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Abstract 

Background:  Social instability and logistical factors like the displacement of vulnerable populations, the difficulty 
of accessing these populations, and the lack of geographic information for hard-to-reach areas continue to serve as 
barriers to global essential immunizations (EI). Microplanning, a population-based, healthcare intervention planning 
method has begun to leverage geographic information system (GIS) technology and geospatial methods to improve 
the remote identification and mapping of vulnerable populations to ensure inclusion in outreach and immuniza-
tion services, when feasible. We compare two methods of accomplishing a remote inventory of building locations to 
assess their accuracy and similarity to currently employed microplan line-lists in the study area.

Methods:  The outputs of a crowd-sourced digitization effort, or mapathon, were compared to those of a machine-
learning algorithm for digitization, referred to as automatic feature extraction (AFE). The following accuracy assess-
ments were employed to determine the performance of each feature generation method: (1) an agreement analysis 
of the two methods assessed the occurrence of matches across the two outputs, where agreements were labeled as 
“befriended” and disagreements as “lonely”; (2) true and false positive percentages of each method were calculated in 
comparison to satellite imagery; (3) counts of features generated from both the mapathon and AFE were statistically 
compared to the number of features listed in the microplan line-list for the study area; and (4) population estimates 
for both feature generation method were determined for every structure identified assuming a total of three house-
holds per compound, with each household averaging two adults and 5 children.

Results:  The mapathon and AFE outputs detected 92,713 and 53,150 features, respectively. A higher proportion 
(30%) of AFE features were befriended compared with befriended mapathon points (28%). The AFE had a higher true 
positive rate (90.5%) of identifying structures than the mapathon (84.5%). The difference in the average number of 
features identified per area between the microplan and mapathon points was larger (t = 3.56) than the microplan and 
AFE (t = − 2.09) (alpha = 0.05).

Conclusions:  Our findings indicate AFE outputs had higher agreement (i.e., befriended), slightly higher likelihood of 
correctly identifying a structure, and were more similar to the local microplan line-lists than the mapathon outputs. 
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Background
Of the 20 million children across the world with incom-
plete or no essential immunization (EI) for vaccine-
preventable diseases, nearly half live in countries with 
conflicts and population displacement (e.g., Afghanistan, 
Central African Republic, Iraq, Mali, Nigeria, Pakistan, 
and Somalia) [1]. Conflicts and regional instabilities gen-
erally lead to poor vaccination coverage and interrupted 
vaccine schedules [2] due to disruption of health systems 
and impeded access to care resulting in vaccine delivery 
inequities. Currently, the barriers to vaccine preventable 
disease control are less about pathogen biology and more 
about the identification of sub-populations missed by 
the Expanded Programme on Immunization and there-
fore left without equitable access to interventions like 
essential immunization and supplementary vaccination 
campaigns [3, 4]. Immunization programs miss or under-
serve hard-to-reach sub-populations for various reasons 
including geographic inaccessibility, irregular population 
migration due to regional instabilities, and nomadic life-
styles. For this reason, it remains imperative to employ 
innovative and effective technologies to improve remote 
identification of hard-to-reach sub-populations, thereby 
allowing service delivery during periods of accessibility.

Understanding the geographic distribution of target 
populations for health interventions is a critical com-
ponent of microplanning—an epidemiologic database 
aimed at delivering health-care interventions like child-
hood essential immunizations by addressing the imple-
mentation demands of a specific setting [5]. Microplans 
critically inform decisions regarding appropriate deliv-
ery strategies (i.e., fixed-post, outreach, or mobile) and 
logistics needed to reach children targeted for the inter-
vention (i.e., target populations) [6]. Each microplan is 
composed of a line-list where every row represents data 
pertaining to the geographic unit of analysis being stud-
ied while columns illustrate variables containing demo-
graphic information (example- children under 5  years 
of age, number of households to be visited, estimates of 
total resources needed, etc.). Despite the utility of cur-
rent microplans, arguments have been made for updated 
methods of microplanning that leverage Geographic 
Information Systems (GIS) and satellite imagery to gen-
erate high quality and up-to-date maps of target popu-
lation distributions and maps of built features such as 
residential structures and settlements [7, 8]. In their 

Reach Every District (RED) strategy for essential immu-
nization, the World Health Organization (WHO) and the 
United Nations Children’s Fund (UNICEF) recognized 
the need for these updated methods and outlined new 
GIS-enhanced microplanning tactics for improved loca-
tion surveillance of some populations.

In some situations, GIS-based microplanning incurs 
higher costs than traditional, non-GIS based micro-
planning; however, this does not necessarily imply cost 
ineffectiveness. A recent cost-effectiveness analysis con-
ducted in two Nigerian states determined that increased 
cost for GIS-based microplanning was mostly due to pur-
chasing additional vaccines for populations previously 
uncounted and unreached by traditional microplanning 
methods [7]. Not only does GIS-based microplanning 
save resources when executed appropriately, it also pro-
tects the lives of field workers in settings where conflict 
could compromise their security by reducing the need 
for deployment to high-risk areas [6]. When in-person 
access is safe and feasible, having field workers physically 
present in the region of interest allows for ground-truth-
ing which is needed to validate maps generated remotely 
(i.e., generated using imagery and without physical access 
to the area of interest). Supplementing microplanning 
methods with the integration of GIS technologies could 
further support other public health interventions, such 
as spraying insecticides for mosquito abatement and 
malaria prevention [9, 10] and the provision of maternal 
and child health care services [7].

To support the integration of GIS technology in pub-
lic health planning, researchers take advantage of 
high- or very high-resolution (VHR) satellite imagery 
generated by satellites like GeoEye, QuickBird, RapidEye, 
and WorldView. Sub-meter resolution imagery from 
these satellites allows analysts to digitize features such as 
buildings, rooftops, roads, nomadic camps, and informal 
settlements. The size of a population can even be mod-
eled from these footprints.

Large-scale feature digitization (e.g., digitization of 
individual structures across multiple districts or prov-
inces) from imagery without automated methods is very 
time-consuming for a small group of analysts, especially 
when the features of interest are sparse in the imagery. 
Consequently, a method of participatory data acquisi-
tion has gained popularity—the “mapathon”—which is a 
time-limited, crowd-sourced effort by a group of trained 

These findings suggest AFE may be more accurate for identifying structures in high-resolution satellite imagery than 
mapathons. However, they both had their advantages and the ideal method would utilize both methods in tandem.

Keywords:  Feature extraction, Mapathon, Essential immunization, Population estimates, Microplanning, Satellite 
imagery, Building footprints
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participants with or without formal geospatial analysis 
backgrounds. Participants, used in this paper to describe 
both the group of contributors and validators, gener-
ate spatial data of features like residential structures or 
informal settlements within a specific area of interest by 
using GIS platforms, such as OpenStreetMap and Arc-
GIS Online. Generally there is no financial incentive for 
contributions made during a mapathon [11] and anyone 
with a computer and internet connection can contrib-
ute. Consequently, humanitarian efforts frequently rely 
on mapathons to identify mobile populations and unde-
tected settlements [11, 12]. Similarly, data generated 
from mapathons are useful for detecting and enumerat-
ing populations missed during immunization campaigns; 
thereby, optimizing immunization campaign microplans. 
Mapathons also provide data that are used to map health 
facility catchment areas when merged with other key 
information [12].

An alternative method to using mapathons is auto-
mated feature extraction (AFE), a type of model-based 
feature generation, which can be semi- (i.e., some human 
support) or fully automated (i.e., no human support). 
After an initial time investment to manually develop 
training data using selected examples of features of inter-
est (e.g., man-made structures) and examples of features 
not of interest (e.g., large boulders), AFE does not require 
time-consuming and labor-intensive steps such as identi-
fying structures and placing points or drawing polygons 
manually on a computer. AFE relies on computer algo-
rithms and models to learn patterns, edges, and shapes 
of features (e.g., rooftops or settlement footprints) to 
digitize and categorize. Machine learning algorithms are 
designed to enhance performance by effectively teaching 
the computer how to extract the desired spatial data from 
imagery with both precision and accuracy. AFE has been 
leveraged for a myriad of purposes, such as mapping 
agricultural land use [13–16] and water boundaries [17, 
18], estimating human and livestock populations [19, 20], 
road feature extraction [21, 22], building feature extrac-
tion [23–29], and to support disaster relief efforts [30, 
31].

Like mapathons, AFE relies on high-resolution imagery 
for optimal performance, but image collection param-
eters can be refined to account for cloud cover, thick veg-
etation, and low spectral resolution. Additionally, using a 
time-series of images can improve the accuracy of feature 
detection by minimizing false-positives [14, 18] and is 
especially helpful when analyzing pre- and post-disaster 
impacts to roads [30] and facilities [31].

There is currently no information on how results from 
participatory mapping compare to the results from AFE; 
if researchers determine AFE to be as accurate and pre-
cise as mapathons but faster at generating spatial data, 

increasing its use could save valuable resources and time 
for public health programs without compromising qual-
ity. Additionally, as geospatial professionals gain a deeper 
understanding of the strengths of each method, future 
projects can more optimally combine the two to comple-
ment and enhance their end-products.

Disparities in equitable access to health services will 
decrease when additional sub-populations are identified 
in microplans and serviced by EI campaigns and other 
public health interventions. Here, we seek to explore and 
compare the accuracy of two methods of feature genera-
tion—mapathons and AFE—to provide evidence for the 
suitability of each method in identifying hard-to-reach 
populations vulnerable to vaccine-preventable diseases 
in inaccessible areas and whether the two methods can 
work in a complementary or synergistic way.

Methods
Both feature generation events (i.e., mapathon and AFE) 
studied here used the same satellite imagery. The study 
area comprises two districts in Central Asia that were 
inaccessible to EI at the time of the study. To protect the 
security of populations living in our study region, the 
specific geographic areas will not be disclosed. The var-
ied terrain of the urban and rural study areas included 
rocky and forested mountainous regions, low plateau 
areas with desert terrain, and some fertile plains used for 
farmland. The climate in the study area is arid to semiarid 
with low rainfall in most areas of the region. Permanent 
and temporary housing structures were visible in the sat-
ellite imagery used for the study and included small mud 
free-standing structures, larger mud-brick and stone 
compounds surrounded by walls, modern free-standing 
structures and housing complexes in urban areas, small 
cliff dwellings, and temporary tents or yurts.

Mapathon
We conducted the mapathon for this project under the 
guidance of the WHO and the Geospatial Research, Anal-
ysis, and Services Program (GRASP) at the Centers for 
Disease Control and Prevention (CDC). The mapathon 
coordinators created a dedicated ArcGIS Online (ESRI, 
Redlands, CA) hub page for enrolling and training both 
novice and experienced mappers. This mapathon resource 
repository included registration information, tutorials 
on digitizing and application use, a real-time monitoring 
dashboard to analyze participant progress, links to com-
munication channels, and sections on frequently asked 
questions. Mapathon participants from the CDC and 
WHO were recruited via emails and hardcopy informa-
tional posters. Participants logged into an ArcGIS Online 
web application with basic data editing functionality to 
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view current, high-resolution (0.3–0.5 m) satellite imagery 
downloaded from DigitalGlobe (DG) with the goal of 
identifying structures inside the two study districts.

The imagery for both districts covered a total area of 6146 
square kilometers. The entire area of interest was divided 
into 1 km × 1 km grid cells for the contributors who then 
digitized features of interest within one cell at a time. For 
each cell, contributors placed one spatially linked point on 
the center of any man-made structure that was larger than 
9  m2 in the image  (Fig.  1). If multiple structures existed 
within a compound (i.e. several structures surrounded by a 
common wall), the contributors digitized any eligible struc-
ture within the compound rather than counting the com-
pound grouping of structures as just one point. Digitized 
features could be structures used for any purpose. Addi-
tionally, contributors were instructed to place points on 
structures that seemed to be under construction, regard-
less of shape, while avoiding those that appeared to be 
destroyed. Structures partially within the grid were treated 
as within the grid and were digitized. When a contributor 
marked a cell as complete, all man-made structures larger 
than 9 m2 and visible in the imagery should have been digi-
tized as point feature class data (a discrete location repre-
sented by longitude and latitude coordinates). GIS experts 
served as validators within the mapathon coordination 
team, using a separate ArcGIS Online web application to 
validate any cells marked as complete by the contributors. 
Validators did not evaluate the quality of digitized points 
submitted by each contributor but ensured that all features 
of interest in the underlying satellite image were correctly 
digitized by contributors and made edits as needed before 
finalizing each cell. Because the mapathon contributors 
and validators had little-to-no knowledge about the setting, 
they did not make any classifications regarding the current 
use of the buildings they digitized.

Automated feature extraction
The alternative method of acquiring spatial data for this 
project leveraged semi-automated feature extraction 
(Fig. 2) using the results from machine-learning deploy-
ments on millions of structures across various developing 
countries. The results gathered from previously con-
ducted deployments supported Ecopia Tech’s (Toronto, 
ON, Canada) proprietary machine-learning models in 
generating building footprints for structures of interest 
detected in the imagery.

To support the models in extracting building footprints, 
relevant imagery was broken into a grid of 256 × 256-pixel 
chips. Within each chip, a classifier ran through every pixel 
and assigned each one a probability score for containing a 
feature of interest, using a variety of textural feature data 
from neighboring pixels in its calculations. The classifier 
algorithm used is a proprietary algorithm developed by 

Ecopia which measures the shearing of pixels along with 
color gradients to determine the likelihood that a struc-
ture falls within a pixel. Shearing in straight and/or circular 
lines can be indicative of man-made materials. If sheer-
ing, texture and contrast scores exceeded Ecopia’s internal 
threshold of 1 then the pixels were classified as likely con-
taining or being a part of a structure. The classifier algo-
rithm then digitized each structure’s boundary, using the 
confidence scores previously generated for each pixel. Any 
chips that did not contain structures were removed from 
the algorithm’s output. A team of  former geospatial pro-
fessionals and remote sensing enthusiasts who are expert 
annotators then reviewed the resulting data sets, manually 
corrected any errors, and provided any necessary updates 
to the classifier algorithm. Using a “CrowdRank” algorithm 
[32] we were able to classify users who perform better 
when compared against other users completing the same 
task. Users who regularly fall below a pre-defined bench-
mark are removed from the project in an iterative fashion 
to promote the highest accuracy possible. Informed by the 
updated and improved data, the classifier algorithm then 
iteratively reproduced the process to increase overall accu-
racy. During these iterations, the annotators continued to 
manually revise any incorrectly generated vector edges and 
updated the classifier algorithm accordingly. Furthermore, 
the annotators manually digitized obscured structures to 
reflect accurate footprints of structures of interest. Prior to 
this deployment, Ecopia Tech developed an AFE algorithm 
capable of classifying footprints and partnered with Maxar 
Technologies (Westminster, CO) to utilize their very high-
resolution imagery mosaics and guidance on categorizing 
the building footprint outputs. To accurately categorize 
footprints as commercial, compound, or residential, expert 
imagery analysts from Ecopia manually identified exam-
ples of each from the imagery to use in training data for 
the machine-learning model. Guided by discussions with 
local consultants, Ecopia defined a compound as typically 
including several structures along with a yard surrounded 
by a wall. Non-walled, free-standing structures were then 
categorized as either commercial or residential depend-
ing on other contextual factors, such as the proximity 
and presence of latrines, farmlands, vehicles, and other 
indicators of human activity (Fig.  3). The AFE algorithm 
excluded structures that were round and smaller than 9 m2 
to ensure boulders were not mistaken for structures. The 
outputs of the model were polygons drawn around the 
perimeter of all free-standing structures larger than 9  m2 
(whether categorized as commercial or residential) and 
all residential compounds (Fig.  1). Unlike the mapathon, 
compounds, regardless of the number of structures con-
tained inside, were treated as one polygon feature.

An estimate of the population inhabiting the structures 
captured by each method was calculated employing the 
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assumption that a compound includes three households, 
where each household has an average of 2 adults and 5 
children. Therefore, it was estimated that each compound 
housed an average of 21 individuals.

Accuracy assessment
The study areas were selected for two reasons: their 
geographic heterogeneity despite the low spectral 

diversity (e.g., deserts, arid mountainous, alluvial 
plains, etc.) and the inaccessibility of local ground-
truth data due to continuous insecurity.

We employed the following accuracy assessment 
techniques to determine how well each feature genera-
tion method—mapathon or AFE—captured the actual 
location of features of interest.

Fig. 1  Feature generation using two methods: mapathon (point) and automated feature extraction algorithm (polygon)
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Assessment 1
We conducted an agreement analysis of the two feature 
classes to assess matches across the two outputs. To 
ensure a uniform comparison across both sets of fea-
tures, we only considered the non-compound AFE fea-
tures and the mapathon points that were not part of a 
compound. A simple ‘select by location’ query was used 
within ArcGIS Pro, whereby both feature types, point 
and polygon, were analyzed together.

To allow for small shifts in geographic location when 
comparing mapathon points and AFE polygons, features 
within 5  m of another polygon’s perimeter were consid-
ered a match and labeled as “befriended” (Fig. 4). If a point 
from the mapathon did not fall within an AFE polygon or 

have an AFE polygon within 5 m of it, we labeled that point 
as “lonely”. Similarly, if a polygon from AFE did not have a 
corresponding mapathon point within 5 m of the polygon’s 
edge, we labeled that polygon as “lonely”. Five meter buffers 
were applied to points and polygons separately, rather than 
simultaneously, such that the consideration of a potential 
5 m shift in the location of the polygon or the point was ana-
lyzed first for one of the feature types and then the other.

Assessment 2
We conducted a subset analysis of the data from both 
feature generation methods. Two GIS experts who were 
not part of the mapathon validation team, independently 
analyzed the same set of 100 random, lonely points and 

Fig. 3  Example of free-standing structures in the study area, categorized as commercial (left) and residential (right)  (© 2020 Maxar Technologies)

Fig. 2  Sequence of steps employed for automated feature extraction (AFE)
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100 random, lonely polygons against the same high-
resolution imagery. The subset analysis was limited to 
lonely points and lonely polygons as lonely features were 
not considered to be matches from Assessment 1. The 
GIS experts did not have access to ground truth due to 
security reasons in the study region. As an alternative, 
high-resolution satellite imagery was used as the source 
of verification for their assessment. They classified points 

and polygons correctly corresponding to a structure as 
true positives (TP) based on verification against satel-
lite imagery and classified the remaining features as false 
positives (FP), also based on verification against satellite 
imagery. Finally, the true positive percentage was calcu-
lated by averaging the number of TP and FP yielded by 
the two GIS experts.

Fig. 4  Comparing the results of two feature generation methods: match assessments categorized as “befriended” or “lonely”. 1For illustrative 
purposes only. 2AFE = automated feature extraction. 3Five-meter buffers were measured around each point and measured from the edges of each 
polygon. For clarity of illustration, 5-m polygon buffers are only shown for the lonely polygon
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Assessment 3
The third accuracy assessment involved statistically com-
paring the features generated from both the mapathon 
and AFE to a microplan, considered the gold-standard 
data, shared by the local-level team from one of the 
study districts. The microplan was developed by the local 
health authorities and is created by listing out the known 
settlements in the areas targeted for vaccination and 
estimating the number of households that vaccination 
teams should expect to find in each settlement. The study 
district consisted of 44 operational sub-districts called 
clusters and one vaccination team was assigned to work 
in each cluster. The microplan included cluster names, 
number of households per cluster, number of vaccination 
teams, the population aged 0–59 months (i.e., target age 
for vaccination), and total population.

To account for differences in feature extraction tech-
niques and parameters, we analyzed residential or 
compound polygons and mapathon points. Because 
mapathon points captured structures of any use while 
the AFE and microplan indicated household structures 
of residential use only, the count of mapathon points 
per cluster was recalculated to better approximate the 
number of households in the cluster. To count only one 
mapathon point per compound, we first removed mapa-
thon points that fell inside of AFE polygons categorized 
as compounds from the analysis. We then multiplied the 
percentage of AFE compounds containing at least one 
mapathon point (83%) with the number of compounds 
in each of the 44 clusters and added that number to the 
mapathon points for each cluster, thus creating a more 
comparable dataset to the AFE polygons and microplan.

The null hypothesis for this assessment assumed no sig-
nificant differences between the average number of features 
per cluster in the microplan in comparison with the average 
number of features per cluster obtained from each feature 
generation method. To test this assumption, we conducted 
2-sample t-tests: (a) comparing the average number of 
points per cluster from the mapathon to the microplan and 
(b) comparing the average number of polygons per cluster 
from AFE to the microplan. T-statistics indicated whether 
there were significant differences (p < 0.05) between each 
feature generation method and the microplan.

Assessment 4
Population in the study area was estimated by apply-
ing the following assumptions to the mapathon and 
AFE data—A compound consists of 3 households and a 
household consists of 7 individuals. This assumption was 
based on advice from in-country colleagues. Therefore, 
population estimates were calculated based on the num-
ber of free-standing (7 individuals) residences and the 
number of compound residences (21 individuals).

Results
Descriptive statistics of mapathon and validation
The mapathon took place in August 2018 over five days 
and recruited 107 participants. Seven organizers spent 
approximately 840 h, or approximately 120 h per person, 
preparing for and conducting the event. The contribu-
tors and validators captured a total of 92,713 valid indi-
vidual structures across an area of 6146 km2 during the 
mapathon. The total number of individual structures did 
not take into account, the adjustments made by valida-
tors where mapathon points of insufficient quality were 
deleted. The number of digitized features differed widely 
between participants, with a minimum point count of 1 
and a maximum of 10,134. Participants spent a total of 
98 h digitizing, averaging 748 features per person.

Of the 92,713 structures digitized during the mapa-
thon, the vast majority (n = 79,640, 85.9%) required no 
revision by a validator, a sizeable proportion (n = 12,608, 
13.6%) were uniquely generated by the validators because 
contributors missed these structures entirely, and < 0.5% 
were edited by the validators or contributors themselves.

Descriptive statistics of automated feature extraction
The AFE process required a total of nine days to com-
plete, costing $25,000. This cost included image mosaic 
preparation, training data development, model deploy-
ment and iterations, and quality checks for a total area 
of 6146 km2. The semi-automated method identified 
53,150 individual structures and compounds. The com-
bined use of Maxar satellite imagery processing and 
Ecopia algorithms enabled the generation of build-
ing footprints and consequent categorization of those 
footprints. Due to the difference in methodologies, it 
is expected that the AFE method would result in fewer 
features than the mapathon. The AFE classifier catego-
rized 80.7% (n) of the building footprints as compound 
structures, 16.4% (n) as commercial structures, and 2.9% 
(n) as residential structures. The average area of all AFE 
polygons, representing the footprints of compounds, 
was 808.2 m2, while the average area for commercial and 
residential building footprints were 24.4 m2 and 65.3 m2, 
respectively.

Assessment 1: Comparing mapathon and AFE
Based on the matches assessed across the two feature 
generation outputs (Fig.  4), 30% (n/N) of the non-com-
pound AFE-identified structures intersected or were 
within 5  m of a mapathon point, while 70% (n/N) were 
not. Comparatively, 28% (n/N) of the mapathon points 
that were not part of a compound fell inside of or were 
within 5  m of an AFE polygon, while 72% (n/N) did 
not. A slightly higher proportion of AFE features were 
befriended (30%) than the proportion of mapathon points 
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that were befriended (28%). 2% more identified polygons 
were corroborated by a mapathon point than identified 
mapathon points were corroborated by a polygon.

Assessment 2: Subset analysis
The subset analysis demonstrated that the AFE method, 
including residential and commercial structures, had a 
higher true positive percent (90.5%) than the mapathon 
(84.5%) in identifying structures (see Appendix 1).

Assessment 3: Comparing average number of features 
per cluster against the microplan
When compared against the 25,141 total features 
included in the microplan, the mapathon identified an 
additional 20,804 features. The difference between the 
microplan and the AFE results was smaller (8142). Fig-
ure  5 shows the variation of all features, resulting from 
the three different techniques in one district of the study 
area.

The average number of features per cluster in the 
microplan was 571.39 and the average number of 
mapathon points per cluster was statistically signifi-
cantly higher (mean = 1044.20, t = 3.56, p < 0.001) as 
was the average number of AFE polygons per cluster 
(mean = 756.43, t = 2.09, p = 0.04). Both comparisons 
indicate that the microplans were missing structures in 
the clusters reviewed or that both the methods overesti-
mated the number of structures in the microplan clusters. 
The p-value was significant (alpha = 0.05) for both t-tests, 
providing sufficient support to reject the null hypoth-
esis, which assumed no significant difference between 
the average number of features obtained through both 
extraction methods and the microplan (Table 1).

Assessment 4: Estimating population
The population in the study area estimated from mapa-
thon results was 648,991 and the population based on 
AFE results was 911,302.

25141
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Total # of Households in Microplan

Total # of Polygons (Resident + Compound)

Total # of Points (Mapathon)

Feature Varia�on - District A

Fig. 5  Count of features across all clusters by feature generation or listing technique

Table 1  Two-Sample t-Test results comparing features per cluster

t-Test: two-sample assuming unequal variances

Mapathon points Microplan AFE features Microplan

Mean 1044.20 571.39 Mean 756.43 571.39

Variance 717,621.79 60,285.87 Variance 284,076.30 60,285.87

Observations 44 44 Observations 44 44

Hypothesized mean dif-
ference

0 Hypothesized mean dif-
ference

0

df 50 df 60

t Stat 3.56 t Stat 2.09

P(T ≤ t) two-tail 0.00083 P(T ≤ t) two-tail 0.04071

t Critical two-tail 2.01 t Critical two-tail 2.00
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Discussion
The results obtained from both feature generation meth-
ods were compared to estimates from the current field-
level source, a microplan line-list. Even though the study 
compared differing methodologies for feature generation, 
measures to ensure a uniform comparison were taken 
into consideration, including the exclusion of commer-
cial structures and recalculation of mapathon points 
to better approximate the number of households in the 
cluster. Results of the t-tests indicated statistically sig-
nificant differences for each technique in comparison 
with the microplan, with the total number of features per 
cluster larger than the microplan and in the case of the 
mapathon, almost twice the average. The AFE was found 
to be similar to the microplan when looking at abso-
lute feature counts. While the accuracy of the field-level 
microplan itself is unknown, it is the best comparison 
dataset the authors had to compare mapathon and AFE 
results to. AFE outputs had a higher true positive percent 
(90.5%) than the mapathon (84.5%), meaning the AFE 
was slightly better at correctly identifying a structure in 
the satellite imagery as a structure. The two techniques 
could be optimized to more accurately detect structures, 
as both were subject to false positives and an unknown 
number of false negatives. Large boulders and trees were 
accidentally digitized manually as structures in the mapa-
thon which could be avoided by using various indices 
that enhance spectral diversity and by conducting more 
training with the participants. Likewise, numerous struc-
tures amidst cliffs and hilly terrain were not captured by 
the AFE technique.

Population estimates in inaccessible regions are often 
difficult to ascertain due to dynamic population changes 
and the enumeration process being labor-intensive [12]. 
This has important consequences for planning immuni-
zation campaigns and estimating vaccination coverage 
for EI. Acquiring precise population estimates translates 
into improved vaccine delivery programs once areas 
become accessible and more accurate evaluations on the 
coverage of the campaign [33]. This analysis was able to 
produce rough population estimates for the study area 
derived from each feature generation method, based on 
structure to population ratio assumptions supplied by 
country level partners. Our overarching purpose in com-
paring both feature generation methods was to deter-
mine which method more accurately identified structures 
in high-resolution satellite imagery and how the two 
methods might best complement one another. The most 
accurate population estimates are a result of optimum 
accuracy in structure identification.

As populations and population movements continue 
to fluctuate across large geographic areas, the availability 
of up-to-date information on the distribution of human 

settlements constantly changes [34]. These are circum-
stances in which AFE that can be rerun and retrained 
quickly could make valuable contributions to data availa-
bility compared to mapathons that require time-consum-
ing manual inspections for updates. This AFE process 
required two days for mosaic preparation, and seven 
days for training data curation, model deployment itera-
tions, and quality checks. Algorithms like the ones used 
here are useful for expediting work while maintaining or 
enhancing quality; however, these algorithms are costly. 
The cost of the pilot AFE project was $25,000 across 6146 
km2 of the study area and required highly specialized 
technical expertise (Table 2). As this technology becomes 
more commonly used and explored, it is expected that 
the cost could decrease over time, making it more acces-
sible. In contrast, participatory and collaborative map-
ping like mapathons require an extensive amount of 
manpower and time, making it much harder to trans-
late into monetary costs and are therefore most valu-
able when timeliness is less of a priority, the geographic 
scale of the study is limited, and current, high-resolution 
imagery is available (Table 2).

The use of mapathons for public health interven-
tions has increased meaningfully in recent years [35]. 
Mapathons have the ability to promote effective com-
munity engagement, creating a sustainable mechanism 
of generating geographic data that can be used by local 
immunizers during campaigns, ensuring the inclusion 
of all settlements. This collaborative style of mapping 
can recruit a range of expertise and be conducted mostly 
free of cost; however, the two main methodological chal-
lenges are the uncertainty of the quality of data gener-
ated by participants and the number of hours it takes to 
organize and conduct a mapathon.

Manual feature generation and model-driven feature 
generations are also useful methods to utilize in tan-
dem to exploit the merits of each and develop a product 
superior to that which would be created by using only 
one method alone. For example, smaller scale mapa-
thon efforts are an efficient means of training data crea-
tion for AFE. Additionally, AFE footprints can be added 
to an online application to assist mapathon validators 
in assessing incoming results during a mapathon event. 
Both AFE footprints and mapathon points, or a combina-
tion of the two, can be utilized as inputs for population 
estimation models whereby structures are a proxy for 
the population. The researchers suggest that parameters, 
such as terrain type, delivery deadline, budget, human 
resources, computing resources, imagery availability, and 
requirements of the data output should be considered to 
strike an appropriate balance in using these two meth-
ods together or to decide if one method is more favora-
ble than the other for a particular project. Although 
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assessing whether the mapathons together with AFE 
provide more accurate results was outside of the scope of 
this paper, future work might include an analysis of how 
these two methods could be used in tandem.

Limitations
While the strengths of this study included the use of cur-
rent, equivalent satellite imagery across the two feature 
generation methods compared, multiple assessments to 
understand the ways in which the results of each method 
were similar and different, and a thorough logistical 
comparison on how to decide which method to employ 
(when you must choose only one), the study also had 
limitations. An important caveat for interpreting our 
findings is the lack of a true gold standard, in the form 
of ground-truthed data collection, which made it impos-
sible to calculate the false-negative rate for each method. 
Furthermore, due to the insecurity of the area, build-
ing footprints and points generated through the study 
could not be validated in the field for potential inaccu-
racies. Instead, the findings were compared to a micro-
plan line-list developed by the country’s local teams and 
considered closest to ground truth. However, microplans 
are also limited because they capture known areas of set-
tlements and may not reflect newly established or aban-
doned settlements. Finally, the over and underestimation 
of structures extracted through both techniques cannot 
be investigated on ground due to pending security access 
within the region. The authors suggest replicating this 
study in accessible areas to evaluate and compare find-
ings. Another inherent challenge in this study is the use 

of different feature extraction techniques. The mapa-
thon participants were instructed to place one point per 
unique rooftop included within compounds, while the 
AFE grouped numerous structures into one feature (as 
shown in Fig. 1) when the polygon feature represented a 
compound. This resulted in a considerable underestima-
tion of individual structures (39,563 fewer structures) 
with the AFE technique, which can be an issue if using 
individual structure counts to estimate population.

Another important limitation is the lack of equivalent, 
constant oversight and the introduction of human bias 
by the mapathon participants in comparison with AFE. 
While mapathon participants were provided with train-
ing resources and had access to constant communica-
tion with GIS experts through an online chat application, 
mapathon coordinators were not able to monitor every 
point placed by novice contributors. Mapathon valida-
tors did confirm the accuracy of each digitized point and 
made any necessary edits following submission by the 
contributors, but human error could still be present in 
this validation process. The AFE method involved in this 
study also utilized human input as part of the validation 
process after the classification algorithm was run, but the 
possibility of human error is lower than that of the mapa-
thon because much less human input was involved.

Conclusions
We presented results comparing two feature extraction 
methods with the objective of determining how accu-
rately each method identified settlements in hard-to-
reach areas for the purpose of improving EI efforts. The 

Table 2  Comparison of feature generation techniques

a Cost does not take cost of imagery into account, as imagery did not have a stand-alone procurement fee for the specific event studied here
b Population was estimated by applying the following assumptions to the mapathon and AFE data: a compound consists of 3 households and a household consists of 
7 individuals

Mapathon Indicator Automated feature extraction

A. generic indicators

60 days Time 9 days

Cost of organizational ArcGIS Online licenses (creator license = $1000/
year, Editor license = $200/year). Labor cost for coordinators (based on 
salary of coordinators). Participants were unpaid volunteers

Costa to conduct project $25,000 for 6146 km2

Specialized application development expertise required of coordinators Skill level Specialized machine-learning 
expertise required

Smaller geographic regions Area (best suited for) Larger geographic areas

B. Performance Indicators

92,713 Number of structures identified 53,150

+20,804 Difference in structures identified com-
pared to microplan

+8142

28% Non-compound match rate (%befriended) 30%

30,904 Number of compounds identified 43,395

84.50% True positive percent 90.50%

648,991 Estimated populationb 911,302
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findings suggest that the AFE is more robust in detecting 
structures when compared to the mapathon; however, 
the results need to be validated in the field when feasible 
in order to calculate sensitivity and specificity compared 
to the gold standard of data collected on the ground (i.e., 
ground truthing). AFE could be particularly useful for 
essential immunization efforts because it generates spa-
tial data from imagery rapidly and has the potential to 
be more accurate than mapathons. The geographic data 
obtained from this study will be used to improve existing 
microplans with the intent of increasing the EI coverage 
rate in our study area. Future comparison studies must 
consider a consistent methodological framework across 
both feature extraction techniques to improve the find-
ings presented in this study. Although both feature gen-
eration techniques could be improved further, this study 
is a step towards strengthening the understanding of 
potential methods of mapping population distribution in 
inaccessible areas to support public health interventions.

Appendix 1
Assessment 2: Subset analysis results.

GIS Analyst Mapathon points AFE polygons

True 
positive

False 
positive

True 
positive

False 
positive

A 91 9 94 9

B 78 22 87 13

Total 169 31 181 22

Average 
percent

84.5% 15.5% 90.5% 11%
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