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Abstract 

Background: Transgenerational epigenetic risks associated with complex health outcomes, such as autism spectrum 
disorder (ASD), have attracted increasing attention. Transgenerational environmental risk exposures with potential for 
epigenetic effects can be effectively identified using space-time clustering. Specifically applied to ancestors of indi-
viduals with disease outcomes, space-time clustering characterized for vulnerable developmental stages of growth 
can provide a measure of relative risk for disease outcomes in descendants.

Objectives: (1) Identify space-time clusters of ancestors with a descendent with a clinical ASD diagnosis and 
matched controls. (2) Identify developmental windows of ancestors with the highest relative risk for ASD in descend-
ants. (3) Identify how the relative risk may vary through the maternal or paternal line.

Methods: Family pedigrees linked to residential locations of ASD cases in Utah have been used to identify space-
time clusters of ancestors. Control family pedigrees of none-cases based on age and sex have been matched to cases 
2:1. The data have been categorized by maternal or paternal lineage at birth, childhood, and adolescence. A total of 
3957 children, both parents, and maternal and paternal grandparents were identified. Bernoulli space-time binomial 
relative risk (RR) scan statistic was used to identify clusters. Monte Carlo simulation was used for statistical significance 
testing.

Results: Twenty statistically significant clusters were identified. Thirteen increased RR (> 1.0) space-time clusters were 
identified from the maternal and paternal lines at a p-value < 0.05. The paternal grandparents carry the greatest RR 
(2.86–2.96) during birth and childhood in the 1950’s–1960, which represent the smallest size clusters, and occur in 
urban areas. Additionally, seven statistically significant clusters with RR < 1 were relatively large in area, covering more 
rural areas of the state.

Conclusion: This study has identified statistically significant space-time clusters during critical developmental win-
dows that are associated with ASD risk in descendants. The geographic space and time clusters family pedigrees with 
over 3 + generations, which we refer to as a person’s geographic legacy, is a powerful tool for studying transgenera-
tional effects that may be epigenetic in nature. Our novel use of space-time clustering can be applied to any disease 
where family pedigree data is available.
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Introduction
Autism spectrum disorder (ASD) is a complex develop-
mental syndrome that affects one in 44 children born 
in the United States as of 2021 according to the Cent-
ers for Disease Control and Prevention (CDC) [1], and 
Utah’s most recent published rate, one in 44 children 
in 2018 (https:// www. cdc. gov/ ncbddd/ autism/ addm- 
commu nity- report/ execu tive- summa ry. html) [2] . The 
disorder is characterized by neurodevelopmental char-
acteristics and behaviors that vary in severity, impact-
ing learning, communication, and social interactions 
[3–5].

The etiology of ASD is complex and includes both 
environmental and genetic factors [6–8]. As biotech-
nology has improved, the capacity for studying genetics 
and heritability has improved with the ability of genetic 
testing for ASD as more investigators have shown that 
ASD is highly heritable (heritability rates 0.61–0.73) [5, 
9–12]. Through these efforts associations from  mater-
nal and paternal genetic variants show  an increased 
risk for ASD [13, 14]. The genetic risks do  not dimin-
ish findings that environmental factors that play a role 
in disease outcomes. Ambient air pollution exposure 
from polyaromatic hydrocarbons of roadway air pol-
lutants, nitrogen dioxide, and particulate matter dur-
ing vulnerable developmental windows of growth has 
been associated with increased risk of ASD and its 
severity [15–20]. Endocrine-disrupting chemicals, ges-
tational infections, early life infections, and stress have 
also been found to contribute to the risk of ASD [21].

One intersection between the two etiologies of envi-
ronment and genes can be epigenetics. Epigenes are 
small marks or switches on DNA that can silence or 
activate portions of DNA, essentially changing gene 
expression [22, 23]. Epigenetic mechanisms have been 
proposed as potential means by which environmental 
exposures in previous generations (2 + generations) 
might exert increased risks in future generations and 
induce increased levels of heritability [24, 25]. DNA 
methylation, histone modification, and RNA silencing 
are epigenetic mechanisms by which the environment 
acts on gene expression [26, 27]. Rett syndrome and 
Fragile X syndrome (FXS) are common comorbidities 
with ASD and show firsthand evidence of epigenetic 
methylation and non-binding RNA effects as mecha-
nisms for ASD outcomes [28]. Exposures to nickel, 
cadmium, mercury, arsenic, pesticides, and other 
gases and particulates [29], all of which are considered 
environmental pollutants, have been found to impact 

epigenetics that contribute to disease outcomes across 
generations [28]. Epigenetic changes may originate dur-
ing the ancestor’s (parents, grandparents, or previous 
ancestor) vulnerable developmental stages of growth, 
such as the prenatal and birth stage when developmen-
tal programming of organs is underway, and exposures 
occur [30]. Direct-contact exposure studies for the 
exposed generation have shown neurological impair-
ment from certain exposures [31]. Perera et  al. found 
that higher concentration exposures to incomplete fos-
sil fuel combustion between gestation and 5  years of 
age resulted in statistically significantly lower IQ, and 
verbal scores [31].

Animal studies have confirmed transgenerational 
effects from environmental exposures [25]. Controlled 
laboratory settings simulating environmental pollution 
exposures from pesticides, fungicides, heavy metals, and 
petrochemicals have shown transgenerational effects in 
mice models [25, 32]. For the study of human subjects, 
challenges remain in testing the hypothesis that environ-
mental exposures of ancestors’ affect ASD outcomes in 
progeny.

Space-time cluster analysis is one method used for 
exploratory research of environmental effects for hypoth-
esis development. Among other things, it is used to 
align complex data and examine patterns of individuals 
with a disease suspected to be associated with an envi-
ronmental exposure spatially and temporally [33, 34]. It 
can be extended as an approach for examining potential 
transgenerational effects of an environmental risk factor 
by identifying spatial-temporal patterns of grandparents 
and parents of individuals that have a health outcome 
associated with an environmental factor. The approach 
can be used to identify whether ancestors of ASD cases 
shared the same space and time, implying that there 
could be common factors (i.e., environment) elevating 
the risk of ASD among their descendants [35, 36]. Some 
diseases have been shown to originate during periods 
when growth and development are most susceptible to 
environmental stimuli (e.g., gestation when program-
ming of specific organs is underway, or during childhood, 
adolescence, or preconception when rapid growth and 
development occur) [26, 30, 31, 37]. The approach can 
be further refined by focusing on these same develop-
mental ages during ancestors’ lives in space-time cluster 
analyses. Using geographic residential data to investigate 
and identify the shared environmental space and time of 
parents and grandparents related to a child diagnosed 
with ASD could shed light on increased risks, vulnerable 
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developmental windows that may be more susceptible to 
exposures and disease outcomes and provide evidence 
regarding whether there is a greater risk for disease of 
descendants associated with ancestral environmental 
exposures.

The aims of this study are to (1) Identify space–time 
clusters of parents and grandparents of children with a 
clinical ASD diagnosis and their matched controls. (2) 
Identify developmental windows of parents and grand-
parents with the highest relative risk for ASD in their 
children/grandchildren. (3) Identify how the relative risk 
may vary through the maternal or paternal line.

Methods
Study design
A retrospective space–time cluster analysis was used for 
the study design. Residential locations of parents and 
grandparents of clinically diagnosed ASD cases in Utah 
from 1989 to 2014 were compared to the residential loca-
tions of the ancestors of matched controls. This design is 
like other space-time cluster analyses of health outcomes, 
with the outcome defined as having a child/grandchild 
who has been clinically diagnosed with ASD. However, 
our design uses the ancestor generation(s) as the point of 
interest. The cluster analysis was carried out in six sepa-
rate models for six types of ancestors: mothers, fathers, 
maternal grandmothers and grandfathers, and pater-
nal grandmothers and grandfathers. For each of these 
groups, separate cluster analyses were applied for three 
periods of their lives, referred to as ‘vulnerable develop-
mental windows’, representing windows of increased vul-
nerability to adverse effects of environmental stressors: 
birth/infancy (age 0–1  year), referred to as the “birth” 
window from this point on in the paper, childhood (age 
2–11 years), and adolescence (age 12–17 years) [37] mak-
ing it a total of 18 models for analysis.

Inclusion criteria
For transgenerational research, the important exposure 
group is the ancestors of individuals with an ASD diag-
nosis. The individuals with ASD were not used in the 
modeling and analysis. They were used only to find their 
ancestors to build their family pedigrees. Ancestors of 
the ASD cases were defined as the eligible parents/grand-
parents of individuals with a clinical diagnosis of ASD 
with a birth year between 1989 and 2014. The Utah Reg-
istry of Autism and Developmental Disabilities (URADD) 
was the source of the ASD individuals. URADD classi-
fies ASD individuals using a spectrum of diagnostic bill-
ing codes (ICD 9 29,900, 29,901, 29,910, 29,911, 29,980, 
29,981, 29,990, 29,991 and ICD 10 F84.0, F84.2, F84.3, 
F84.5, F84.8, F84.9). The parent/grandparent cases used 
in the analysis were linked to the URADD individuals 

using the Utah Population Database (UPDB), an exten-
sive multi-database repository that can generate family 
pedigrees from administrative data. Non-case ancestors 
were identified in the UPDB and defined as parents/
grandparents of the randomly selected children matched 
on age and sex of case children born between 1989 and 
2014. These parents/grandparents were included in the 
study if they met the following criteria: (1) the diagnosed 
child was the first reported case of ASD in the family 
according to the records in URADD linked to the pedi-
gree data in UPDB; and (2) the parent/grandparent had 
a Utah birth certificate, a Utah medical record during 
childhood (age 1–17), and/or a record of a Utah driver’s 
license. The ASD child birth years in the data range from 
1989 to 2014, parent birth years range from 1949 to 1995, 
and grandparent birth years range from 1929 to 1977 
(Fig. 1). Family Pedigree and Data Structure is a graphic 
that gives a visual overview of our family case and none-
case selection structure.

Residential history
Residential locations for the parents and grandparents 
of the ASD case and control children were obtained 
from the UPDB. Residential locations came from several 
administrative sources from the UPDB. Specifically, birth 
certificates were used to locate parent’s and grandparent’s 
residences at their time of birth. Medical records, includ-
ing inpatient records, All Payers Claims, and Emergency 
Department records were used to place the parents and 
grandparents in childhood at residential locations. Medi-
cal records and driver’s license records were used to iden-
tify the residential location of parents and grandparents 
during adolescence.

Cluster analysis
A spatial scan statistic Bernoulli space-time binomial 
distribution model was used to identify space-time 
clusters for each group of ancestors at each of the three 
exposure windows. The Bernoulli model is a discrete 
binomial distribution scan statistic that tests for binary 
outcomes; ‘case’ or ‘non-case’ present in a population 
at any given place and time using varying size ellipti-
cal cylinder windows [38–40]. One of the advantages of 
using the Bernoulli distribution is its sensitivity to point-
level location data in case and non-case populations. 
The statistical significance of each cluster (p < 0.05) was 
estimated using Monte Carlo simulation with 999 per-
mutations representing the random placement of cases. 
A Bonferroni-corrected p-value was calculated to control 
for Type I error [41]. A scan statistic then computed and 
compared the maximum likelihood ratio from the data-
set to randomly generated permutation datasets with the 
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assumption there are no clusters. The maximum likeli-
hood ratio test was used to identify the most likely cluster 
to have occurred in the analysis. A relative risk value for 
each cluster was then calculated by using the estimated 
risk within each space-time cluster divided by the esti-
mated risk outside of the cluster [38].

Many case and non-case ancestors did not change resi-
dential locations over time, particularly between birth 
and childhood time periods. As such, a cluster aris-
ing from a factor present during the birth window may 
also be detected for the childhood exposure window of 
the parent or grandparent. To assess whether identified 
clusters within the same ancestor group were distinct or 
comprised of the same individuals, we determined the 
number of subjects in a cluster who also fall within the 
space of another cluster, as shown in the Additional file: 1 
Table S1. Overlap Analysis Results.

Residential locations were tested for spatial autocorre-
lation to identify areas that might get over-predicted in 
the binomial distribution cluster analyses. An over-pre-
diction can occur if location points are dense in any given 
area [42]. As expected, spatial autocorrelation is present 
for one area with the highest population density in the 
state. However, no spatial clusters were identified for our 
cluster areas.

Results
The study used 3957 individual ASD cases to link 7914 
parents and 15,828 grandparents over space and time, 
matched 2:1 at the case level for age and sex  (Table  1). 
Number of Subjects and Ranges of Birth Years by Rela-
tion provides breakdown of our general data and what we 
had available to use.

Our analysis found 64 space-time clusters among case 
families, 20 of which are statistically significant (< 0.05). 
The 20 clusters occurred between 1930 and 2002, seven 
with RR < 1.0 (See Figs. 2, 3, 4, 5, Table 2). Seventeen had 
p-values < 0.01, and three had p-values 0.01 < p < 0.05. 
All ancestor types of ‘parent’ or ‘grandparent’ have birth 
and childhood clusters. Only one cluster was associated 
with the Adolescent window (Maternal Grandmother, 
RR = 0.06) of 13 clusters with RR > 1 (range = 1.27–2.96). 
Nine of the 13 clusters are among grandparents four are 
among parents. Eleven of the thirteen clusters range in 
the narrow time window of 1946–1960. Parent clusters 
are larger in area size (1633–4248   km2) than the grand-
parent birth and childhood residential location clusters 
and have RR > 1.2. Three clusters among maternal grand-
parents with RR between 1.0 and 2.0 occurred in pre-
dominantly urban areas.

A cohort effect was observed between two cluster 
pairs. Spatially overlapping clusters of birth #1 cluster 

Fig. 1 Family Pedigree Data Structure
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Table 1 Number of subjects and Ranges of Birth Years by Relation

Family relation (birth year range) Percent linked to a 
residential location (%)

Total subjects Infant Childhood Adolescence

Mother (1948–1998) 91 Case, n = 3957 3957 2734 2993

Non case, n = 7914 7914 5468 5986

Father (1925–1997) 93.5 Case, n = 3957 3957 3994 2374

Non-case, n = 7914 7914 7914 4748

Maternal grandmother (1903–1982) 92.5 Case, n = 3924 1705 2861 783

Non-case, n = 7848 3410 5722 1566

Maternal grandfather (1873–1975) 92.5 Case, n = 3774 3584 3289 929

Non-case, n = 7548 7168 6578 1858

Paternal grandmother (1907–1977) 90.5 Case, n = 3924 1644 2855 1119

Non-case, n = 7848 3288 5710 2238

Paternal grandfather (1897–1977) 91.3 Case, n = 3795 1644 3336 1063

Non-case, n = 7590 3288 6672 2126

Fig. 2 Clusters of Residential Locations of Mothers of ASD Cases in Utah
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share 42.6% membership with childhood #4 cluster 
from the maternal lineage. Paternal birth cluster #11 
shares 48% membership with childhood cluster #13. 
The overlapping membership signifies individuals that 
did not move between vulnerable developmental win-
dows and contributed to statistically significant space-
time clustering for the next vulnerable developmental 
window from the same lineage group. Though most of 
the clusters overlap in space and/or time, very small, 
or no shared membership was found between develop-
mental window clusters and lineage between other sta-
tistically significant clusters (see Table 2).

Of the seven clusters with lower risk (RR < 1), five are 
from the maternal side of the family, with four divided 
between the mother and father. All are in rural areas, 
with six of the seven occurring in the northern part of 
the state (Figs. 2, 3, 4). Compared to these clusters, clus-
ters with RR > 1–1.49 are larger (area = 98–3247   km2), 

longer in duration (18 to 52  years), are predominantly 
urban, and are both maternal and paternal.

Approximately 9% of the address records were associ-
ated with PO Boxes in rural areas. We used a sensitiv-
ity analysis to assess potential bias in these locations. 
We moved cluster points 10  m in random directions 
and re-ran the space–time cluster analysis. The clusters 
remained, although rural clusters lost their statistical 
significance.

Discussion
To our knowledge, this is the first transgenerational 
space-time cluster analysis to study ASD health outcomes 
in progeny. Our study has used space-time cluster analy-
sis as a novel means of exploring transgenerational risk 
using residential locations and time windows of parents 
and grandparents of ASD case children during vulner-
able developmental windows of exposure. We identified 

Fig. 3 Clusters of Residential Locations of Fathers of ASD Cases in Utah
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20 statistically significant space-time clusters of residen-
tial locations of parents and grandparents of varying size, 
duration, and varying levels of risk. The identified clus-
ters are diverse in location, with a general trend toward 
spatially smaller sized clusters located in more urban 
areas for their time durations, and larger sized clusters 
with a mixed composition of largely rural areas with 
some urban areas based on Census designations from 
1960 to 2000 for applicable clusters [43]. Census records 
with designations predating 1960 for Utah are not avail-
able. Therefore, decisions about rurality and urbanicity 
were made based on 1960 classifications, with the pre-
sumption that rural areas would still be rural in 1960, and 
urban areas predating 1960 would still be urban in 1960 
[43].

It has been posited that the urban–rural trend in our 
results is a consequence of reporting bias, where cases 
are less likely to be reported in rural locations [44]. How-
ever, for our analysis it is the ancestors used in statistical 

calculations, not the ASD case children themselves. 
Additionally, the urban–rural trend we observed in our 
results has also been observed in Swedish ASD studies 
[45].

Transgenerational research requires extended family 
pedigree analysis with the ability to identify exposures 
of ancestral generations that are no longer present in 
affected generations [25]. This study was able to take 
the initial steps in accomplishing this in a novel way 
with the use of space-time cluster analysis of ASD 
using grandparent and parents of ASD case’s residen-
tial histories in early life. Space-time clusters provide 
the location and time of a shared space, which can be 
used to generate hypotheses regarding the underly-
ing factors associated with those places and times that 
might be the explanatory, putative, and underlying 
factors that produced the health outcome in progeny. 
The putative factors could be any condition or condi-
tions present at those locations and time periods where 

Fig. 4 Clusters of Residential Locations of Maternal Grandparents of ASD Cases in Utah
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individuals were more likely to share conditions includ-
ing environmental contaminants, including endocrine-
disrupting chemicals, dietary patterns, and nutritional 
deficiencies, or heightened psychological stress result-
ing from social or economic conditions [46]. Effects 
may be dependent on maternal or paternal inheritance 
and transmission. Paternal grandparent nutrition in 
childhood, for instance, directly impacts sex-specific 
health outcomes in grandchildren [47]. Clusters from 
our analysis with the highest RRs are from the pater-
nal grandmother and grandfathers, occurring at a time 
when it was common to use pesticides containing 
endocrine-disrupting chemicals and petrochemicals in 
the home [48]. DDT was one of the more commonly 
used pesticides and has well-documented epigenetic 
transgenerational effects [25, 49, 50].

We have several interesting findings. The Mother 
and Father clusters (see Figs.  2 and 3) generated simi-
lar results in the number of clusters, p-value, and time 

span except for the large, detected cluster encompassing 
the southwest counties. Maternal Grandmother clus-
ters results show the same cluster pattern as the mother 
and father clusters. To determine if residential location 
remained the same between generations, an overlap anal-
ysis was conducted identifying the family member and 
shared residential location between clusters and ancestor 
generation. We found that less than 5% remained in the 
same residential location as the ancestor group.

Arguably, our most interesting findings are the pater-
nal grandparent clusters with RR > 2.74. These clusters 
are at a sub-city scale in size and are highly compact in 
time and space. The clusters occurred in urban settings 
of their time, suggesting that the underlying factors may 
be associated more generally with the urban environment 
than with specific unique point sources of contamina-
tion. This is not to say that diagnostic bias in rural and 
urban areas has not occurred. Family members are also 
more likely to share the same space-time, so clusters may 

Fig. 5 Clusters of Residential Locations of Paternal Grandparents of ASD Cases in Utah
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reflect the clustering of genetic predispositions from 
clustering of family members. However, grandparents 
share fewer genes with grandchildren which suggests our 
paternal grandmother clusters and paternal cluster could 
be non-genetic factors. Because we have moved forward 
in time from grandparent-to-parent in our space-time 
cluster methodologies, it has not been possible to deter-
mine the level of relatedness between ASD proband chil-
dren, as they have not been the focus of the study outside 
of pedigree building. This creates an opportunity to study 
the specific question of relatedness and genetic similarity 
of clusters in future work.

Both genetic and epigenetic changes may be possible 
mechanisms to explain how the environment can impact 
an ancestor, which may be transferred transgeneration-
ally to a descendent. Transgenerational health outcomes 
from environmental exposures have been well estab-
lished in animal studies where multiple generations of 
animals live and are carefully observed for changes in 
health patterns [25, 51, 52]. The same types of transgen-
erational observations in human populations are more 
difficult to observe as family location data with disease 
outcomes are not readily available, but they still exist. A 
study investigating persistent ionizing radiation expo-
sure in grandparent generations, for example, found an 
increased incidence of low bone density in their young 
adult grandchildren [53]. Another notable example is 
the investigation into grandparent exposure to dioxin 
TCDD, an herbicide used in the Vietnam War as a chemi-
cal agent. Researchers found mutations that occurred in 
spermiogenesis that impacted the health of their progeny, 
including leukemias [54, 55]. Tabaco smoke exposure is 
well studied in humans and transgenerational effects are 
recognized [56].

Strengths and limitations
Strengths
The study has several strengths, most relating to the high 
data integrity and the richness of the records, allow-
ing investigators to place individuals in pedigrees, and 
throughout space and time. The dataset allows us to link 
family members over space and time at different vulner-
able developmental windows and has been key to identi-
fying space-time clustering. The rich location data within 
the records provide sufficient information to include 
thousands of records. As a result, the analysis was based 
on a large number of ancestors of ASD cases starting with 
a very complete case ascertainment for case children/
grandchildren born in Utah from 1989–2014 (n = 3957).

Using the unique linked pedigree and vast administra-
tive data in the UPDB we were able to generate a large 
dataset of residential locations for both parents and 
grandparents at three critical developmental windows 

with a high level of completeness. The dates and residen-
tial locations used are based on a consistent and reliable 
source of information—birth certificates and medical 
records, with the majority of our addresses being home 
addresses (> 90%).

Additionally, we used only clinically diagnosed ASD 
case children to create our family pedigrees. While keep-
ing our ASD cases defined by clinical diagnosis, we used a 
broad statewide dataset, as opposed to limiting the study 
to a specific county or regional jurisdiction. This decision 
was made to ensure the study included both rural and 
urban residential locations over space and time.

The study has several data limitations. The study 
includes Utah children only. The URADD dataset is 
specific to Utah and does not include any other person 
outside of the state. We omitted the sex of the case chil-
dren when compiling the pedigrees. This will be com-
pleted for a future study when permissions are granted 
to include case children in the analysis. We did not have 
any information relating to adoption. Family pedigrees 
were generated based on birth certificate information. 
If a non-biological person was on a birth certificate, we 
would not have information indicating they are adopted 
or had adoptive parents. We lacked information on the 
relatedness of grandparents to each other. This can be 
addressed in future studies. Also, we did not have com-
plete residential histories. Our study was limited to 
information in administrative records from URADD and 
UPDB. If a person moved and did not generate a record 
for that time we would not be aware of such moves. This 
omission, however, would likely serve to generate con-
servative (i.e., RR’s biased toward 1) estimates of risk.

Future studies
Our understanding of possible transgenerational factors 
affecting the risk of ASD could be improved by other 
cluster analyses to corroborate these findings. In addi-
tion, analytical studies are needed to assess the relation-
ships between environmental factors experienced by 
parents and grandparents and the likelihood that their 
descendent have ASD. Our cluster analysis results can be 
used to further study exposures of the temporal ranges 
identified, and at around the cluster locations identified 
which in so doing helps bridge the gap between transgen-
erational exposures and heritable health outcomes. Addi-
tionally, with our current results and family pedigrees we 
have compiled, we can further investigate the rural and 
urban locations of ASD case children and their location-
where-diagnosed to determine if they maintained a rural 
or urban residence that matches their ancestor identified 
in clusters.
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Given that little is known, and very little work has been 
done regarding transgenerational disease inheritance 
from environmental exposures, our space-time cluster 
study, using individual records, will add to the growing 
body of knowledge regarding this subject. The framework 
used and presented in this paper can be employed by any 
study looking for health effects from unmeasured ances-
tral space-time exposures.

Conclusion
Our study findings indicate that specific shared time and 
space of ancestors is associated with an increased likeli-
hood of an ASD diagnosis in decedents. At this point, 
these results do not provide information that can be 
directly used to identify individuals at higher risk or pro-
vide other direct benefits to individuals with ASD. The 
results to provide some evidence of transgenerational 
risks and lays the foundation for future research to iden-
tify risk factors that can lead to increased risks of ASD 
and other adverse health outcomes across generations. 
We are currently examining the associations between a 
variety of environmental conditions during critical expo-
sure windows of parents and grandparents and the risk 
of ASD in their progeny. Identifying and addressing such 
risk factors may lead to reduced risks for future genera-
tions. These implications are broad and need further 
investigating, but the time and space of interest and the 
family pedigrees of interest have been identified and can 
be studied further.”

Our strongest signal identified is from the paternal 
grandparent’s birth and childhood vulnerable develop-
mental windows. Subdividing the data by maternal and 
paternal lineage revealed surprising results of the pater-
nal grandparent clusters carrying the highest relative risk 
at statistically significant levels (P < 0.05), which is a pos-
sible signal for a transgenerational effect from birth and 
childhood exposures.
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