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METHODOLOGY

sparrpowR: a flexible R package to estimate 
statistical power to identify spatial clustering 
of two groups and its application
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Abstract 

Background:  Cancer epidemiology studies require sufficient power to assess spatial relationships between expo-
sures and cancer incidence accurately. However, methods for power calculations of spatial statistics are complicated 
and underdeveloped, and therefore underutilized by investigators. The spatial relative risk function, a cluster detection 
technique that detects spatial clusters of point-level data for two groups (e.g., cancer cases and controls, two expo-
sure groups), is a commonly used spatial statistic but does not have a readily available power calculation for study 
design.

Results:  We developed sparrpowR as an open-source R package to estimate the statistical power of the spatial rela-
tive risk function. sparrpowR generates simulated data applying user-defined parameters (e.g., sample size, locations) 
to detect spatial clusters with high statistical power. We present applications of sparrpowR that perform a power 
calculation for a study designed to detect a spatial cluster of incident cancer in relation to a point source of numerous 
environmental emissions. The conducted power calculations demonstrate the functionality and utility of sparrpowR to 
calculate the local power for spatial cluster detection.

Conclusions:  sparrpowR improves the current capacity of investigators to calculate the statistical power of spatial 
clusters, which assists in designing more efficient studies. This newly developed R package addresses a critically 
underdeveloped gap in cancer epidemiology by estimating statistical power for a common spatial cluster detection 
technique.
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Background
Geospatial study approaches are used to investigate the 
location of incident cancer cases in relation to poten-
tial sources of known or suspected environmental 

carcinogens (e.g., pesticides, industrial air emissions). By 
using specific locations of study participant residences 
(i.e., point locations), cancer incidence can be described, 
from a spatial perspective, utilizing spatial point pattern 
processes and further evaluated with statistical functions. 
The spatial relative risk (SRR) function is widely utilized 
to determine where detected spatial clustering is likely 
occurring (i.e., local clustering test statistic; 1–3) Origi-
nally designed to study the spatial variation of larynx and 
lung cancers in Lancashire, United Kingdom in relation 
to proximity to an industrial incinerator [2, 3], the SRR 
function has been applied to detect clustering in many 
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other epidemiologic investigations of cancer such as 
childhood leukemia in Ohio [4], late-stage colorectal can-
cer in Iowa [5], and breast cancer in New York [6]. Geo-
spatial approaches can improve investigations of cancer 
etiology, but the challenge is designing a study with ade-
quate power to detect real spatial clusters (versus a statis-
tical artifact) and whether spatially distributed exposures 
can explain it.

Within the context of study design, statistical power 
is used to determine if a proposed study can yield valid 
inferences. Well-designed spatial studies are of para-
mount importance, as those conducted with low power 
will use limited resources and time and will likely pro-
duce insignificant p-values and poor precision in effect 
estimates [7, 8]. Although many online tools and sta-
tistical software can directly calculate statistical power 
given study parameters (e.g., disease prevalence, effect 
size, sample size), these calculations are not adequate 
for spatial study designs as they are often oversimplified 
and ignore fundamental assumptions of spatial analyses 
(e.g., spatial autocorrelation). While the SRR function has 
been highly utilized across many diseases/spatial analy-
ses, there is currently no available power calculation for 
its local clustering statistic. None of the aforementioned 
investigations include a discussion of statistical power to 
detect local clustering [1–6].

We developed sparrpowR as an open-source R statis-
tical programming package [9] to calculate statistical 
power for the local statistic of the SRR function [1–3] 
using simulation-based techniques. sparrpowR utilizes 
available R [10] functionality to generate reproducible 
spatially clustered point-level data and further detects 
areas with highly powered spatial clusters within two 
groups (e.g., cancer case and non-cancer control loca-
tions, or two exposure groups). Our R package [9] will 
enable a more efficient and appropriate design and 
analysis of future environmental epidemiologic studies, 
increasing both the quality and impact of spatial stud-
ies. We present an application of sparrpowR to perform 
power calculations for two epidemiologic study designs. 
This application details both the flexibility and useability 
of the tool and further demonstrates sparrpowR’s capa-
bility to determine necessary sample sizes when design-
ing a study.

Methods
Power calculation algorithm
sparrpowR calculates statistical power for the local statis-
tic of the SRR function [1–3] to identify highly powered 
spatial clustering of one group relative to another. Briefly, 
the SRR function compares the pattern of two groupings 
of point locations (e.g., patients with cancer versus com-
munity controls) with the ratio of their bivariate (e.g., 

latitude and longitude) densities that are smoothed into a 
gridded surface of z locations:

where f  is the bivariate probability density of the geo-
graphical coordinates of cases of the disease across the 
study area and g is the density of controls over the same 
region [1–3]. The SRR function (Eq. 1) is commonly pre-
sented as the natural logarithm transformed log-relative 
risk function ρ(z) = log(r(z)) . The function does not 
incorporate covariates, only the spatial densities of the 
two groups. The SRR function was recently extended to 
estimate the knot (i.e., grid cell) in which the observed 
density of cases exceeds a null asymptotic normal expec-
tation [11]; the null hypothesis of which is no spatial 
clustering of one group relative to another [2] and the 
alternative hypothesis where such clustering is present:

sparrpowR utilizes built-in R [10] functionality using 
the sparr package [12] to calculate the SRR function, 
including default parameters for bandwidth (maximal 
smoothing principle [13]) and resolution (128 × 128 grid) 
that can also be user-specified if desired. sparrpowR also 
utilizes built-in R [10] functionality to generate reproduc-
ible spatially clustered data that reflect an expected study 
design. In particular, spatial data is simulated after a user 
specifies the number of expected clusters, and points 
may be generated such that they concentrate in certain 
areas (i.e., around exposure point sources) to reflect an 
expected prevalence of exposure. sparrpowR [10] can 
simulate several spatial distributions including, but not 
limited to, complete spatial randomness, uniform, and 
multivariate normal distributions using functionality 
from the spatstat package [14]. For example, the multi-
variate normal distribution for a simulated two-dimen-
sional location i with coordinates (xi, yi) is a random 
normal distance in each dimension from a center point 
with coordinates (x0, y0) based on a defined standard 
deviation (σ ) and mean zero:

Further user-defined parameters (e.g., disease preva-
lence, total sample size, detection area) give sparrpowR 
the flexibility to generate a wide variety of clustering data.

Power calculations within sparrpowR involve randomly 
simulating data that reflect expected sampling for the 

(1)r(z) =
f (z)

g(z)
,

(2a)H0 : ρ(z) = 0

(2b)HA : ρ(z) �= 0.

(3a)xi = x0 +N(0, σ)

(3b)yi = y0 +N(0, σ).
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desired study and performing realistic spatial analyses 
[15, 16]. Although simulation-based procedures may be 
computationally intensive, as simulations are repeated 
often (e.g., 10,000 iterations), study power derived in this 
manner is more reliable as it represents real data [15, 16]. 
Recent improvements to the SRR function [11, 12, 17], 
namely the asymptotic normality approximation for the 
hypothesis testing (Eqs.  2a and 2b), make the proposed 
simulation-based power calculation method feasible. The 
following steps detail the power calculation procedure 
utilized within sparrpowR:

1.	 Generate point-level data based on investigator-
defined inputs that reflect the expected study design 
(see Baddeley et al. for a detailed discussion of simu-
lated point-pattern data [14]).

2.	 Calculate the SRR function for each knot (i.e., grid 
cell) within the simulated data area.

3.	 Retain the significance status (yes/no) of observed 
spatial clustering of each knot at a given alpha level.

4.	 Repeat steps 1–3 for 10,000 iterations (user-speci-
fied) by generating new data under the same user-
defined parameters within each iteration to create a 
set of associated decisions of statistical significance. 
Within each iteration, the control locations are re-
simulated to provide a new control distribution fol-
lowing the same parameters in Step 1, on which the 
SRR function is recalculated (Step 2). Importantly, 
the case locations are simulated once in the first iter-
ation, and the exact same case distribution is used in 
all subsequent iterations.

5.	 Record the number of simulations in which the null 
hypothesis is rejected.

6.	 At each knot, calculate statistical power as the pro-
portion of rejected null hypotheses from the set 
of simulations noted in step 5 to give the final local 
power results.

The power calculation output is a local spatial measure 
(i.e., at each grid cell), not a global spatial measure (i.e., 
across the entire study area), which identifies local zones 
within a study area that are sufficiently powered to detect 
spatial clustering.

The sparrpowR package [9] is self-containing and pro-
vides functions to simulate data (spatial_data), calculate 
statistical power (spatial_power), and visualize the data 
inputs and outputs (spatial_plots). Other examples and 
additional information about computing efficiency and 
parameter selection for the sparrpowR package are avail-
able in the vignette on the Comprehensive R Archive 
Network [9].

Data application #1: surveillance
To demonstrate the utility of sparrpowR to calculate the 
power for the local statistic of the SRR function, we con-
ducted an example surveillance-based power calculation 
for the detection of spatial clusters of non-Hodgkin lym-
phoma (NHL) cases in relation to a concentrated animal 
feeding operation (CAFO), a point source for numerous 
environmental emissions [18]. The purpose of this exam-
ple power calculation was to determine if a surveillance 
study is sufficiently powered to detect an observed spa-
tial cluster of incident NHL cases near the CAFO within 
a prospective cancer cohort.

NHL cases
A recent study by Fisher et  al. found an association 
between NHL incidence in Iowa farmers and the inten-
sity of animal production from CAFOs within 5  km of 
their residence [19]. Here, we used a population-based 
prospective cohort of postmenopausal women in the 
Iowa Women’s Health Study (IWHS; enrolled in 1986 
with follow-up for cancer incidence through 2009; 18) 
to compute the SRR function (analogous to a case–con-
trol comparison) for 8 incident NHL cases identified 
within 5  km of an Environmental Protection Agency-
defined medium-sized CAFO (> 800 animal units; 19) 
in Fort Dodge, Iowa from the Iowa Department of Nat-
ural Resources [22]. Within the given study window 
around Fort Dodge, the IWHS enrolled 436 women, 
which equates to a study incidence of NHL of 1,834.9 per 
100,000, almost 80-fold larger than the estimated 2009 
U.S. national incidence of NHL (20.6 per 100,000 [23]). 
Based on the elevated incidences of NHL in the study 
area and study parameters, we wanted to determine if the 
study in the IWHS is sufficiently powered to detect true 
spatial clusters of incident NHL cases. To protect person-
ally identifying information, we did not use the “true” 
locations of the NHL cases from IWHS. Instead, we used 
a single simulation to set the location of 8 NHL cases 
assuming a multivariate normal (MVN) distribution with 
a standard deviation of 0.83 km centered at the identified 
CAFO.

Simulated controls and power calculation
To conduct power calculations based on the population 
density of Fort Dodge, Iowa, we used population esti-
mates from the 2010 U.S. Decennial Census in census 
tracts 10  km from our identified CAFO [24]. Based on 
the population density within the study window (Fig. 1), 
we simulated controls assuming an MVN distribution 
with a standard deviation of 1.67  km centered at Fort 
Dodge, Iowa (Fig. 1). Based on this sampling scheme, it is 
clear that the simulated control locations reflect the true 
population density around the identified CAFO.
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We simulated 10,000 random iterations using an over-
all sample size of 436 (8 cases and 428 controls) and 
calculated the statistical power for the local statistic of 
the SRR function using the sparrpowR package [9]. We 
used the default alpha level (0.05, two-tailed) and power 
threshold (0.8) within the power calculation. We per-
formed a sensitivity analysis of increased sample size to 
demonstrate the functionality of sparrpowR, holding all 
other study parameters constant. The larger sample size 
was 1,000 (18 cases and 982 controls, keeping the NHL 
incidence within 10 km of the identified CAFO of 1,834.9 
per 100,000 constant).

Data application #2: etiology
The sparrpowR package may also be used to conduct 
etiologic-based power calculations. These calculations 
are used to inform study design as they help answer ques-
tions related to the number of samples needed to have 
a sufficiently powered study of the association between 
environmental exposures and a disease outcome. We 
conducted six additional simulation scenarios with vari-
ous incidence rates and sample sizes to further demon-
strate the utility of sparrpowR. We performed new power 
calculations within the Fort Dodge, Iowa area using the 
same sampling methods and parameters as the previ-
ous calculations updating the incidence rate and sample 
size (Additional file 1: Table S1). Incidence rates ranged 
from the U.S. national rate of NHL (20.6 per 100,000) to 
the NHL incidence within 10 km of the identified CAFO 

Fig. 1  Comparison between the census tract of Fort Dodge, Iowa (Left) and the first iteration of simulated data (Right). Using sparrpowR, 8 cases 
and 428 controls were generated assuming multivariate normal distributions with standard deviations of 0.83 and 1.67 km, respectively. Simulated 
case locations are red-colored dots and simulated control locations are blue-colored dots. The identified concentrated animal feeding operation 
(CAFO) is signified by the black “X” symbol. The blue lines represent regions with radii of 5 and 10 km from the identified CAFO

Fig. 2  Results of 10,000 sparrpowR iterations simulating 8 cases 
and 428 controls assuming multivariate normal distributions 
with standard deviations of 0.83 and 1.67 km, respectively. The 
green-colored area is sufficiently powered to detect a spatial cluster 
of cases relative to controls. The blue-colored area is insufficiently 
powered to detect a spatial cluster of cases relative to controls. The 
identified concentrated animal feeding operation (CAFO) is signified 
by the black “X” and the base map is of Fort Dodge, Iowa. The blue 
lines represent regions with radii of 5 and 10 km from the identified 
CAFO
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(1834.9 per 100,000) under two sample sizes, 10,000 and 
24,000 (approximately the total 2010 population of Fort 
Dodge, Iowa).

All statistical code for the two data applications is 
available in the Online Code Repository and can be 
used to replicate our results fully.

Results
Based on the given study parameters for the first data 
application, we were sufficiently powered to detect one 
small spatial cluster of NHL cases (relative to control 
locations) to the east of the identified CAFO (Fig.  2). 
This result indicates that the study is well powered to 
detect a spatial cluster of incident NHL cases surround-
ing a CAFO in the IWHS. When we increased the 
overall sample size, the identified sufficiently powered 
zone (Fig. 3) was larger than the one detected using the 
smaller sample size from the IWHS (Fig. 2).

For the second data application, as both incidence 
rate and sample size increased, the sufficiently powered 
area to detect an NHL cluster around an environmental 
exposure also increased (Additional file  1: Figure S1). 

Given the U.S incidence rate, sampling the entire popu-
lation of Fort Dodge, Iowa does not lead to a well-pow-
ered study (Additional file 1: Figure S1b) while using an 
incidence rate half of the NHL incidence within 10 km 
of the identified CAFO, still produces sufficiently pow-
ered study areas (Additional file 1: Figure S1c, d).

Discussion
sparrpowR is an open-source R statistical package [9] that 
improves upon a well-established geospatial technique by 
further providing epidemiologists a method to calculate 
its local statistical power, facilitating the design of robust 
geospatial studies. Without statistical power calculations, 
studies may have low power to determine where a can-
cer cluster is located and may unknowingly draw spuri-
ous conclusions about an association between cancer 
incidence and environmental exposures under investiga-
tion. This tool will have an impact not only on environ-
mental cancer epidemiology but also on any discipline 
focused on detecting relative spatial clusters of point-
level data. For example, sparrpowR could be used when 
designing spatial investigations of infectious diseases, 
geographic distributions of animal species, geo-tagged 

Fig. 3  Results of 10,000 sparrpowR iterations simulating 18 cases and 982 controls assuming multivariate normal distributions with standard 
deviations of 0.83 and 1.67 km, respectively. (Left) The first iteration of simulated data. Simulated case locations are red-colored dots and simulated 
control locations are blue-colored dots. (Right) The green-colored area is sufficiently powered to detect a spatial cluster of cases relative to controls. 
The blue-colored area is insufficiently powered to detect a spatial cluster of cases relative to controls. The identified concentrated animal feeding 
operation (CAFO) is signified by the black “X” and the base map is of Fort Dodge, Iowa. The blue lines represent regions with radii of 5 and 10 km 
from the identified CAFO
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financial information, or any study that plans on utilizing 
the SRR function to detect the presence of spatial clusters 
between two groups.

The strength of the SRR function has been driven by 
its nonparametric flexibility to detect spatial clusters 
(i.e., clusters not limited to ellipsoids) [11], but this flex-
ibility presents challenges for calculating the power of 
the local statistic. Our NHL power calculation is sensitive 
to the sample size and expected sampling distribution of 
case and control groups, and the size of the study area. 
In practice, power calculations should be conducted with 
realistic sampling strategies and sample sizes to produce 
well-designed spatial studies. Future sensitivity analyses 
using sparrpowR are warranted to determine the most 
influential factors when conducting spatial power calcu-
lations. Additionally, sparrpowR calculates the power for 
only one spatial statistic, the SRR function. Although there 
are power calculations available for other spatial statistics 
such as, for example, Moran’s I and Cuzick-Edwards [25], 
we present the first readily available power calculation for 
the local statistic of the SRR function [1–3]. Future func-
tionality for sparrpowR includes simulating non-point 
exposures (e.g., linear network of roads as a source of air 
pollution) and multiple testing correction options.

Conclusions
Overall, sparrpowR addresses a critically underdevel-
oped gap in spatial epidemiology studies by providing 
an easy-to-implement method to calculate the statistical 
power for spatial cluster detection using the SRR func-
tion. Associations from studies that utilize our tool can 
be directly implemented into public health practice to 
improve surveillance and etiologic studies.
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