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METHODOLOGY

Street masking: a network-based geographic 
mask for easily protecting geoprivacy
David Swanlund1* , Nadine Schuurman1, Paul Zandbergen2 and Mariana Brussoni3

Abstract 

Background: Geographic masks are techniques used to protect individual privacy in published maps but are highly 
under-utilized in research. This leads to continual violations of individual privacy, as sensitive health records are put at 
risk in unmasked maps. New approaches to geographic masking are required that foster accessibility and ease of use, 
such that they become more widely adopted. This article describes a new geographic masking method, called street 
masking, that reduces the burden on users of finding supplemental population data by instead automatically retriev-
ing OpenStreetMap data and using the road network as a basis for masking. We compare it to donut geomasking, 
both with and without population density taken into account, to evaluate its efficacy against geographic masks that 
require slightly less and slightly more supplemental data. Our analysis is performed on synthetic data in three different 
Canadian cities.

Results: Street masking performs similarly to population-based donut geomasking with regard to privacy protection, 
achieving comparable k-anonymity values at similar median displacement distances. As expected, distance-based 
donut geomasking performs worst at privacy protection. Street masking also performs very well regarding informa-
tion loss, achieving far better cluster preservation and landcover agreement than population-based donut geomask-
ing. Distance-based donut geomasking performs similarly to street masking, though at the cost of reduced privacy 
protection.

Conclusion: Street masking competes with, if not out-performs population-based donut geomasking and does so 
without requiring any supplemental data from users. Moreover, unlike most other geographic masks, it significantly 
minimizes the risk of false attribution and inherently takes many geographic barriers into account. It is easily accessi-
ble for Python users and provides the foundation for interfaces to be built for non-coding users, such that privacy can 
be better protected in sensitive geospatial research.

Keywords: Geographic masking, Geoprivacy, Street masking, OpenStreetMap, Geomasking, Osmnx, Donut 
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Background
Maps are often key figures in academic publications but 
can lead to privacy violations when they contain sen-
sitive information, such as the home locations of HIV 
patients or victims of domestic violence. Indeed, Curtis 
et al. [7] demonstrated over a decade ago that such points 

in maps can be reverse-engineered into real home loca-
tions, thereby exposing private information to the public. 
It is due this fact that geographers have been developing 
techniques known as geographic masks since 1999 that 
allow researchers to publish sensitive points in a repre-
sentative way without putting any individual’s privacy 
at risk [2]. For instance, when publishing maps contain-
ing points that represent home locations of COVID-19 
patients, doing so without using geographic masks may 
allow others to discover the identity of those patients, 
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constituting a major breach of privacy. Using geographic 
masks to anonymize those home-address points before 
publishing the map, however, would safeguard patient 
privacy while also communicating potential infection 
hotspots. This article describes a new geographic mask 
called street masking that uses a highly novel, network-
based approach to allow researchers to quickly, easily, 
and robustly protect privacy in their maps.

Early geographic masks included random perturbation 
and affine transformations [2, 15]. Random perturbation 
works by relocating points at random within a buffer of 
a set radius (such as 250 m). Affine transformations, on 
the other hand, could include translating, rotating, or 
scaling point patterns either globally (e.g. transforming 
the entire point pattern at once) or locally (i.e. dividing 
the point pattern based on a grid and transforming each 
cell differently). Unfortunately, both of these masks suf-
fer from critical weaknesses: with random perturbation it 
is entirely possible that some points will only be moved 
1  m, and will therefore not adequately protect privacy, 
while for affine transformations if an attacker knows the 
identity of only a few points it becomes possible to re-
identify the entire point pattern [2, 12].

The mid-point of geographic masking largely built 
upon random perturbation and was marked by the inclu-
sion of population density into masking techniques. 
Kwan et al. [14] introduced the notion of weighted ran-
dom perturbation, wherein the radius of the buffer used 
to randomly perturb points was multiplied depending on 
population density, such that points in less dense areas 
could be masked further than points in more dense areas. 
Shortly thereafter, Hampton et al. [12] introduced donut 
geomasking, which not only used population density to 
adjust masking distances, but also set a minimum radius 
to ensure that points were displaced at least a certain 
distance, greatly improving privacy protection. Another 
innovation by Hampton et  al. worth noting is how they 
used population density to influence displacement dis-
tance. Rather than simply multiplying a pre-defined start-
ing distance based on population density, the authors 
instead calculated the maximum displacement distance 
that would be required to achieve a specific level of pri-
vacy, known as spatial k-anonymity. Essentially, spatial 
k-anonymity is a metric that represents how indistin-
guishable a point is from the background population. For 
instance, a point is 50-anonymous if 49 other people live 
closer to the masked point than the individual’s actual, 
sensitive location.

However, a shortcoming of donut geomasking is that 
it only estimates k-anonymity using population density 
within census areas, which are assumed to have homog-
enously distributed population. When population density 
is heterogeneously distributed, k-anonymity estimates 

can vastly over-estimate privacy protection [1]. Recent 
geographic masks have started to use address data in 
order to mask points based on a more precise measure 
of population density, such as the verified neighbor and 
location swapping masks [18, 22]. Rather than arbitrar-
ily displacing points, as previous masks did, these masks 
instead relocate points to actual, valid addresses. This has 
the added benefit of ensuring that points are not relo-
cated into impossible locations, such as parks or lakes. As 
a result, these masks not only provide stronger privacy 
protection, but also produce results that are more like 
the original data than previous generations of geographic 
masks.

This trade-off between the degree to which privacy is 
protected and the amount of information that is lost due 
to masking is a central issue that all geographic masks 
must grapple with. In fact, the desire to maximize this 
trade-off has likely been the primary driver for the devel-
opment of geographic masks. The enabling component 
for this development, however, has been supplemental 
data, such as census-based population data in donut geo-
masking and weighted random perturbation and address 
points in location swapping and verified neighbor.

Despite the great success to which supplemental data 
have been used, they nevertheless place an added bur-
den on users who must find, clean, use them. While some 
may consider this burden irrelevant given the impor-
tance of protecting individual privacy and upholding 
research ethics, the reality is that many researchers forgo 
geographic masking entirely [11, 13]. In 2014, Kounadi 
& Leitner found that roughly half of the maps contain-
ing sensitive data published in journal articles used no 
masking whatsoever. A later study found similar results 
in sexual health journals [11]. One major contributing 
factor to this is likely a lack of education on the geopri-
vacy risks of maps. Another, however, is that geographic 
masking is an onerous task with a lack of accessible tools, 
poor documentation outside of academic literatures, and 
dependencies on supplemental data that are not always 
readily available. While there have been efforts that seek 
to ameliorate the former two issues [20], there is also a 
need for strong geographic masks that minimizes the 
burden posed by supplemental data.

This article takes up this task by introducing a tech-
nique called street masking that leverages road network 
data to strongly mask sensitive points. Rather than 
requiring users to download (and potentially clean, pro-
cess, and join) population or address data, street masking 
automatically downloads OpenStreetMap road network 
data and uses it to intelligently mask points, all while 
producing results that are competitive with population-
based methods. Moreover, street masking also addresses 
the concern recently raised by Seidl et al. [19] that most 
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geographic masks introduce the potential for false attri-
bution, wherein a map-reader mistakenly attributes a 
sensitive attribute to an individual living at the masked 
location. As street masking moves points to nodes in the 
road network, the possibility of a masked point being 
falsely attributed to a particular household is greatly min-
imized. Finally, we have made street masking available as 
an easily installable Python package.

Methods
Data
In order to test the street masking method, synthetic 
data were generated in Vancouver, Surrey, and Kam-
loops, in British Columbia, Canada. These three cities 
were selected based on their population characteristics. 
Vancouver is a major city housing over 630,000 people, 
with relatively high population density across the city 
[10]. Surrey is part of the Metro Vancouver region, and 
has a population of over 550,000. While Surrey’s popu-
lation is only slightly lower than Vancouver’s, it is much 
less dense and more heterogeneous, with population 
centers towards the north, south, and eastern areas of 
the city, and large agricultural areas occupying its center. 
Finally, Kamloops is a city in the interior region of Brit-
ish Columbia, with a population of just over 90,000. The 
population distribution in Kamloops is notable as the 
city’s physical geography has led to long tendrils of popu-
lation that grow outward from a central downtown core 
(Fig. 1). This creates challenges for geographic masking, 
as points are more likely to be displaced into rivers or 
mountain-sides than in Surrey or Vancouver where the 
population is more closely and contiguously distributed.

We chose to create synthetic data for this analysis 
rather than use actual sensitive health data, which would 
prevent us from sharing the evaluation data, a common 
practice in the geographic masking literature [1, 6, 22]. 
Nevertheless, data can be synthesized to closely simu-
late a range of potential health events, such as clusters 
of infectious disease. In this case, we created clusters 
through a process similar to Zhang et  al. [22]. Address 
points were downloaded from OpenAddresses.io [17], a 
repository of open address point data. We then catego-
rized the points in each study area into quintiles based 
on population density from the 2016 Canadian census, 
before sampling one point from each quintile. This was 
done in order to create clusters across a range of popu-
lation densities. Two buffers were created around each 
sample point with radii of 500 m and 2500 m. A 10% sam-
ple was taken within the 500 m buffer, and a 5% sample 
was taken within the 2500 m buffer. Finally, a 2.5% back-
ground sample was taken across the entire study area. 
This resulted in a total of 7206 address points in Vancou-
ver, 4614 in Surrey, and 2433 in Kamloops, each of which 

are displayed in Fig.  1. While these data are synthetic, 
they nevertheless allow us to compare street masking to 
other established geographic masks, and their clustered 
nature make them generally representative of many real-
world use cases where geographic masking may be used, 
such as research into the geographic context of geocoded 
patient data.

The street masking method
Street masking uses a network-based approach to geo-
graphic masking for three primary reasons. First, road 
network data is more easily retrievable than census or 
address data, and is also widely available across the globe 
[3, 16]. If a mask can be developed that can adequately 
leverage road networks to displace points similarly to 
population density-based methods, it would be advan-
tageous for simplifying the process of geographic mask-
ing. Second, by displacing points to street networks 
rather than randomly or to other houses, the chances 
of false attribution are significantly reduced [19]. Lastly, 
road networks generally conform to geographic barriers 
such as rivers or cliffs, and so by traversing the network 
when geographic masking rather than randomly displac-
ing points, these barriers are to a large extent taken into 
account; a point will not be displaced from the top of cliff 
to the bottom or from one side of a river to another with-
out a road/bridge connecting them.

Our street masking method (Fig.  2) begins by first 
downloading the OpenStreetMap driving network sur-
rounding the input points using OSMnx [5]. OSMnx also 
cleans the network to remove nodes that have no edges 
and reduce the number of extraneous nodes “by remov-
ing all nodes that are not intersections or dead-ends” 
[4]. This step is necessary as raw OpenStreetMap data 
includes many nodes along street segments, particularly 
as they curve, that would otherwise function as noise in 
our method. Next, each sensitive point is snapped to the 
nearest node in the graph (i.e. an intersection or dead-
end),1 which becomes the starting node. While this pro-
vides a base-level of privacy protection, the main purpose 
of this step is to prepare the data for the main masking 
process.

The main masking algorithm starts by first building a 
pool of the closest used-defined-number of nodes (called 

1 Careful consideration was given to the inclusion of dead-ends. In some spi-
nal, suburban street networks, for instance, it is possible that snapping a point 
to a dead-end would reduce the overall masking distance. However, given that 
we use the average network distance to the closest X nearest nodes, it is also 
possible that snapping to a dead-end would increase the masking distance 
because the distance to other nodes is farther. Given this complexity, as well 
as the fact that snapping points is only the first step before a much larger dis-
placement step, we decided to include both dead-ends and intersections.
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the search depth value as it controls the depth of the 
network the algorithm takes into account) based on the 
network distance (in meters) from the starting node. The 
average of these distances is then calculated and is used 
as the target displacement distance. Finally, the algorithm 
selects a node from the pool whose network-distance 

from the starting node is closest to the target displace-
ment distance. In other words, the algorithm masks a 
point by determining the average network-distance to 
its x nearest neighbors and finding the road intersec-
tion (node) that is closest to this average value, with the 
expectation that this average distance would typically be 

Fig. 1 A map depicting the points that were generated in Vancouver (a), Surrey (b), and Kamloops (c, Inset) and used for evaluating each 
geographic mask
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further in rural areas than in urban areas where streets 
are more dense.2

We coded our street masking method into an easy-to-
use, parallelized, open source Python package that takes 
in a search depth value and set of points as a geodata-
frame (a common spatial format in Python), and then 
returns the resulting masked geodataframe. It can be 
easily installed using pip (a package manager for Python) 
by simply entering pip install maskmypy. This code is 
also available in the Additional file 1. A Python script for 
performing street masking, including loading an input 
shapefile and saving the result, requires only 6 lines of 
code:

Evaluation criteria
We chose to evaluate the street masking method against 
donut geomasking, both with and without popula-
tion density taken into account. Donut geomasking, as 
originally described by Hampton et  al. [12], randomly 
displaces points between an outer and inner radius, 
as determined by a target k-anonymity value and the 
underlying population density. In other words, instead 
of selecting a target distance of 300 m, donut geomask-
ing uses a target k-anonymity value, and calculates the 
displacement distance required to reach that target 
k-anonymity based on the underlying population density. 
However, since its publication donut geomasking has also 
been understood as simply random perturbation with 
an additional minimum displacement distance (e.g. ran-
domly displace the point between 50 m and 250 m buff-
ers, forming a donut shape) [21]. We refer to the former 
as population-based donut geomasking, which scales 
masking distances based on population density, and the 

Fig. 2 A graphic illustrating the street masking algorithm. Note that the top point is in a low-density area, the middle point is in a high-density 
area, and the bottom point is in a medium-density area. As a result, the top point is moved the furthest distance after masking, the middle point is 
moved the least distance, and the bottom point is moved a medium distance

2 Notably, this algorithm evolved significantly throughout development of 
the street masking method. For instance, we tested using (biased) random 
walks along the network, setting upper and lower Euclidean distance limits, 
creating ‘rings’ of nodes based on their node-depth from the starting-node 
and randomly selecting a node on a target ring, etc. Eventually, however, the 
method became over-engineered with significant path dependency, and so we 
restarted with the simpler algorithm described above that, after minor tuning, 
out-performed all previous attempts.
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latter as distance-based donut geomasking, which uses a 
single (and relatively subjective) range of potential mask-
ing distances. Both provide significantly more privacy 
protection than ordinary random perturbation, as the 
minimum displacement distance prevents against points 
being randomly displaced only 3 m, for instance.

Distance- and population-based donut geomasking 
were selected as they represent what could be done 
with slightly less (i.e. no data) and slightly more (i.e. 
population density) data than is required with street 
masking, which requires no data from the user and 
instead automatically retrieves them from OpenStreet-
Map. To determine the appropriate testing parameters, 
we performed street masking with a search depth of 
10, 20, and 30 nodes within each of our three study 
areas and determined the median (euclidean) dis-
placement distance for each (Vancouver: 10n = 167 m, 
20n = 217  m, and 30n = 271  m; Surrey: 10n = 185  m, 

20n = 256  m, 30n = 309  m; Kamloops: 10n = 198  m, 
20n = 280  m, 30n = 341  m, where n refers to search 
depth). We then found parameters for distance- and 
population-based donut geomasking that resulted in 
similar (± 5%) median displacement distances. These 
are listed in Table  1. The minimum displacement dis-
tance for each donut geomask was set to 25% of the 
maximum distance.

K-anonymity was measured to assess the degree of 
privacy protection for each mask. Instead of estimat-
ing k-anonymity using census-based population data, 
we used address points and calculated k-anonymity 
based on these. Specifically, we created a buffer for 
each masked point with a radius equal to the actual 
displacement distance from that masked point to its 
original location. K-anonymity is equal to the number 
of addresses that fall within this buffer [1]. While these 

Table 1 Detailed results of testing each mask based on three different tiers of privacy protection

Parameters are search depth, maximum displacement distance in meters, and maximum k-anonymity for street masking, distance-based donut geomasking, and 
population-based donut geomasking, respectively

Mask & parameters K-anonymity Displacement distance (m) Landcover agreement

Area Mask Params K-25 K-50 K-100 K-200 Avg Med Min Max % of Points

Vancouver, n = 7206 Street 10 94.4 79.7 50.5 16.2 168.8 166.9 38.0 536.3 83.4

 Dist-based donut 225 94.0 82.6 55.0 10.8 168.6 175.2 57.4 225.0 83.9

 Pop-based donut 700 94.9 85.3 52.2 8.0 174.0 160.9 30.5 2814.0 84.9

Street 20 98.6 93.7 77.5 40.7 220.7 216.6 36.7 720.8 82.7

 Dist-based donut 275 97.2 91.0 73.0 36.6 206.8 215.4 73.0 274.9 82.3

 Pop-based donut 1200 98.0 94.1 80.2 39.3 228.3 210.7 52.9 4259.6 83.0

Street 30 99.0 96.6 88.2 64.7 270.2 271.1 36.7 949.8 79.7

 Dist-based donut 350 98.6 95.6 86.3 62.3 261.9 270.8 90.5 350.0 81.6

 Pop-based donut 2000 98.9 97.0 91.2 70.7 294.3 271.3 65.2 5018.7 81.4

Surrey, n = 4614 Street 10 90.3 71.0 37.5 7.7 203.5 184.6 37.6 3946.9 90.5

 Dist-based donut 225 82.0 59.2 22.1 0.4 168.8 176.0 59.1 225.0 87.2

 Pop-based donut 500 91.9 73.7 35.2 10.4 280.4 185.3 41.9 7720.1 85.0

Street 20 97.1 89.3 68.7 30.8 279.4 255.8 44.3 3946.9 88.8

 Dist-based donut 325 92.0 81.4 57.7 21.5 244.6 253.8 83.5 325.0 85.0

 Pop-based donut 1000 96.7 90.7 70.3 30.6 398.8 263.8 55.4 11165.9 81.7

Street 30 97.7 93.6 81.6 50.1 332.7 309.1 47.2 4138.3 88.4

 Dist-based donut 375 94.1 85.4 67.6 34.7 281.5 293.7 99.5 375.0 83.7

 Pop-based donut 1500 98.1 94.5 83.4 51.5 486.4 321.8 71.2 13731.0 79.4

Kamloops, n = 2433 Street 10 93.3 80.3 51.5 22.0 230.7 198.2 34.1 3901.6 75.7

 Dist-based donut 250 87.1 71.3 39.8 3.7 186.9 195.3 64.0 250.0 73.6

 Pop-based donut 400 93.7 82.4 49.6 16.7 449.8 202.8 45.4 20145.7 66.2

Street 20 97.7 92.8 77.2 45.7 320.3 280.3 32.6 5123.9 70.9

 Dist-based donut 350 93.5 83.9 64.9 31.6 260.5 270.3 90.6 349.9 68.0

 Pop-based donut 800 97.7 92.6 79.2 45.0 637.5 288.6 63.8 27807.6 63.2

Street 30 98.7 96.2 87.7 62.9 385.7 340.6 56.3 7020.7 68.6

 Dist-based donut 425 94.8 88.4 75.2 50.3 318.4 332.4 112.2 424.9 64.2

 Pop-based donut 1100 97.7 94.7 86.4 59.7 752.9 339.5 111.8 34597.7 60.8
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address data do include non-residential addresses, they 
provide more precise measurements of k-anonymity 
than census-based estimates, which has been shown to 
be inaccurate especially when the underlying popula-
tion distribution is heterogeneous [1]. For each mask, 
we calculated the percentage of masked points with a 
k-anonymity equal to or greater than 25, 50, 100, and 
200.

Finally, we assessed information loss based on dis-
placement distance, spatial clustering, and landcover 
agreement. Displacement distance simply refers to the 
distance between the masked point location and its 
original location. Spatial clustering was measured to 
99% confidence using Ripley’s K function in ArcGIS Pro 
[9]. Ideally, masked points should exhibit the same level 
of clustering or dispersion as the original point pattern. 
We tested clustering across five distance bands using 
200 m increments and simulated outer boundary values. 
Finally, landcover agreement was based on Zhang et  al. 
[22]. We used landcover polygon data from DMTI Spa-
tial [8], which classifies areas according to one of seven 
landcover types (residential, waterbody, parks, com-
mercial, government and institutional, open area, and 
resource and industrial), and calculated the percentage 
of masked points that fell within the same landcover type 
as their original location. Notably, these landcover types 
do not include road. As such, landcover agreement func-
tions as another measure of information loss describing 
how the geographic context of data may change due to 
geographic masking. Given that many geographic masks 
displace points completely at random and in doing so 
may displace points into waterbodies or relocate them 
from urban areas to rural ones, for instance, we believe 
landcover agreement to be an important supplementary 
metric to include beyond just displacement distance and 
clustering.

Results
Results (Table  1) indicate that regarding privacy pro-
tection, measured using k-anonymity, street masking 
performs relatively on par with both population- and 
distance-based donut geomasking in Vancouver. In Sur-
rey, the privacy protection offered by distance-based 
donut geomasking starts to fall short of the other two 
masks, while in Kamloops this effect is only made more 
dramatic. Street masking, however, achieves generally 
similar k-anonymity values as population-based donut 
geomasking across all three study areas and at all levels 
of k-anonymity.

While median displacement distance was used as a 
control between masks, average displacement distance 
was highest for population-based donut geomasking, 
and lowest for distance-based donut geomasking across 

all masking variations. This was most prominent in Kam-
loops, where the average displacement distance of popu-
lation-base donut geomasking was roughly twice that of 
street masking. Given the similar levels of privacy pro-
tection, this suggests that population-based donut geo-
masking over-displaces many points. This is likely due to 
points in low-population-density dissemination blocks 
being displaced extreme distances, despite surrounding 
blocks being quite dense. This is confirmed in the maxi-
mum displacement distances, where population-based 
donut geomasking displaces points as far as 34.6  km in 
Kamloops.

Landcover agreement, measured by the percentage 
of points that are displaced to the same landcover type 
after masking, was once again similar in Vancouver, but 
diverged as population densities decreased and popula-
tion heterogeneity increased in Surrey and Kamloops. In 
these areas, street masking performed best while popu-
lation-based donut geomasking performed worst. This 
is likely due to the fact that donut geomasking randomly 
displaces points, including into waterbodies or fields, a 
factor only exacerbated when points were over-displaced 
by population-based donut geomasking.

Spatial clustering is described in Figs. 3, 4, 5. Note that 
due to the high number of masks that were tested, these 
figures only describe street masking with a search depth 
of 20 (i.e. the mid-level) and the equivalent donut geo-
masks. Clustering graphs for the other masking parame-
ters are available in Additional file 1. As expected, points 
are highly clustered across all study areas in both the 
original and masked datasets. Like the previous results, 
the three masks tended to produce relatively similar 
results in Vancouver, where population density is highest 
and most homogeneous. Overall, distance-based donut 
geomasking tends to generate clusters most like the origi-
nal data, though once again this comes at the cost of pri-
vacy protection as it achieved the lowest k-anonymity 
values. Population-based donut geomasking, on the other 
hand, tends to significantly increase the degree of clus-
tering outside of Vancouver, particularly in Kamloops. 
Finally, street masking preserves clustering nearly as well 
as distance-based donut geomasking but does so without 
sacrificing privacy protection.

Discussion
With street masking’s on-par performance to popula-
tion-based donut geomasking in Vancouver and strong 
privacy protection and reduced information loss in Sur-
rey and Kamloops, it is clear that street masking is able 
to not only compete with but improve on population-
based donut geomasking without requiring users to find 
and load any supplemental data. Indeed, a chief benefit of 
street masking is ease of use. Whereas other geomasking 
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methods require finding additional population, address, 
and/or administrative-boundary data in order to intelli-
gently mask points (both in terms of distance and plau-
sible locations), street masking automatically acquires 
the data it needs for the user. Moreover, as this data were 
retrieved using OpenStreetMap, they are highly available, 
including in many low-data environments where supple-
mental data, address data in particular, can be difficult or 
impossible to acquire [3, 16].

Another benefit of Street Masking is its ability to largely 
account for landscape features and geographic barriers. 
For instance, geographic masks that utilize administra-
tive boundaries to contain points are unable to prevent a 
point from being displaced across a waterway, cliff, major 
freeway, or other geographic barrier. With street mask-
ing, points are moved according to the road network, 
helping to preserve topological continuity between origi-
nal and masked locations.

A recent article by Seidl et al. [19] explores the risk of 
false attribution when geomasking. This occurs when 
a map-viewer is unaware that the data have been geo-
graphically masked and makes the mistake of assum-
ing that a point over a particular household actually 
describes that household. While their solution to this was 
to develop the Voronoi mask, Street Masking potentially 
provides even greater protection against false attribution 
as points are displaced to intersections (which may have 
many homes nearby) rather than property boundaries 
(which typically straddle only two homes).

Nevertheless, it must be noted that we chose not to 
compare street masking to address-based masks such as 
location swapping and verified neighbor masks [18, 22]. 
This was partly due simply to feasibility of coding and 
testing all permutations of the masks we already had, 
but also because we see these masks as having a different 
use-case. Address-based geographic masking is likely to 

Fig. 3 Results of Ripley’s K function analysis for clustering at different spatial scales in Vancouver. Results between the masks are fairly comparable, 
though population-based donut geomasking tends to increase clustering more than other methods
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perform better than street masking but requires data that 
are often difficult to find or entirely unavailable; street 
masking, on the other hand, taps into crowdsourced road 
network data that are highly available and can be auto-
matically acquired, while still providing results that are 
competitive with population-based donut geomasking. 
Indeed, geographic masking’s biggest issue is arguably 
not a lack of adequate methods, but a lack of adoption 
of those methods [11, 13]. We believe street masking 
is more equipped to ameliorate this adoption problem 
given its ease of use and efficacy. Regardless, for the most 
optimal results, address-based geographic masks are 
likely still the best solution assuming false-attribution is 
not a concern.

Another drawback is that street masking is not yet 
easily accessible to those without Python coding skills. 
While Python is a highly popular language and our 

method can be executed in a mere 6-line script using 
entirely open-source tools, an easy-to-use graphical user 
interface (GUI) is required to make the method more 
accessible. This is a clear area for future work. Neverthe-
less, the method and Python package offered in this arti-
cle are the necessary first steps towards that goal.

Depending on research needs it may also be undesir-
able for points to be displaced onto roads. In such cases, 
verified neighbor or location swapping masks should 
be used. Likewise, street masking likely biases points 
towards more urban and built landcover types. Depend-
ing on the exact landcover data being used (such as highly 
precise satellite data), this may be problematic, in which 
case the above masks are again recommended. With our 
landcover data from DMTI Spatial Inc [8] street masking 
performed relatively well given its larger (roughly) block-
level coverage and lack of roads as a explicit landcover 

Fig. 4 Results of Ripley’s K function analysis for clustering at different spatial scales in Surrey. Results here diverge more than in Vancouver due 
to increased population heterogeneity. Population-based donut geomasking significantly increases clustering compared to other masks. Street 
masking and distance-based donut geomasking produce similar results to the original data
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type, whereas with donut geomasking points were more 
often displaced to entirely different categories.

The final and perhaps most significant drawback of 
street masking is that the search depth value is not 
intuitive, and results in differing masking distances as it 
adapts to the local road network configuration and den-
sity. This is of course by design but is also a drawback. 
Within the three study areas we tested, a search-depth of 
30 resulted in relatively strong k-anonymity values, but of 
course a blanket recommendation cannot be made as this 
depends on the sensitivity of the data and other factors. 
Fortunately, the street masking package easily calculates 
displacement distance, allowing users to explore the dis-
tances that result from larger or smaller search depth val-
ues in their own study areas. With this information, they 
can mask their data as easily as distance-based donut 
geomasking but with far greater efficacy.

Conclusion
This study developed a method of geographic masking 
that uses OpenStreetMap road network data to protect 
privacy, called street masking. By using OpenStreetMap 
data rather than population data, we were able to pro-
duce an open-source Python package that can automati-
cally retrieve the required supplemental data for users 
transparently and have done so with results that are 
highly competitive with, if not slightly better than, popu-
lation-based donut geomasking. In fact, results show that 
the method improves with increased population hetero-
geneity, a condition that is typically challenging for geo-
graphic masks. Other benefits of the method include that 
it is inherently able to account for geographic barriers, 
such as cliffs or rivers that might divide the population, 
while also minimizing the risk of false-attribution.

Fig. 5 Results of Ripley’s K function analysis for clustering at different spatial scales in Kamloops. With the most heterogeneously distributed 
population out of the three study areas, results here are most dramatic. Population-based donut geomasking greatly altered clustering. 
Distance-based donut geomasking is most like the original data, though street masking is not far behind
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Given that the biggest issue in geographic masking 
right now is arguably a lack of adoption [13], the fact that 
street masking can achieve these results without requir-
ing any supplemental data from users is a major step 
forward in geographic masking research. While recent 
research has sought to make more accessible masking 
tools [20], these tools are limited by supplemental data 
requirements. Street masking provides a novel way for 
coding-users to easily and yet strongly mask their data 
while also setting a foundation for future, easy-to-use 
interfaces to be created on top of it that support non-
coding users.
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