with 100 neurons. More detailed 
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Fig. 2  a Spatial distribution of diabetes auto report at municipality level. b Spatial distribution of diabetes auto report at census zone level
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information on hierarchical clustering methods can be 
found in [41]. Even using the complete linkage method, 
however, some neurons associated with a cluster may 
not ultimately be located in an adjacent position to the 
cluster. This is usually caused by the random initial val-
ues assigned to each neuron. In fact, running the algo-
rithm with new random values is likely to produce a new 
arrangement of neurons and clusters on the grid. Even so, 
the final result should remain the same: that is, each clus-
ter will contain the same type and number of neurons.

To ease the final geographical visualization of the 
results to be displayed on the study area map, we selected 
only 4 out of the 12 clusters. The use of the 12 clusters 
may overload the map with colours and make the analy-
sis more difficult. The main criterion for selecting these 
4 clusters is the socioeconomic representativeness of our 
study population, and the 4 selected clusters accounted 
for nearly 75% of the whole study area population and 
comprise a wide range of population income and educa-
tional levels. In general terms, the 4 selected clusters can 
be described as follows:

High, medium and low are descriptive labels derived 
from dividing the range of each variable into three inter-
vals of the same length. A more detailed description of all 
attributes for each selected cluster, including the median 
and interquartile range, can be found in Appendix I.

Figure  4 shows the 12 clusters (selected and omitted) 
on the 2D grid output of the SOM method applied to 
the case study. The algorithm converged after 200 itera-
tions. For simplification, the algorithm assigned one sim-
ple colour to each cluster. It is worth highlighting that 
each neuron contains information from a set of census 
zones, which are not necessarily neighbouring zones 
geographically.

The figure includes a pie chart inside each neuron sum-
marizing the average values of the input attributes over 
the grid. In this case Distance is associated with the 
variable Accessibility, while Professionals with the vari-
able Education as described above. As can be observed, 
neurons of each cluster tend to have a similar distribu-
tion of the input values. However, this visualization 
analysis must be done with care since neurons are ulti-
mate grouped together based on similar mix of attributes 
calculated the Euclidian distance as indicated in Eq.  1. 
Accordingly, a cluster might be made up of neurons with 
a noticeable different combination of input attributes. 
This is the case of cluster 9 in Fig. 4, where the percent 
of professional is highly significant for some neurons, 
while almost nonexistence for some others. A disaggre-
gated and coloured visualization version of the pie chart 
for each one of the input attributes is known as the plane 
heat map. These are shown in Appendix II.

Fig. 3  Spatial distribution of per capita income (with permission of authors [30])
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The geographical representation of the SOM results 
is shown in Fig.  5, along with the unexamined areas 
that correspond to the clusters omitted for this analy-
sis, and the location of primary public health services 
(as a reference for further analysis). Figure 5 shows the 
spatial distribution of the clusters detailed in Tables  1 
and 2 (see Appendix I).

In general terms, Fig. 5 indicates that clusters 1 and 6 
include people with the highest income of the city, the 
best education level, and the lowest level of diabetes. 
These clusters are located in the north-eastern part of 
the city. Clusters 1 and 6 differ from each other in that 
people from cluster 1 are located farther away from 
public services than people from cluster 6. In addition, 

about 15% of people from cluster 6 have public health 
insurance compare to the 10% of people from cluster 
1. Compared to clusters 1 and 6, clusters 3 and 8 have 
people with lower income, lower education, higher 
accessibility to public health services, and higher levels 
of diabetes.

Cluster 3 is geographically distributed throughout the 
city except in its central and north-eastern areas. The 
exception is the group of the five census zones located 
adjacent to the northeast border of the study area. This 
group of census zones corresponds mostly to shanty 
towns still located adjacent to well-off areas. In turn, clus-
ter 8, spread in various groups of census zones located 
mostly in the west and south part of the city, is the most 

Fig. 4  2D grid output of the SOM method]
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critical cluster, socioeconomically vulnerable and with 
the highest percentage of diabetes.

Discussion
SOM is classified as a soft clustering method, in con-
trast to k-means, which is a hard clustering method. Soft 
methods perform better than hard methods when deal-
ing with fuzzy data, that is, the case when some points 
are difficult to classify in just one single cluster. In soft 
methods, these points may belong to more than one 
cluster with certain weights or probabilities. This fuzzy 

behaviour is frequent in large cities where high socio-
economic heterogeneity is often present. This charac-
teristic of SOM turns out to be crucial for the analysis 
of our clusters. For example, clusters 3 and 8 are made 
up of people with similar socioeconomic attributes, but 
with different levels of diabetes (see Table in Appendix I). 
Perhaps, with a traditional hard algorithm, clusters 3 and 
8 would probably merge into one single cluster or have 
different shapes and sizes. Put differently, SOM allows 
people who share some features but respond differently 
to the same input to split into two or more clusters. This 
fuzzy-based classification is illustrated by the colour gra-
dient of the 2D grid representation in Fig. 1, as well as by 
the plane heat maps in Appendix II.

Exploring what makes a person more, less, or equally 
prone to develop a chronic disease goes beyond the 
scope of this study; however, we hope our results may 
help planners to deal with the optimisation of resources 
and allocation of health services. For example, people 
from cluster 8 are more prone to develop diabetes than 
people from cluster 3 despite their socioeconomic simi-
larity. From these facts, one could hypothesise that such 
a difference is due to the lack of prevention campaigns, 

Fig. 5  Geographical representation of the SOM results]

Table 1  Description of selected clusters

Cluster 
number

Description

1 Low diabetes, high class, high education, low accessibility

6 Low diabetes, high class, high education, medium accessibility

3 Medium diabetes, low class, low education, high accessibility

8 High diabetes, low class, low education, high accessibility
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problems with the capacity or the location of health ser-
vices, or some inherent attributes of people from such 
clusters not captured in the data, or even a mix of both 
aspects. In either case, further studies and/or new types 
of data are needed to find additional drivers or to inves-
tigate to what extent such drivers affect the prevalence 
of diabetes. Similarly, the main distinguishing feature of 
clusters 1 and 6 is accessibility to primary public health 
centres. Thus, one could be tempted to suggest the allo-
cation of new health services in cluster 1. However, peo-
ple from cluster 1, due to a privileged economic situation, 
are served in private and more expensive health services 
within the municipality they reside.

The methodology we suggest can be applied to inves-
tigate the relationship between chronic diseases and 
socioeconomic characteristics worldwide. However, it is 
based on a statistical method, and, as such, it may have 
some limitations that must be taken into account in the 
analysis. The first is the quality of the data. In our case, 
the CASEN survey is, in general terms, a trustworthy 
source of data with a robust sample design. However, the 
budget of socioeconomic surveys is often limited (at least 
in comparison with census surveys), so the small sample 
size may lead to biased results. If a bigger sample size is 
not possible, modellers should pay close attention to the 
sampling method used in the survey as well as the whole 
sample design process. Another point to bear in mind is 
the initial values of the SOM method. Random values are 
a good choice as a first attempt, but other choices can also 
be investigated in future studies. One option is the use 
of a method called linear initialization by which eigen-
values and eigenvectors are obtained from a principal 
component analysis. Kohonen [38] argues that the initial 
random vectors were originally used to demonstrate the 
capability of the SOM to become ordered, starting from 
an arbitrary initial state. Depending on the characteristics 
or the quality of the data, further studies could investi-
gate whether random initial values or the linear initialisa-
tion ultimately converge to the same result. It may occur 
that some methods are more appropriate for some city or 
country, while not appropriate for others.

Conclusion
In this study, we have combined two statistical tech-
niques: spatial microsimulation and self-organising 
maps to explore the relationship between diabetes and 
socio-demographics in Santiago, Chile. The results have 
allowed us to corroborate the importance of the spatial 

factor in the analysis of chronic diseases as a way of sug-
gesting differentiated solutions to spatially explicit prob-
lems; SOM turned out to be a good choice to deal with 
fuzzy health and socioeconomic data. The method 
explored and uncovered valuable spatial patterns for 
health decision-making. In turn, spatial microsimulation 
allowed the generation of the disaggregated data in a sta-
tistically meaningful manner.

We hope that the methodological aspects developed in 
this study at the neighbourhood level (small areas) can 
be complemented with other advanced methods, such 
as spatial econometrics, to investigate the causalities 
and drivers of chronic diseases. We also expect that our 
approach may help to shed some light on which group 
of people needs special attention, further analysis, and 
different solutions. Presenting our results in a spatially 
explicit manner and integrated into a geographical infor-
mation system may help planners to find such solutions.
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Appendix II
See Fig. 6.

Table 2  Description of selected clusters

Cluster 
number

Diabetes[%]
[IQR]

Distance[m] 
[IQR]

Low 
income[%] 
[IQR]

Male 
population[%] 
[IQR]

Professionals[%] 
[IQR]

30–
45 years[%]
[IQR]

46–
60 years[%] 
[IQR]

1 2.21
[2.04–2.43]

3443
[3942–3067]

3.94
[3.62–7.56]

45.30
[44.50–46.39]

44.96
[40.60–47.61]

28.28
[24.73–30.87]

26.08
[24.51–29.72]

10.87
[8.58–23.41]

148,918

6 1.80
[1.43–2.17]

1454
[974–1937]

4.34
[2.18–5.44]

45.38
[44.46- 46.33]

43.91
[40.46–46.96]

30.20
[26.62–33.85]

25.65
[24.81–33.85]

15.65
[11.70–23.50]

487,850

3 3.88
[3.43–4.34]

657
[410–943]

30.03
[26.01–34.06]

48.51
[47.70–49.27]

7.31
[4.78–11.94]

30.26
[28.56–32.20]

26.13
[24.71–27.64]

81.97
[75.39–86.85]

3,052,920

8 5.81
[5.40–6.37]

578
[340–869]

31.72
[28.56–46.39]

49.05
[48.23–49.74]

4.84
[3.69–7.76]

29.27
[27.88–31.32]

25.96
[24.19–26.98]

84.81
[79.22–91.31]

861,270
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Fig. 6  Plane heat maps of input attributes
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