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Abstract 

Background COVID-19 caused the largest pandemic of the twenty-first century forcing the adoption of containment 
policies all over the world. Many studies on COVID-19 health determinants have been conducted, mainly using multi-
variate methods and geographic information systems (GIS), but few attempted to demonstrate how knowing social, 
economic, mobility, behavioural, and other spatial determinants and their effects can help to contain the disease. For 
example, in mainland Portugal, non-pharmacological interventions (NPI) were primarily dependent on epidemiologi-
cal indicators and ignored the spatial variation of susceptibility to infection.

Methods We present a data-driven GIS-multicriteria analysis to derive a spatial-based susceptibility index to COVID-19 
infection in Portugal. The cumulative incidence over 14 days was used in a stepwise multiple linear regression as the 
target variable along potential determinants at the municipal scale. To infer the existence of thresholds in the relation-
ships between determinants and incidence the most relevant factors were examined using a bivariate Bayesian change 
point analysis. The susceptibility index was mapped based on these thresholds using a weighted linear combination.

Results Regression results support that COVID-19 spread in mainland Portugal had strong associations with factors 
related to socio-territorial specificities, namely sociodemographic, economic and mobility. Change point analysis 
revealed evidence of nonlinearity, and the susceptibility classes reflect spatial dependency. The spatial index of sus-
ceptibility to infection explains with accuracy previous and posterior infections. Assessing the NPI levels in relation to 
the susceptibility map points towards a disagreement between the severity of restrictions and the actual propensity 
for transmission, highlighting the need for more tailored interventions.

Conclusions This article argues that NPI to contain COVID-19 spread should consider the spatial variation of the sus-
ceptibility to infection. The findings highlight the importance of customising interventions to specific geographical 
contexts due to the uneven distribution of COVID-19 infection determinants. The methodology has the potential for 
replication at other geographical scales and regions to better understand the role of health determinants in explain-
ing spatiotemporal patterns of diseases and promoting evidence-based public health policies.
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Introduction
The severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2), responsible for the new coronavirus 
disease (COVID-19), has caused the biggest pandemic 
of the twenty-first century. Although the mortality 
rate is considerably lower in comparison to previous 
coronavirus epidemics, COVID-19 has a higher trans-
mission rate [1] that forced the adoption of restrictive 
measures to contain human-to-human transmission, 
known as non-pharmacological interventions (NPI) [2].

The distribution of confirmed cases of COVID-19 
had an uneven spread because the incidence of new 
infections was characterized by spatiotemporal het-
erogeneity at multiple scales [3]. The spatial patterns 
can be explained by multiple factors [4–10] that justify 
spatial variations in contagion exposure, vulnerability 
and susceptibility [11–18]. Different NPI management 
strategies, ranging from case isolation to comprehen-
sive measures, are also explanatory of COVID-19 spa-
tiotemporal variability [10, 19, 20]. Furthermore, the 
literature highlights the importance of spatial depend-
ence stemming from geographical properties, such as 
proximity and contiguity to more-prone outbreak areas 
[21, 22].

Although there is already considerable literature 
devoted to identifying the determinants of COVID-19 
infection and their effect on spatial patterns, with high 
methodological diversity [23], many of these studies do 
not summarize their evidence in a way that can be use-
ful and integrated with public health measures for pan-
demic control. As stated by van Schalkwyk and McKee 
[24] there have been “challenges of translating knowl-
edge into policy”. In public health and disease preven-
tion, the use of spatial models tends to increase, with 
the growing availability and accessibility of data on 
disease incidence with higher granularity, leveraged by 
the need for heterogeneous territorially based public 
health policies [25, 26]. Therefore, in the current pan-
demic context is of the utmost importance the imple-
mentation of spatiotemporal surveillance systems that 
prioritize interventions in areas of higher infection 
risk [27] and a better incorporation of social factors 
into COVID-19 models can improve predictive accu-
racy for more tailored and effective responses [28]. Due 
to the uneven distribution associated with exposure 
to SARS-CoV-2 a spatial dimension is crucial [29]. In 
this perspective, estimating the  spatial susceptibility 
and vulnerability in health-related subjects is essential 

to prevent disease spread [30–32] since knowledge of 
the distribution of susceptible individuals allows for the 
assessment of multiple  susceptibility levels [33].

In Epidemiology, susceptibility (to a disease) is under-
stood as “the dynamic state of being more likely or 
liable to be harmed by a health determinant” [34]. Nev-
ertheless, it is often used as a synonym for vulnerability, 
although the latter incorporates, beyond the position of 
relative disadvantage understood as the propensity to 
be adversely affected, the capacity for adaptation and 
resilience [34, 35]. Literature about the study of the 
unequal spatial propensity to COVID-19 infection can 
be found using both terms for the same type of analy-
sis. In this paper, susceptibility was conceptualized in 
line with the definition of Porta [34]. From a methodo-
logical perspective our approach measures the relation-
ship between the confirmed cases of the disease and the 
effect of indicators—e.g., determinants—in explaining 
the incidence patterns. This type of analysis is not only 
informative for public health policies targeted to differ-
ent population groups [36, 37] but also essential in epi-
demic contexts to manage early warning systems [38, 
39]. The classification of territorial units by their pro-
pensity to infection can be used for equity in pandemic 
and public health policies avoiding one-size-fits-all 
containment measures in favour of geographically-tai-
lored interventions in areas more prone to diffusion 
[40, 41]. In this respect, spatial analysis and GIS have 
proved to be essential [23, 42].

In the case of Portugal, evidence-based knowledge 
about the existence of geographical contexts that are 
more favourable to transmission and outbreaks has 
been shown and highlighted by several authors [14, 
43–45]. The spread of COVID-19 in the country has 
been associated with settlement patterns, transport 
networks, mobility behaviours, employment and other 
economic and social characteristics [8, 46–48]. How-
ever, indicators regarding the causes of the spread of 
the disease have not been properly integrated to serve 
as policy guidance in assisting public health decision-
makers. Therefore, NPI management in Portugal has 
resulted exclusively from epidemiological indicators, 
ignoring social, economic and mobility information 
useful in differentiating local strategies. This comes of 
relevance because the inclusion of auxiliary informa-
tion is crucial to model the disease [28] and identify-
ing viral hotspots where lockdowns are most effective, 
or less transmission-prone areas where NPIs can be 
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eased [49]. Similarly, spatial analysis can help analyze 
policy effects on transmission spatial dynamics. For the 
portuguese territory, Sá Marques et  al. [14] suggested 
the need for territorial customized NPI, proposing a 
geographic mosaic based on a vulnerability risk index, 
while Pereira et  al. [45] developed a risk conceptual 
model to monitor COVID-19 spatiotemporal dynamics.

This work explores the hypothesis of developing a 
municipal index of susceptibility to COVID-19 infection, 
for mainland Portugal, to serve as a basis for the adoption 
of NPI tailored to territorial specificities. The aims of this 
article are threefold: (i) identify significant determinants 
of COVID-19 infection for the first year of the disease; 
(ii) derive an infection susceptibility index that classifies 
municipalities from thresholds; (iii) assess the relation-
ship between the susceptibility index and the incidence 
rate per population for tailored NPI. Overall, we deliver 
a proposal for a NPI spatial-based modelling framework, 
based on infection susceptibility and epidemiological 
data, to assist policy design and decision-making.

The study area is mainland Portugal at municipal scale. 
Worth to say, that the municipality (278 units) is the most 
disaggregated spatial unit with official data on COVID-
19. As a southern European country, the continental 
territory had about 9.8 million inhabitants in 2021, seem-
ingly peripheral to Europe but in a hub position between 
continents, it is an interesting case study because of the 
very disparate evolution of the number of cases and the 
spatial diffusion patterns. While in the first waves the 
timely containment ensured low incidence and low mor-
tality, unlike in nearby countries such as Spain and Italy 
[50], in later periods the ineffectiveness of containment 
policies led to it becoming the country in the world with 
the highest COVID-19 incidence per inhabitant.

Despite vaccination campaigns, NPI remain important 
to contain SARS-CoV-2 outbreaks [51–53]. NPI have 
been adopted throughout the world to contain COVID-
19 transmission and strategies varied [2, 54]. Considering 
as extremes the “China COVID zero policy” [20] on one 
hand and the laissez-faire Sweden approach [55] on the 
other, containment policies in Portugal can be considered 
as an intermediate approach, in balancing public health 
and economy. NPI were managed based on epidemiologi-
cal monitoring but followed unclear criteria with contra-
dictory decisions and lack of rationality during the first 
months, with a quasi-national scope as a “one size fits 
all”. After November 2020, a new paradigm began with 
measures depending on a risk threshold classification by 
the Directorate-General of Health (DGS), that catego-
rized municipalities from the 14  day-cases per 100,000 
inhabitants to define NPI at the municipal scale (Coun-
cil of Ministers Resolution no 92-A/2020, November 
2). Each category was associated with a set of NPI with 

harshness proportional to incidence. This risk classifica-
tion consisted exclusively of the disease incidence, ignor-
ing mortality and hospitalizations, and did not effectively 
represent the epidemiological risk, that is, “the probabil-
ity of an adverse or beneficial event in a defined popula-
tion over a specified time interval” [34].

Even though this later approach relied on known for-
mal criteria and was spatial-based, it did not fit munici-
palities with small populations. For comparison purposes 
(Table  1) in Manteigas—a rural municipality with less 
than 3000 inhabitants—seven new cases were enough to 
exceed the first risk threshold, even though the contact 
tracing and isolation were simple. On the opposite way, 
the city of Lisbon—the capital of Portugal with more than 
500 thousand inhabitants—could have more than 1300 
cases, which is already community transmission, and not 
yet surpass the first risk threshold. Therefore, the lack of 
adequacy of this approach undermined timely contain-
ment in some cases while in others was excessively harsh. 
Following subsequent readjustments, the risk thresholds 
for low-density municipalities were changed. However, 
despite this improvement, some municipalities remained 
to be subject to a criterion with an excessively high value, 
resulting in challenges to containment. This way, the 
portuguese NPI approach was characterized by the late 
implementation of measures, particularly in more popu-
lated municipalities, in a reactive rather than preventive 
way, and although it was spatially based, it ignored the 
spatial variation of susceptibility.

Methodological steps
The methodology applied to answer the objectives fol-
lowed several steps (Fig.  1). Briefly, a multiple linear 
regression (MLR) was performed to reduce the dimen-
sionality of a set of potential determinants of COVID-19 
infection and obtain their influences in explaining pat-
terns. Thereafter a Bayesian change point analysis (CPA) 
was applied to detect thresholds as changing points in the 
relationships between COVID-19 incidence and the most 
relevant factors, allowing the classification of municipali-
ties accordingly to the susceptibility associated with each 
determinant. Afterwards, a weighted linear combination 

Table 1 Comparison of risk thresholds and population numbers 
across municipalities

Municipality Population (2021) Number of 14-day cases to 
exceed the first risk threshold 
(after readjustment)

Lisbon 545,923 1311

Coimbra 140,838 339

Manteigas 2909 7 (14)
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ensured the conjugation into a composite susceptibility 
index. The DGS risk levels and the susceptibility index 
were compared using the Spearman and contingency 
coefficients.

Given the need to uncover explanatory variables for 
COVID-19 spatiotemporal patterns, we supported the 
analysis using regression. Linear, generalized, mixed 
multi-level, non-linear and geographically based meth-
ods have been used for regression analysis to understand 
COVID-19 spatial dynamics and establish relationships 
with factors [5, 6, 8, 9, 46, 56, 57]. The choice of linear 
regression over more tuned methods is essentially due 
to two reasons. First, Thurner et al. [58] revealed that at 
most periods the COVID-19 infection curves of various 
countries entered linear growth phases, due partly to the 
effect of containment measures. Second, linearity tends 
to be lost (resulting in the famous S-curve) only when 
working with accumulated data, which was not the case 
because the periods modelled in this work corresponded 
to accumulations of 14  days which are relatively short 
and can be accommodated by a linear curve.

Regarding the use of a method for detecting change 
points, it has long been recognized that thresholds play 
a crucial role in understanding the spread of infectious 
diseases [59, 60]. This type of technique has precedents 
in COVID-19 modelling [61], however we are unaware of 
studies that rely on it to derive information for a suscep-
tibility index.

Data acquisition and treatment
The relationship between COVID-19 cases and their 
spatial determinants was performed in an aggregated 

data structure, i.e., an ecological analysis, whose 
explanatory variables were selected based on a litera-
ture review on the determinants of COVID-19 infec-
tion. These potential factors, ranging from indicators 
of urban density, employment by sector, to commuting 
patterns, were grouped into dimensions. Environmen-
tal and climatic data, used in some studies [7, 46] were 
not considered because defining a value that reflects 
the municipality’s reality would always revolve around 
simplification and bias. Furthermore, there is no con-
sensus on the significance of these variables as predic-
tors, resulting in conflicting findings in the literature, 
and normally less relevant than socioeconomic deter-
minants [62].

The data used has multiple sources. A total of 51 
potential determinant factors (Table  2) were consid-
ered from Statistics Portugal (https:// www. ine. pt/) and 
Social Chart (https:// www. carta social. pt/). The epide-
miological information (number of cases) was obtained 
from the COVID-19 situation reports of DGS [63] for 
6 periods. The periods under analysis correspond to 
14-day blocks of new cases of the disease, representa-
tive of the beginning and the peak of the first three 
waves of COVID-19 in Portugal between March 2020 
and March 2021 (Fig. 2).

To avoid scale effects, the absolute values of the origi-
nal variables were swapped into rates, proportions, and 
location quotients. To ensure that the linear regres-
sion’s normality assumption was met, data transfor-
mation [64, 65] was applied to both epidemiological 
information and determinant factors using the square 
root transformation, a common nonlinear fix used in 
epidemiological data analysis [66, 67].

Fig. 1 Methodological framework

https://www.ine.pt/
https://www.cartasocial.pt/
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GIS-multicriteria susceptibility analysis
The approach proposed in this paper to derive a territo-
rial differentiation of susceptibility to COVID-19 infec-
tion used thresholds. Following a multicriteria decision 
analysis, we assumed susceptibility conceptually as 
the definition of Porta [34] and methodologically as 
the  likelihood of confirmed cases occurring in relation 
to the determinants, similar to Sarkar [16].

Other studies of susceptibility or vulnerability anal-
ysis to COVID-19 in GIS have favoured the use of 
multicriteria analysis based on the analytic hierar-
chy process [16, 68, 69]. In these knowledge-based 
approaches, there is a subjective influence on the rela-
tive importance of factors. In contrast, data-driven 
approaches based on multivariate models enable 

parametrizations that are based on the sensitive analy-
sis of factors without the impact of subjectivity [70].

Identifying determinants of infection
The identification of determinant factors explaining the 
incidence patterns of COVID-19 was based on an MLR. 
For this purpose, the epidemiological data and the 51 
potential determinants (Table  2) were considered as 
follows:

where Yi represents the estimated number of COVID-19 
cases for the period i , β0 is the intercept of the regres-
sion line, Xi are the explanatory factors, βp are the coef-
ficients for each variable and εi is the mode’s error term. 

Yi = β0 + β1Xi1 + β2Xi2 + · · · + βpXip + εi

Table 2 Considered potential spatial determinants of COVID-19 cases. Source: Statistics Portugal and Carta Social

Dimension Example of indicator(s) Number

Age dimension • Proportion of population by age group 4

Sociodemographic • Population density, urbanization rate and average household size
• Students enrolled by year of schooling
• Beneficiaries of social and unemployment benefits
• Public housing, average age of buildings and decayed dwellings

18

Mobility • Use of public transport and personal vehicle in daily commute
• Time duration of daily commuting route
• Intermunicipal and interparish commuting

6

Economic • Employment location quotients (LQ) for 16 sectors
• Declared income, export value and gross value added of companies
• Tourism overnight stays
• Housing expenses and owner occupied housing ratio

23

Fig. 2 14-day cumulative incidence (dependent variables): a 1st wave start; b 1st wave peak; c 2nd wave start; d 2nd wave peak; e 3rd wave start; f 
3rd wave peak
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A stepwise algorithm was used to ensure the selection of 
significant independent variables. Stepping method crite-
ria used a p-value with an entry value of 0.05 and 0.1 for 
removal.

Threshold identification
After reducing the initial set of variables and identifying 
the most relevant ones to explain the spatial dynamics of 
COVID-19, followed the stage of inventorying the exist-
ence of thresholds as change points in the relationship 
between determinants and disease incidence.

In this regard, we used a CPA executed with the R 
package ‘bcp’ [71] based on the work of Barry and Harti-
gan [72, 73]. In statistical analysis, CPA or step detection 
methods attempt to identify the moments at which the 
probability distribution of a stochastic process or time 
series changes, which have been used in epidemiologi-
cal studies [74]. In this case, the probability distribution 
was not a time series, but the values of an independ-
ent variable in ascending order for each municipality. 
The link between the incidence of COVID-19 and each 
determinant was modelled in a bivariate approach using 
this method. In the specific case of the package used, a 
Bayesian and offline method, the abrupt changes in the 
posterior mean of COVID-19 incidence in relation to the 
determinants of infection were evaluated obtaining the a 
posteriori probability of change points.

Weighted linear combination
The results of MLR and CPA fed the WLC using 3 deter-
minants to create the susceptibility index. The relative 
importance of the determinants in the outcome was cal-
culated based on the number of periods in which they 
were significant in the MLR. As a result, a variable with 
a greater number of significant associations contributed 
more to the susceptibility index than one with a lower 
frequency of significance. With this data-driven meth-
odology, with reduced human parameterization com-
pared to other strategies (e.g., analytic hierarchy process), 
mainland Portugal was classified by susceptibility to 
COVID-19 infection at the municipal scale.

Validation
The validation of the susceptibility index was performed 
by calculating the area under the curve (AUC). Suc-
cess rate curves were constructed for the first three waves 
by using the modelling data. In addition, we determined 
prediction  rate curves for the peaks of the 4th and 5th 
waves that are the validation set, i.e., epidemiological 
data unknown to the model.

The accuracy of the classification was measured by the 
AUC for all the periods considered as:

where AUCi is the area under the curve for the period i , 
a is the area between the 45-degree line and the success 
or prediction curve and b is the area above the curve. A 
higher value represents a curve that with a lower cumu-
lative percentage of the study area better captures the 
cumulative cases, while a lower index means higher dif-
ficulty in separability.

Results
The results indicate that the factors examined accurately 
predicted the spatiotemporal dynamics of COVID-19, 
albeit with varying importance through time. The sus-
ceptibility analysis methodology, which combined clas-
sical and Bayesian techniques, classified municipalities 
according to their susceptibility to COVID-19 infection. 
Clusters of greater infection susceptibility were identi-
fied based on economic, sociodemographic, and mobility 
characteristics. In summary, the approach adopted sup-
ported the hypothesis that NPI should be specifically tai-
lored to local geographical contexts.

Determinants
The MLR highlighted that COVID-19 diffusion is a mul-
tifactorial phenomenon with associations varying across 
time. From the 51 variables for six moments, 19 were 
identified as statistically significant (Table  3). The num-
ber of significant factors for each moment of incidence 
ranged from 6 to 11, with a mean of 9. The importance 
of these variables, in terms of regression coefficients and 
statistical significance, had variability depending on the 
incidence period. We identified the importance of fac-
tors related to the heterogeneous occupation of the ter-
ritory (population density, average family size, students 
enrolled of various levels), economic (income, concentra-
tions of employment in sectors where face-to-face work 
is indispensable, such as textile industry and storage and 
auxiliary transport activities) and mobility (use of pub-
lic transport, average duration of commuting by public 
transport, inter-municipal and interparish commuting). 
On the contrary, population age did not turn out to be 
a key factor although several indicators associated with 
school enrollment and employment (active population 
proxies) were significant.

Three factors (Table 4) stood out by the number of sig-
nificant moments and the relative weight of their regres-
sion coefficients:

• population density (Pdens)—sociodemographic 
dimension;

AUCi =
a

(a+ b)
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• proportion of population working outside the parish 
of residence (PWOparish)—mobility dimension;

• location quotient of employment in storage and aux-
iliary transport activities (LQstotrans)—economic 
dimension.

These three variables demonstrated a positive signifi-
cant relationship with the number of new cases, e.g., the 
higher the variable value, the more cases the municipal-
ity tends to have and accounted for more than 60% of the 
variation explained by the stepwise models. An examina-
tion of the factors by dimensions reveal that Pdens was 
the only one with significance in all moments under 
study and had the highest regression coefficients. LQsto-
trans was the most relevant in the economic dimension 
and PWOparish had more frequent  associations in the 
mobility group. The loss of explanation when eliminating 
the remaining variables is minimal and considering their 
importance these three indicators were the ones selected 
for CPA and later to determine the susceptibility index. 
The difference in the number of significant variables 
between the start and peak of the waves did not present 
a link.

Thresholds
The bivariate Bayesian CPA identified the posterior prob-
ability of changing points. Multiple probable points of 
changing relationships have been identified between 
incidence and determinants. To decrease the number 
of changes a minimum probability threshold of 0.7 was 
defined to assume the existence of a change in the series 
since this is a reference value in statistics. The trends 

were segmented to generalize thresholds for all the ana-
lysed periods (Fig. 3).

The Bayesian CPA highlighted that the relation-
ship between factors and incidence depends on various 
changing points that trigger the posteriori mean inci-
dence of new cases. This way, the results were suggestive 
of not fully linear relationships, corroborating 20 to 30% 
of unexplained variability of the MLR models.

Thus, the susceptibility to infection associated with 
each determinant is based on varying gradients that show 
that the influence of a determinant on the propensity to 
infect is not directly proportional to its value. For exam-
ple, Pdens is practically irrelevant until 300 inhabitants 
per  km2, while in the case of PWOparish, although non-
linear, it is closer to a trajectory that could be partitioned 
into mulitple linear segments.

The combination of these three indicators by a WLC 
allowed the calculation of the susceptibility index. Also, 
at this stage the weight associated with each determinant 
resulted from the available information without subjec-
tive influence, and its importance was defined based on 
the proportion of the number of periods in which the 
respective variables demonstrated an association with 
the target (see Table 3). Thereby, the Pdens assumed an 
importance of 40%, the LQstotrans of 33% and the 
PWOparish of 27%.

Spatial susceptibility index
The spatial patterns of the susceptibility associated 
with each factor revealed contrasting and heterogene-
ous patterns, even though some municipalities were 
classified similarly (Fig.  4). This is reflected in the 

Table 4 Adjusted  R2 comparing models with all variables versus the 3 most significant

Model First wave Second wave Third wave

Start Peak Start Peak Start Peak

Stepwise variables (number) 0.692 (6) 0.679 (8) 0.741 (9) 0.790 (11) 0.751 (11) 0.748 (7)

Pdens + PWOparish + LQstotrans 0.617 0.600 0.646 0.656 0.669 0.680

Difference − 0.075 − 0.079 − 0.095 − 0.134 − 0.082 − 0.068

Fig. 3 Most relevant changing points between incidence and factors: a Pdens; b LQstotrans; c PWOparish
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patterns of the final susceptibility index that visually 
replicates the influence of population density with a 
higher susceptibility in the metropolitan areas of Lis-
bon and Oporto and important urban systems such as 
the regional capitals. The Algarve coast in the South, 
albeit one of the most populous and economically 
dynamic regions, shows low susceptibility because 
LQstotrans and PWOparish have low expression in 
this region. This is not surprising since in the first 
three waves the Algarve region registered low numbers 
of COVID-19 infections.

The distribution of the susceptibility classes suggests 
the existence of specific geographic contexts influenced 
by the considered dimensions: sociodemographic, eco-
nomic and mobility. It is also evident the influence of 
communication axes and the spatial dependence of the 
classes, i.e., the proximity, in terms of geographical dis-
tance between municipalities, seems to be relevant in 
terms of susceptibility. This fact is particularly evident 
in the case of the Northwest, where the Oporto met-
ropolitan area demonstrated a gradient of diminishing 
susceptibility with increasing distance from Oporto 
city, but which is “inflated” by the closest regional capi-
tals, such as Viana do Castelo or Braga. Also in the 

interior, the case of Guarda or Viseu is representative 
of this phenomenon, with adjacent municipalities clas-
sified with high susceptibility.

Fig. 4 Susceptibility to COVID-19 infection in mainland Portugal: a Pdens; b LQstotrans; c PWOparish; d final susceptibility index

Fig. 5 Susceptibility classes and the monthly incidence of COVID-19 
during the first year of the disease in Portugal
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In terms of accuracy, success and prediction rate curves 
revealed that 40% of the municipalities (Very High and 
High susceptibility) explained between 80 and 90% of the 
new cases of the disease (Fig. 5). The AUC were signifi-
cant with values above 0.75 which is a reference for good 
discrimination. The validation implies that the threshold-
based modelling process had significance in determining 
the areas with a greater propensity to register cases of 
COVID-19.

Comparing the susceptibility index with COVID-19 
DGS risk classification (14-day incidence rate per 100,000 
inhabitants) for the third wave demonstrated why inte-
grating susceptibility and epidemiological monitoring is 
relevant for NPI management (Fig.  6). The comparison 
demonstrated little correspondence between the restric-
tiveness of the NPI and the susceptibility index, resulting 
in low contingency and Spearman coefficients.

Most of the municipalities in the highest risk level had 
very high susceptibility however, almost 30% had only 
very low to moderate. Considering the highest three lev-
els (each had different sets of NPI with growing restric-
tiveness) seem to have existed overly rigid measures for 
several geographical contexts whose socio-territorial 
characteristics were not determinants of COVID-19 
spread. Thus, these locations had NPI that overestimated 
the propensity for transmission. Also, in the first and 
second levels (alert levels without specific interventions) 

some municipalities with high and very high susceptibil-
ity stood out, presumably indicating an underestimation 
of outbreak potential.

Overall we can say that the correlation was low and 
that a disagreement between the severity of restrictions 
and the actual propensity for transmission was found. 
Therefore, the susceptibility index can be a viable instru-
ment to support epidemiological containment policies 
preventing future uncontrolled transmission by imposing 
stricter restrictions in more susceptible areas.

Discussion
This study identified COVID-19 infection determinants 
and mapped the susceptibility using a data-driven thresh-
old approach based on only three variables, with the 
hypothesis that containment measures should consider 
not only epidemiological indicators but also the true pro-
pensity to transmission dynamics by taking geographical 
contexts into consideration. The results support a multi-
cause aetiology for COVID-19 transmission dynamics 
patterns and the spatial susceptibility index highlights 
peculiar situations in which public health authorities may 
need tailored interventions.

Specificities of the methodology
In methodological terms, some distinctive features can 
be mentioned. Considering that COVID-19 is often 

Fig. 6 Susceptibility classes and DGS risk levels for the peak of the third wave
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asymptomatic and under-reported [75], leading to diffi-
culties in the identification by epidemiological monitor-
ing and surveillance systems [76], the use of the Bayesian 
CPA method is justified. The uncertainty in the model-
ling process regarding the data itself was addressed by 
using posterior probabilities to define the thresholds. 
Furthermore, according to Nazia et  al. [23] the major-
ity of COVID-19 spatiotemporal analyses used frequen-
tist methods, with only a minority embracing Bayesian 
approaches. In this sense, by combining a frequentist 
regression with a Bayesian method to infer transition 
points, the present study distances itself from more clas-
sical approaches and uses an uncommon method in 
susceptibility analysis. Moreover, the same authors men-
tion the prevalence of studies addressing regional scales. 
However, our research focused on a local analysis that 
took advantage of a finer scale to improve the prediction 
of transmission prone municipalities.

Summary of results
The time-varying relationships of factors identified by 
the MLR introduce uncertainty for an effective quantifi-
cation of their real contribution. This was already iden-
tified in other studies [8, 77] and forces researchers to 
analyse longer periods to accurately identify and quantify 
the factors explaining COVID-19 diffusion. Nevertheless, 
the analysis of this study for a period of 1  year allowed 
us to unequivocally identify the importance of determi-
nants related to the heterogeneous occupation of the ter-
ritory. Urban population distribution and density, as well 
as household size, have a strong association with the spa-
tiotemporal dynamics of COVID-19. Aside from a more 
structural view of population distribution, employment 
concentrations associated with regional employment spe-
cialisation and agglomeration patterns with strong inter-
action dynamics at regional, national, and international 
scales (e.g., [78]), have been linked to infection diffusion. 
Still, on the economic side, it is worth mentioning indica-
tors such as income, expenses related to housing and the 
proportion of owner occupied dwellings. At the study’s 
scale, these results cannot be interpreted as indicative of 
socio-spatial inequalities as infection-predisposing fac-
tors, but as proxies of the most populous municipalities 
(because the standardized coefficients were positive) and, 
therefore, with more active epidemiological dynamics. 
Although the variables explicitly related to the age dimen-
sion had little association with the dependent variables, 
indicators related to employment and school enrollment 
were significant. This suggests that the active population 
was an important agent of transmission at certain times, 
specifically at the beginning of waves, emphasising the 
importance of implementing NPI associated with tele-
working and mobility restrictions [48] to prevent disease 

transmission. It is also known that population mobility 
patterns are an unequivocal driver of infectious disease 
transmission [79] and although the data used was some-
what outdated, it showed how commuting had important 
links with COVID-19 transmission.

Since the MLR model’s explanatory power, albeit sig-
nificant, did not exceed 70 to 80% of the variation of the 
dependent variable, the relationships between incidence 
and their explanatory factors were not completely linear. 
This is due to residual heteroscedasticity, which can be 
indicative of the need to incorporate other factors. For 
example, a behavioural dimension, such as adherence 
to NPI, mask use, containment and exposure reduction 
practices [80], is of extreme importance in such a study 
[28] but was not considered. Moreover, the existence of 
multiple thresholds in variables’ relationships demon-
strated the importance of territorial specificities, explain-
ing the inability of linear models to accommodate all the 
variations in the number of cases.

Combining the results from the MLR and a CPA, 
mainland Portugal municipalities were classified by their 
susceptibility to COVID-19 infection. Despite the com-
plexity of infectious diseases, good model accuracy was 
achieved with only three variables (Pdens, LQstotrans 
and PWOparish). The heterogeneous geography of the 
index derives from the fact that the distribution of the 
determinants is uneven and anisotropic. The suscepti-
bility spatial patterns resemble the distribution of con-
firmed cases in a trend that is “coastlised” along the most 
densely populated coastal areas, polarized around the 
country’s two metropolitan areas—Lisbon and Porto—
and anchored in mainland regional capitals. The suc-
cess and prediction curves followed a power distribution 
since most cases occurred with a high concentration in a 
small number of municipalities (e.g., metropolitan areas). 
The power distribution loses strength from the first 
wave—when the distribution of cases was more evident 
on the coast—to the subsequent waves when the infec-
tion spread to all municipalities.

The importance of economic, socio-demographic, and 
mobility determinants reinforces the conclusion of pre-
vious studies [8, 44, 46] for Portugal, even though the 
present study focused on a longer period. Municipalities 
with higher incidence rates coincided with the highest 
susceptibility classes at the peak of the third wave. How-
ever, a relevant number of outliers was identified in all 
the risk levels proving the that the rigidity of the restric-
tions was not always adequate considering the propensity 
to infection based on the spatial determinants conducive 
to COVID-19 infection. In this sense, the relevance of 
integrating epidemiological monitoring with susceptibil-
ity emerges as a relevant proposal in the domain of the 
management of NPI in Portuguese territory.
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The implications of susceptibility and future developments
The major contribution of this work is the development 
of a municipal susceptibility index for spatial decision-
making in managing containment policies. The territorial 
units with higher susceptibility—most of which have spa-
tial proximity—need to have more restrictive NPI, com-
pared to those with lower, or adopted ahead of time to 
avoid severe outbreaks, due to the spatial conjugation of 
socio-territorial specificities that enhance transmission. 
The ability to adjust measures to contain the infection 
based on its propensity to spread is particularly impor-
tant since according to Jain et al. [81] controlling an out-
break at the grassroots level has profound repercussions 
for the nationwide control of transmission chains. Fur-
thermore, municipalities with higher susceptibility were 
geographically close to similar classes. As Duarte et  al. 
[82] have assessed neighbouring municipalities tended 
to share similar behaviour because local effects justify 
spatial dependence in COVID-19 diffusion, confirmed in 
Portugal [43, 44], and which our modelling process did 
not account for. This is not unusual, since one of the most 
common processes of infectious disease spatial diffu-
sion—contagious diffusion—is based essentially on spa-
tial contiguity [38, 83] and which was boosted by mobility 
movements between municipalities. Considering this 
information, the geographical character of COVID-19 
transmission is reinforced, strengthening the need for 
differentiated measures according to local contexts, e.g., 
spatial-based containment measures should also consider 
geographic properties such as proximity and contiguity 
(to areas of higher susceptibility).

The proposed index appears adequate for customized 
NPI, avoiding harsh approaches where it has no benefits 
and soft in contexts of rapid diffusion. Knowing also the 
potential negative consequences associated with NPI 
and long lockdown periods [84], it is important to adapt 
strategies to the contexts in which they fall. Despite the 
satisfactory results, further work is needed for a more 
robust spatial index considering a second order of fac-
tors and incorporating spatial dependence. Alternative 
approaches for a broader classification could be the use 
of additional epidemiological indicators such as persons 
hospitalized and the positivity of testing rate. Also, the 
use of “near real-time” mobility data, such as Google’s 
Community Mobility Reports [85], is relevant to fore-
cast future cases [48] which can allow for a time-dynamic 
susceptibility classification. It should also be noted that 
infection patterns have changed with the progression of 
the disease, either by vaccination and/or disease variants 
[86], therefore identifying factors may require updating, 
which has direct implications for susceptibility maps.

Moreover, in light of the non-linear parameters evi-
denced by the CPA, it is relevant to evaluate whether the 

patterns of COVID-19 diffusion are indeed non-linear, or 
whether this non-linearity results from spatially varying 
processes [87]. Based on this evaluation, it may be appro-
priate to test dummy variables as proxies for certain terri-
torial configurations (e.g., municipalities of metropolitan 
areas) and use spatial regressions or non-linear models.

The implications of the results are relevant in the con-
text of prevention and for public health policies evalu-
ation, something not always straightforward during 
the pandemic contributing to improved containment 
policies.

Limitations
In methodological terms, a lack of information on some 
important factors may have hindered the development 
of an improved index. Also, DGS COVID-19 data has 
several known flaws [3], both in the allocation of cases 
to territorial units and temporal distribution, as well as 
loss of synchronization over time. It is unknown to what 
extent some quality problems with this data, which can-
not be overcome, could have caused biased results. In 
addition, there were some periods of higher incidence, 
namely severe outbreaks that have no known direct 
explanation by the determinants [27], as occurred in 
migrant communities working in agricultural areas and 
residing in conditions of overcrowding and insalubrity 
[88]. The susceptibility index cannot explain these situa-
tions since they are the outcome of accidental outbreaks 
under very specific conditions for which there is no avail-
able explanatory data. The static character of the inde-
pendent variables, and their outdated condition, were 
also an obstacle to better adjustments since numerous 
high-magnitude changes have happened, such as vari-
ations in mobility patterns [48]. Finally, given that the 
results stem from aggregated units, there is the influence 
of modifiable area unit problems as well as ecological fal-
lacy [89, 90] which means that the results should not be 
extrapolated to individual-level.

Conclusions
The present study demonstrated how the integration of 
susceptibility to COVID-19 infection, based on the dis-
tribution of the known determinants and their effects, is 
relevant for policy guidance and containment strategies 
in specific geographic contexts using Portugal as a case 
study.

The results shed new light on how knowledge of the 
distribution of factors explaining transmission is crucial 
to identify locations where higher incidence is expected 
by the conjugation of sociodemographic, economic and 
mobility characteristics. By using factors with proven 
explanatory power in COVID-19 diffusion in mainland 
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Portugal, we proposed a susceptibility index to imple-
ment spatial-based NPI.

Conclusions can be summarised in three points:

1. The MLR results showed that the importance of 
determinants to COVID-19 infection had time-vary-
ing contributions, although there are three with con-
sistent relationships over time: population density, 
inter-parish commuting and employment in storage 
and transport auxiliary activities.

2. The bivariate probabilistic CPA revealed a non-linear 
nature of the relationships between infection deter-
minants and observed incidence, allowing the identi-
fication of thresholds as transition points in changing 
trends.

3. Comparing the susceptibility classes with the risk 
levels for NPI evidenced low correlation, suggesting 
the need for considering susceptibility as a criterion 
together with epidemiological monitoring.

The findings prove that the portuguese NPI strat-
egy was poorly adjusted to the reality of the propensity 
to COVID-19 spread. In summary, the results lay the 
groundwork for future models that intersect incidence 
rate with the susceptibility to infection for NPI manage-
ment, advocating the need for greater incorporation of 
spatial variables in epidemiological containment policies. 
It is also noteworthy that, unlike previous studies, this 
one followed a data-driven approach based on thresh-
olds, reducing subjectivity when compared to previous 
studies using multicriteria analysis. The approach can be 
extended to other regions of the world for the current or 
future epidemic(s).
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