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Abstract 

Background Although the presence of intermediate snails is a necessary condition for local schistosomiasis trans-
mission to occur, using them as surveillance targets in areas approaching elimination is challenging because the 
patchy and dynamic quality of snail host habitats makes collecting and testing snails labor-intensive. Meanwhile, 
geospatial analyses that rely on remotely sensed data are becoming popular tools for identifying environmental con-
ditions that contribute to pathogen emergence and persistence.

Methods In this study, we assessed whether open-source environmental data can be used to predict the presence of 
human Schistosoma japonicum infections among households with a similar or improved degree of accuracy com-
pared to prediction models developed using data from comprehensive snail surveys. To do this, we used infection 
data collected from rural communities in Southwestern China in 2016 to develop and compare the predictive perfor-
mance of two Random Forest machine learning models: one built using snail survey data, and one using open-source 
environmental data.

Results The environmental data models outperformed the snail data models in predicting household S. japonicum 
infection with an estimated accuracy and Cohen’s kappa value of 0.89 and 0.49, respectively, in the environmental 
model, compared to an accuracy and kappa of 0.86 and 0.37 for the snail model. The Normalized Difference in Water 
Index (an indicator of surface water presence) within half to one kilometer of the home and the distance from the 
home to the nearest road were among the top performing predictors in our final model. Homes were more likely to 
have infected residents if they were further from roads, or nearer to waterways.

Conclusion Our results suggest that in low-transmission environments, leveraging open-source environmental data 
can yield more accurate identification of pockets of human infection than using snail surveys. Furthermore, the vari-
able importance measures from our models point to aspects of the local environment that may indicate increased 
risk of schistosomiasis. For example, households were more likely to have infected residents if they were further from 
roads or were surrounded by more surface water, highlighting areas to target in future surveillance and control efforts.
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Background
The water-borne disease, schistosomiasis, has been tar-
geted by the World Health Organization for elimination 
as a public health problem by the year 2030 in a total of 
78 endemic countries, where decades-long control pro-
grams have led to major reductions in infections and 
morbidity in many of them [1]. However, as transmission 
becomes more sporadic as a result of successful disease 
control programs, surveillance strategies also need to be 
recalibrated to allow efficient identification of pockets of 
on-going infection at fine spatial scales so that these areas 
can be targeted for treatment and transmission-blocking 
interventions.

Surveillance of schistosomiasis is difficult due to the 
gradual onset of disease, and non-specific, intermittent 
symptoms such as abdominal pain, diarrhea and rectal 
bleeding [2]. When left untreated, infection can lead to 
a range of serious conditions including stunted child-
hood development and cognitive impairment, anemia, 
pulmonary hypertension, fibrosis of vital organs, and in 
the most serious cases, death [2]. The slow and non-spe-
cific disease onset means infected individuals rarely seek 
care upon infection, and thus passive clinic and/or hos-
pital-based surveillance, widely used for other infectious 
diseases, are not reliable ways to monitor infections. 
Notably, some naïve individuals develop acute morbid-
ity upon infection, due to an inflammatory reaction to 
the migrating schistosome [3]. Acute schistosomiasis, or 
Katayama fever, can signal emerging infections, but reli-
ance on acute case reporting alone will lead to misclassi-
fication of many areas with ongoing transmission [4].

Malacological surveys for the presence of the inter-
mediate snail host and schistosomiasis infections in 
snails are a common schistosomiasis surveillance tool 
used in endemic countries worldwide [5–12]. Schis-
tosomiasis transmission is highly influenced by envi-
ronmental conditions, as the presence of an infected 
intermediate snail host is a necessary precondition for 
transmission to humans and other vertebrate hosts [13]. 
The significance of the ambient environment in the 
schistosomiasis transmission cycle is heightened by the 
fact that the lifecycle involves two key timepoints when 
the developing parasite must survive in open water, 
moving from a mammalian host’s feces to an interme-
diate snail host during the miracidia stage, and later 
swimming from an intermediate snail to a new mam-
malian host during the cercarial stage [2, 14, 15]. Thus, 
a combination of environmental conditions—including 

soil and vegetative health, the presence of fresh water, 
temperature, season and elevation—can impact the 
likelihood of snail habitation, the survival of the para-
site, and the overall transmission potential of a given 
location [15–18].

Despite the key role that snails play in the transmis-
sion of schistosomiasis, using them as surveillance 
targets is challenging due to the patchy and dynamic 
quality of snail habitats and the sparsity of snail infec-
tions. Identifying, collecting and testing snails for 
Schistosoma infections is time-consuming and labor-
intensive requiring surveying kilometers of transects, 
collecting thousands of snails and repeating surveys to 
account for seasonal fluctuations in snail populations 
[19, 20]. Although infected snails are a necessary con-
dition for mammalian schistosome infection to occur, 
they are often poor predictors of human infection risk 
[4, 19–21]. For example, assessments conducted in 
endemic provinces of China between 2016 and 2017 
did not find any Schistosoma japonicum infected snails 
from several million that were systematically identified, 
collected and tested during comprehensive snail survey 
efforts, despite having identified low to moderate lev-
els of infection in humans and other mammalian hosts 
[22–24]. Similarly, while the presence of intermediate 
snail hosts has been broadly correlated with human 
and livestock infection in some instances [25, 26], the 
transient, impermanent nature of snail habitats can also 
make them an inconsistent predictor of human infec-
tion risk and an unreliable target for schistosomiasis 
surveillance [20].

As a result, assessments of schistosomiasis transmis-
sion environments have increasingly relied on meas-
ures of environmental characteristics, often using 
remote sensing in combination with geospatial analy-
ses. There is a considerable body of literature demon-
strating the use of climate and environmental variables 
(e.g., humidity, precipitation, temperature, elevation, 
vegetation, distance to the nearest waterbody, etc.) to 
estimate environmental suitability for snail habitation 
(e.g., 16, 18, 26–29), which can theoretically be used to 
highlight potential schistosomiasis hotspots. However, 
few studies have demonstrated the use of environmen-
tal characteristics to directly predict human schistoso-
miasis risk [17, 20, 30]. A recent study in Senegal found 
that measures of vegetation and water contact area 
were better predictors of S. haematobium reinfection 
in children in a highly endemic region than measures 
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collected during on-the-ground snail surveys [20]. 
Similarly, studies of S. japonicum infection in China 
have found measures of vegetation and proximity to 
rivers were predictive of human infection clusters [17, 
30]. In all three studies, the models were designed to 
identify infections at the village scale. We see the need 
for higher resolution environmental proxies of human 
schistosomiasis in low transmission settings, such that 
pockets of potential infection could be identified at the 
household or neighborhood level.

As regions approach schistosomiasis elimination goals, 
the perceived payoff of comprehensive infection and snail 
surveys will decrease, making it likely that resources will 
be diverted to other priorities in the coming decades. 
In order to avoid a resurgence in schistosomiasis, it is 
crucial that cost-effective, low labor surveillance tech-
niques are developed that can be used to pinpoint, at fine 
geographic scales, areas of high infection risk in areas 
approaching elimination. Precision risk mapping can 
enable targeting of resources to high-risk areas for test-
ing, treatment or transmission-blocking interventions. 
The proliferation of high-resolution, open-source geo-
spatial data products offer an opportunity to develop new 
methods for mapping schistosomiasis risk in areas where 
control programs have reduced but not fully eliminated 
schistosomiasis.

The primary aim of this analysis was to determine 
whether open-source environmental data that is freely 
available and less time- and labor-intensive to collect 
than snail survey data can directly predict household 
schistosomiasis infection distribution, with a similar 
or improved degree of accuracy as data obtained dur-
ing snail surveys. To do this, we developed and com-
pared two models for predicting household S. japonicum 
infection among rural farming communities in Sichuan 
Province, China. In our first model, we used geocoded 
snail survey data to build a set of predictors and deter-
mine how well the proximity and density of snail habitat 
relative to the location of the home predict household 
S. japonicum infection status. In the second model, we 
drew on freely available, open-source environmental 
data to create a set of measures characterizing local envi-
ronmental conditions in the area surrounding the home 
in the months prior to infection surveys. By comparing 
the ability of these two models to predict fine-scale geo-
graphic patterns of human S. japonicum infection, our 
study provides valuable information on the utility of each 
of these surveillance techniques for identifying potential 
high- and lowrisk households in communities where low 
levels of persistent S. japonicum infection are obstructing 
elimination goals. As a secondary analysis, we evaluated 
the relative importance and the direction of association 
between our predictors and household S. japonicum 

infection to shed light on those characteristics of the 
local environment that can be leveraged for prediction 
modeling in the study area and targeted in future preven-
tion and control efforts.

Methods
Setting and village selection
This study was conducted in 2016 in two counties 
located in the hilly regions of Sichuan Province, China. 
County surveillance records were used to select ten vil-
lages at high risk of reemergent or ongoing S. japonicum 
transmission. We conducted a census in each village, 
attempted to geocode the location of all households 
using handheld Global Positioning System (GPS) devices, 
and surveyed each household for S. japonicum infec-
tion, as described below. The number of households in 
the selected villages ranged from 19 to 75, with between 
50 to 250 residents residing in each village at the time 
of data collection. We restrict this analysis to house-
holds for which: (a) GPS coordinates were successfully 
recorded, and (b) at least one household resident was 
tested for S. japonicum infection during the 2016 infec-
tion surveys. Of the 463 households identified during the 
census, a total of 283 households (61.1%) had both GPS 
and infection survey data and are therefore included in 
this analysis. See Fig. 1 for details on household exclusion 
and inclusion.

Data collection and sources
Human infection data were collected in July 2016 as a 
part of ongoing research efforts in the region assess-
ing persistent schistosomiasis hotspots. All village resi-
dents over the age of five were invited to participate in 
the study. Each participating individual was asked to pro-
vide three stool samples on consecutive days. All samples 
were labelled with the date of collection and participant 
ID numbers and stored in a cooler or cool room (ide-
ally < 10  °C) until they could be transported to the cen-
tral laboratory for processing. Samples were examined 
using the miracidium hatching test, following standard 
protocols [31]. In brief, for each sample, 30  g of stool 
was suspended in water (pH range of 6.8–7.2), strained 
to remove large particles (80 head nylon mesh), strained 
again to retain the remaining solids (280 head nylon 
mesh), and then suspended in water at room temperature 
(28–30  °C). At 2-, 4- and 8- hours after suspension, the 
samples were examined for the presence of miracidia for 
at least 2-min each time. An individual was considered 
positive if any of the three hatch tests were positive.

The habitats of Oncomelania hupensis snails (the inter-
mediate host that transmits S. japonicum to humans 
and other vertebrate hosts) were determined during a 
national survey on O. hupensis conducted in 2016. Snail 
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habitats were first identified by trained professionals 
from county anti-schistosomiasis control stations using 
historical records dating back to the 1950s. Historical 
habitats were digitized by global positioning and geo-
graphic information systems (GIS). Surveys were then 
conducted in the field via transect walks between the 
months of April and October 2016 using standard sys-
tematic sampling methods [32]. Briefly, each historic, 
existing or suspected snail environment was divided into 
sampling frames set every 5–10  m, with parallel lines 
extending from each to form a set of sampling frames of 
between 25–100  m2 covering each site. The majority of 
existing or suspected sites were characterized by shallow, 
stagnant or moving water (e.g. a stream, pond, rice paddy 
or irrigation ditch), as these conditions are the preferred 
habitat of amphibious freshwater O. hupensis snails [33]. 
For each site, ~ 20% of the sampling frames were ran-
domly selected to be investigated on foot for the presence 
of snails. The digitized maps were updated using hand-
held GPS devices to document present and absent habitat 
locations, shapes, and whether and how historic habitats 
had been destroyed or changed (e.g., land use change via 
urbanization).

Data on waterbodies, waterways and roads in Sichuan 
Province, China were obtained on November 11th, 2021 
from Geofabrik, a company that specializes in Open-
StreetMap (OSM) data [34]. The OSM project draws on 

local communities of mappers to build a knowledgeable 
database detailing roads, waterways, transportation and 
other built and natural environment features [35]. OSM 
Contributors use aerial imagery, handheld GPS devices, 
and field maps, both to generate the data and to verify the 
accuracy of the open data on a regular basis [35]. OSM 
data on waterways and waterbodies include permanent 
water features such as large rivers, streams, canals, lakes 
and reservoirs, while roads data ranges from national 
freeways and motorways down to gravel tracks and paths. 
Although OSM coverage can be low in China for private 
roads, roads for non-motorized vehicles and residential 
roads, OSM coverage is high for features like highways 
and main roads (> 80%) [36]. As such, data included from 
OSM in this analysis primarily represents main roads and 
major environmental features. Details on the OSM data 
used in this analysis can be found at: https:// downl oad. 
geofa brik. de/ osm- data- in- gis- forma ts- free. pdf [37].

Elevation Data was obtained from the Earth Observa-
tion Research Center Japan Aerospace Exploration Agen-
cy’s (JAXA EORC) Advanced Land Observing Satellite 
(ALOS) global digital surface model, which has a hori-
zontal resolution of approximately 30 m [38]. To calculate 
indices of vegetation and waterbody coverage, the U.S. 
Geological Survey’s (USGS) Earth Resources Observa-
tion and Science (EROS) Center’s image library from the 
Landsat Satellite 8 – Collection 1 was accessed from the 

Fig. 1 Depiction of household inclusion and exclusion

https://download.geofabrik.de/osm-data-in-gis-formats-free.pdf
https://download.geofabrik.de/osm-data-in-gis-formats-free.pdf
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USGS Earth Explorer website (https:// earth explo rer. usgs. 
gov/) to obtain data on surface reflectance bands 2–5, as 
well as the QA band [39]. The Landsat-8 satellite repeats 
its orbital pattern every 16-days [40], resulting in a total 
of 12 available observations across 2016 that occurred 
prior to our July infection surveys, which were down-
loaded for use in this study. The National Aeronautics 
and Space Administration’s (NASA) pre-processed Mod-
erate Resolution Imaging Spectroradiometer (MODIS) 
Terra satellite imagery database was also accessed to 
obtain 250-m resolution data on vegetation at 16-day 
intervals at all available timepoints in 2016 prior to the 
infection surveys [41].

Variable definitions and generation
Outcome variable
S. japonicum infection survey results from the ten study 
villages were aggregated to the household level and spa-
tially joined to the geographic location of the home. To 
avoid issues with multicollinearity resulting from resi-
dents of the same household having the same values for 
all environmental predictors used in this analysis, the 
outcome was a binary measure of household infection 
status indicating whether one or more household mem-
ber tested S. japonicum positive.

Predictor variables: snail survey dataset
Using the 2016 snail survey data, predictors were gener-
ated to reflect how a household’s position in relation to 
snail habitats could influence household-level S. japoni-
cum infection risk (Table 1). The geocoded snail habitat 
data was divided into two categories: present snail habitat 
sites, and absent snail habitat sites. Present snail habitat 
sites were those sites where one or more snails were iden-
tified during the survey period, while absent snail habitat 
sites were those where snails were not found during the 
2016 survey. The data were further grouped into “ditches” 
(i.e., line features deemed suitable for snail habitation) 
and “fields” (i.e., polygon features deemed suitable for 
snail habitation), resulting in four snail habitat categories: 
present ditches, present fields, absent ditches, and absent 
fields. Using ArcGIS Pro software [42], three different 
buffer sizes (0.25, 0.5 and 1.0  km (km) radius length) 
were generated and applied to each household location. 
Buffer radius lengths were defined such that the largest 
buffer (1 km) generally spanned the entire village area for 
a centrally located household, whereas the smallest buffer 
(0.25  km) spanned the immediate surroundings of a 
household. We generated variables estimating the density 
of ditches and fields surrounding the home by calculating 
the total length (km) of present and absent ditches and 
the total area of present and absent fields  (km2) within 
each of buffer. The geodesic distances (m) between each 

household point and the nearest present ditch, absent 
ditch, present field, and absent field were also calculated 
and used as predictors.

Predictor variables: open‑source environmental dataset
Open-source environmental and remotely sensed data 
were compiled to create a geospatial dataset containing a 
range of hypothesized environmental (built and natural) 
predictors of household S. japonicum infection (Table 1). 
Potential environmental predictors were selected if they 
were (1) previously identified or hypothesized in the lit-
erature to serve as predictors of schistosomiasis infec-
tion or snail habitat sites; and (2) made publicly available 
at a 250-m resolution or finer for the entire study area. 
The elevation (m) of the home and the geodesic distance 
(km) to the nearest road, waterway and waterbody was 
calculated for each household. We generated the average 
Normalized Difference Water Index (NDWI) [43] and 
average Normalized Difference Vegetation Index (NDVI) 
[44] as estimates of water content and vegetation health 
in our study area, respectively, using 30-m resolution 
Landsat-8 satellite images with less than 30% cloud cover 
collected between January and July 2016. Whereas the 
NDWI identifies water features and distinguishes them 
from soil and vegetation surfaces [43], the NDVI is chlo-
rophyll-sensitive and provides a measure of crop and veg-
etation health [45]. We calculated an additional measure 
of vegetation frequently used in high biomass regions due 
to its sensitivity to variations in canopy health [45], the 
average Enhanced Vegetation Index (EVI) [46]. This was 
estimated for the period between January and July 2016 
using NASA’s MODIS data library providing pre-pro-
cessed 250-m resolution EVI data [41]. As was done for 
the snail data, three different buffers sizes (0.25, 0.5 and 
1.0  km) were generated around each household point, 
and the average NDWI, NDVI and EVI were calculated 
for each. Not only did this make our measures of NDVI, 
NDWI and EVI representative of the average conditions 
surrounding the home, but this also helped to facilitate 
the comparison between our 30-m resolution measures 
of NDWI and NDVI and the 250-m resolution measure 
of EVI. A detailed description of variable rationale and 
definitions, and the process and ArcGIS Pro tools used to 
form each of them are provided in Additional File 1.

Analysis
Primary analysis
A Random Forests (RF) machine learning approach 
was used to construct and compare predictive models, 
one using snail survey data and one using open-source 
environmental data as predictors. After generating our 
datasets in ArcGIS Pro, the R-ArcGIS Bridge from the 
‘arcgisbinding’ R package was used to facilitate an easy 

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
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transfer of data between ArcGIS and RStudio for the RF 
analysis [47]. Each dataset was split 75/25 for training 
and validation, respectively. For each training dataset, we 
oversampled the minority class to correct for class imbal-
ance in our outcome variable (13.8% of households were 
S. japonicum positive). In total, three different balanced 
training datasets were generated for the snail data, and 
three for the environmental data, yielding a total of six 
balanced datasets that were used for RF model training. 
This approach allowed us to assess the stability of model 
performance metrics and variable importance rankings 
in light of our oversampling approach. The ‘caret’ pack-
age in R was used to perform a tenfold cross validation 
process to tune each model, helping to determine the 
optimal maximum node size to use and the number of 
variables to try at each branch. For each RF model, we 
specified 5000 trees per forest, as a high number of trees 
is recommended to help stabilize variable importance 
rankings [48].

The reserved validation data was used to test each 
model and calculate performance statistics (accuracy, 
Cohen’s kappa statistic, receiver operator curve (ROC) 
area under the curve (AUC), sensitivity, specificity, posi-
tive predictive value (PPV) and the negative predictive 
value (NPV)). To compare performance between mod-
els, the best model was defined as the one with the high-
est kappa value, followed by accuracy and ROC AUC, 
respectively. Because our reserved validation datasets 
had a high degree of class imbalance, the kappa statis-
tic was selected as our main metric for indicating model 
performance, as it was developed to help correct for bias 
related to over-rewarding the prediction of the majority 
class [49]. Model accuracy was also compared to the No 
Information Rate (NIR), which indicates what the accu-
racy would be expected to be if the majority class were 
predicted every time (NIR = 0.859). A high NIR value 
results when there is a high degree of class imbalance 
for the outcome of interest, as was the case in this study. 

Table 1 List of predictors generated for each model

For the snail survey data models, present sites are those where at least one snail was found, while absent sites are those where no snails were found during the 2016 
snail surveys. For the environmental data models, NDVI and NDWI were calculated using Landsat-8, Collection 1 satellite data collected on January 23rd, February 
8th, and April 28th (dates where there was < 30% cloud cover). Pre-processed EVI data from NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS) Terra 
satellite was averaged across a total of 12 observations occurring at 16-day intervals between January 1st and July 10th, 2016

NDWI Normalized Difference Water Index, NDVI Normalized Difference Vegetation Index, EVI Enhanced Vegetation Index

Snail survey data model Environmental predictors model

Presence sites (one or more snails found) Open data
 Ditches where snails were present  Built and natural environment

  Distance from home to the nearest identified present ditch (km)   Distance to nearest waterway (km)

  Total length of present ditches within 0.25 km radius of the home (km)   Distance to nearest waterbody (km)

  Total length of present ditches within 0.5 km radius of the home (km)   Distance to nearest road (km)

  Total length of present ditches within 1 km radius of the home (km)   Elevation (m)

 Fields where snails were present

  Distance from home to the nearest identified present field (km) Remotely sensed data
  Total area of present fields within 0.25 km radius of the home  (km2)  Normalized Difference Water Index (NDWI)

  Total area of present fields within 0.5 km radius of the home  (km2)   Average NDWI within 0.25 km radius of the home

  Total area of present fields within 1 km radius of the home  (km2)   Average NDWI within 0.5 km radius of the home

  Average NDWI within 1 km radius of the home

Absence sites (no snails found)  Normalized Difference Vegetation Index (NDVI)

 Ditches where snails were absent   Average NDVI within 0.25 km radius of the home

  Distance from home to the nearest identified absent ditch (km)   Average NDVI within 0.5 km radius of the home

  Total length of absent ditches within 0.25 km radius of the home (km)   Average NDVI within 1 km radius of the home

  Total length of absent ditches within 0.5 km radius of the home (km)  Enhanced Vegetation Index (EVI)

  Total length of absent ditches within 1 km radius of the home (km)   Average EVI within 0.25 km radius of the home

 Fields where snails were absent   Average EVI within 0.5 km radius of the home

  Distance from home to the nearest identified absent field (km)   Average EVI within 1 km radius of the home

  Total area of absent fields within 0.25 km radius of the home  (km2)

  Total area of absent fields within 0.5 km radius of the home  (km2)  Other predictors included in the models
  Total area of absent fields within 1 km radius of the home  (km2)   Number of people tested in the household (N)

Other predictors included in the models
 Number of people tested in the household (N)
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Finally, in the event of a tie in the kappa and accuracy of 
two models, the ROC AUC was used to select a final, top 
performing model.

Secondary analysis
To determine which predictors were the most influential 
in predicting household S. japonicum infection, a second-
ary analysis was performed using the mean decrease in 
accuracy (MDA) values of predictors to visualize relative 
variable importance within each model. For each of the 
three environmental data models and three snail data 
models, the top ten predictors indicated by the model’s 
MDA plots were given a score of 10 to 1 (10 being the 
score of the top predictor). Variable scores were then 
summed across the three models to create a three-model 
summary score of 0 to 30, 30 being the highest score 
possible, while a score of 0 indicates that the variable 
was never ranked among the top ten predictors. Simple 
logistic regression models and lowess plots were exam-
ined to determine the direction and shape of association 
between household S. japonicum infection status and 
each predictor.

As a demonstration of the application of our approach, 
a map of the predicted probability of S. japonicum infec-
tion was generated using the top performing RF model 
indicated by the primary analysis to highlight high-risk 
locations and features in our study area in 2016. All anal-
yses were conducted in ArcGIS Pro 2.8.3 and RStudio 
Version 4.1.2 [42, 47].

Results
Village-level S. japonicum infection prevalence (n = 10) 
ranged from 0% to 27.1%, while the number of infections 
per household ranged from 0 to 3, with a mean of 0.16 
(Standard Deviation (SD) = 0.44) infections per house-
hold across the 283 households. A total of 4,896 histori-
cal or current snail habitat sites were identified in the 
study area, of which 1,092 (22.3%) were found to contain 
one or more snails. None of the snails identified during 
the snail surveys were found to be infected with S. japoni-
cum. In total, 69.7% of sites were categorized as ditches. 
The total length of ditches within 1  km of the home 
ranged from 0 to 7.31 km long, with an average length of 
1.74  km (SD = 1.70) for ditches with snails present, and 
2.22 km (SD = 1.35) for ditches where snails were absent. 
The remaining 30.3% of the surveyed sites were catego-
rized as fields. Within 1  km of the home, the total area 
of fields (present or absent) ranged from 0 to 0.19  km2. 
The average area of fields with snails present was 0.04 
 km2 (SD = 0.06) and 0.06  km2 (SD = 0.06) for fields where 
snails were absent. Figure 2 illustrates the geographic dis-
tribution of infections in relation to the snail habitat sites 
for our study area.

On average, the homes in our study villages were 
located closer to a road (mean distance: 0.36 km) than to 
a waterbody (2.11 km) or waterway (3.02 km). The mean 
elevation of households in the study villages was 573 m. 
Surface water in the area surrounding the home was gen-
erally low. NDWI values can range from -1 to 1, with a 
value of < 0 indicating a surface with little to no water 
content, though a threshold of > 0.3 has been proposed as 
a reasonable value to use for identifying waterbodies [50]. 
In our study, the mean NDWI within 1 km of the home 
was − 0.19 (SD = 0.01). Similarly, the NDVI and EVI 
range from −1 to 1, with lower values indicating more 
barren landscapes. Values lower than 0.1 for NDVI repre-
sent low vegetation areas (e.g. rocks, sand or snow), while 
values greater than 0.6 corresponds with temperate and 
tropical forests [51]. For the EVI, values between 0.2 and 
0.8 are generally used to indicate healthy vegetation [52]. 
The average NDVI and EVI within 1 km of the home was 
0.18 (SD = 0.02) and 0.40 (SD = 0.02), respectively. Table 2 
provides summary statistics for the household predictors 
included in this analysis.

Primary analysis
RF model performance
The snail data models were outperformed by the open-
source environmental data models using each model’s 
kappa and accuracy metrics (Table  3, Fig.  3). The accu-
racy of the best snail model was the same as the NIR 
of 0.86, which indicates what the accuracy would be 
expected to be if the majority class were predicted every 
time. Despite being outperformed in all other metrics, 
the ROC AUC of each snail model was higher than that 
of the environmental data models. According to the 
guidelines laid out by Landis & Koch (1977) on how to 
interpret the kappa statistic, the kappa values in our snail 
models (0.33–0.37) all suggest a “Fair” predictive capacity 
(0.21—0.40) [49]. The sensitivity and the PPV were low 
for the snail models, with a sensitivity of 0.40 and a PPV 
of between 0.44–0.50 for all snail models.

By comparison, the performance metrics of the envi-
ronmental models indicated strong predictive perfor-
mance. The accuracy of all three environmental data 
models was 0.89 (slightly higher than the NIR of 0.86), 
while the kappa statistic was 0.49, indicating the predic-
tive capacity of the environmental models was “Mod-
erate” using the Landis & Koch benchmarks [49]. The 
ROC AUC for the environmental models ranged from 
0.78–0.80. Although the sensitivity and PPV for the envi-
ronmental predictor models was still relatively low (sen-
sitivity: 0.50; PPV: 0.63), the specificity (0.95) and NPV 
(0.92) for all three models were very high.
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Fig. 2 Maps of the study villages
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Table 2 Summary of household variables

NDWI Normalized difference Water Index, NDVI Normalized difference Vegetation Index, EVI Enhanced Vegetation Index

household variables N %

Shared model characteristics
 Number of infections per household

  0 244 86.22

  1 33 11.66

  2 + 6 2.12

 Number of people tested per household

  1 83 29.33

  2 146 51.59

  3 42 14.84

  4 + 12 4.24

Snail models Mean SD Min. Max.

 Ditches

  Distance from home to nearest present ditch (km) 0.57 0.89  < 0.01 3.26

  Length of present ditches within 0.25 km of the home (km) 0.24 0.28 0.00 0.97

  Length of present ditches within 0.5 km of the home (km) 0.65 0.61 0.00 2.69

  Length of present ditches within 1 km of the home (km) 1.74 1.70 0.00 7.31

  Distance from home to nearest absent ditch (km) 0.26 0.23  < 0.01 1.05

  Length of absent ditches within 0.25 km of the home (km) 0.23 0.28 0.00 0.93

  Length of absent ditches within 0.5 km of the home (km) 0.77 0.65 0.00 2.11

  Length of absent ditches within 1 km of the home (km) 2.22 1.35 0.00 6.80

 Fields

  Distance from home to nearest present field (km) 0.58 0.51  < 0.01 1.55

  Area of present fields within 0.25 km of the home  (km2) 0.01 0.01 0.00 0.05

  Area of present fields within 0.5 km of the home  (km2) 0.02 0.04 0.00 0.13

  Area of present fields within 1 km of the home  (km2) 0.04 0.06 0.00 0.16

  Distance from home to nearest absent field (km) 0.36 0.54  < 0.01 2.20

  Area of absent fields within 0.25 km of the home  (km2) 0.01 0.01 0.00 0.19

  Area of absent fields within 0.5 km of the home  (km2) 0.02 0.02 0.00 0.09

  Area of absent fields within 1 km of the home  (km2) 0.06 0.06 0.00 0.04

Environmental data models Mean SD Min. Max.

 Built and natural environment

  Distance from home to the nearest waterway (km) 3.02 1.82 0.06 5.44

  Distance from home to the nearest waterbody (km) 2.11 0.95 0.37 3.91

  Distance from home to the nearest road (km) 0.36 0.26  < 0.01 1.27

  Elevation of the home (m) 573.45 54.81 495.0 685.0

 Remotely sensed data

  Mean NDWI within 0.25 km of the home − 0.19 0.02 − 0.23 − 0.15

  Mean NDWI within 0.5 km of the home − 0.19 0.02 − 0.21 − 0.16

  Mean NDWI within 1 km of the home − 0.19 0.01 − 0.20 − 0.17

  Mean NDVI within 0.25 km of the home 0.18 0.02 0.14 0.23

  Mean NDVI within 0.5 km of the home 0.18 0.02 0.14 0.22

  Mean NDVI within 1 km of the home 0.18 0.02 0.15 0.21

  Mean EVI within 0.25 km of the home 0.40 0.03 0.36 0.48

  Mean EVI within 0.5 km of the home 0.40 0.02 0.37 0.47

  Mean EVI within 1 km of the home 0.40 0.02 0.38 0.46
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Variable importance
The variable importance assessment highlighted sev-
eral key predictors of household S. japonicum infection 
in our study area in 2016. From the environmental data 
models, mean NDWI within 0.5 km of the home was the 
best performing predictor, resulting in a three-model 
summary score of 30 (Table  4 and Fig.  4). Distance to 
the nearest road and the mean NDWI within 1  km of 
the home were the next most important predictors, each 
with a summary score of 23. None of the variables that 
used a 0.25  km buffer around the home was ranked in 
the top 50% of predictors, nor was elevation, the distance 
to waterbodies or waterways, or the number of people 
tested per household. In the snail survey data models, the 
total length of all absent ditches (i.e., ditches where no 
snails were found) within 1 km of the home was the top 
predictor for all three models, followed by the distance 
to the nearest absent field and the distance to the nearest 
present field. Like what was found with the environmen-
tal data models, none of the variables that used the small-
est household buffer size (0.25 km) were ranked among 
the top 50% of predictors in the three-model summary 
score.

Logistic regressions and predictions
In our simple logistic regression analyses, we found 
that the total distance to the nearest road was the only 
predictor from the environmental dataset that was 
ranked among the top 50% of predictors that was also 
significantly (p-value < 0.05) associated with house-
hold S. japonicum infection status (Table  5). For each 
1  km increase in the distance between the home and 

the nearest road, the log odds of household infec-
tion increased by 1.30 (standard error (SE) = 0.60, 
p-value = 0.03). NDWI and EVI within 0.5 km and 1 km 
of the home were positively associated with household 
infection status, whereas NDVI was negatively associ-
ated with infection status, though none of these asso-
ciations were statistically significant using p-value < 0.05. 

Table 3 Performance metrics for the snail and environmental data models

a No Information Rate
b Due to the high degree of imbalance between the outcome classes across the study period, the Cohen’s kappa statistic is a useful metric for our models, as it helps to 
correct bias that results when rewarding the prediction of the majority class. The benchmark values outlined by Landis & Koch (1977) are useful here for determining 
the relative strength of the predictive models: < 0.00 = Poor; 0.00–0.20 = Slight; 0.21–0.40 = Fair; 0.41–0.60 = Moderate; 0.61–0.81 = Substantial; 0.81–1.0 = Almost 
Perfect

Performance metrics Snail survey data models Open‑source environmental data models

Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

AUC 0.852 0.849 0.843 0.800 0.784 0.798

Accuracy 0.845 0.859 0.845 0.887 0.887 0.887

Accuracy 95% CI 0.74–0.92 0.76–0.93 0.74–0.92 0.79–0.95 0.79–0.95 0.79–0.95

NIRa 0.859 0.859 0.859 0.859 0.859 0.859

P-Value (Accuracy > NIR) 0.706 0.583 0.706 0.316 0.316 0.316

Kappab 0.332 0.365 0.332 0.492 0.492 0.492

Sensitivity 0.400 0.400 0.400 0.500 0.500 0.500

Specificity 0.918 0.934 0.918 0.951 0.951 0.951

Pos Pred Value 0.444 0.500 0.444 0.625 0.625 0.625

Neg Pred Value 0.903 0.905 0.903 0.921 0.921 0.921

Fig. 3 Receiver Operating Characteristics (ROC) Area Under the 
Curve (AUC) for snail and environmental models
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Although neither distance to the nearest waterway nor 
elevation were ranked among the top 50% of the environ-
mental predictors, both were strongly negatively associ-
ated with household infection status (p-value < 0.01).

In models using snail survey data, ditches were asso-
ciated with an increased risk of infection while fields 
were associated with a lower risk of infection. For every 
1  km increase in the length of ditches where snails 
were found within a 1  km radius of the home, the log 
odds of household infection increased 0.78 (SE = 0.26, 
p = 0.002). In contrast, infections were more likely in 
households further from fields: for each 1 km increase 
in the distance between the home and a field where 
snails were present, the log odds of household infection 
increased 0.92 (SE = 0.33, p = 0.005). Likewise, for each 

0.1  km2 increase in fields where no snails were found 
within 0.5 km of the home, the log odds of household 
infection decreased 2.78 (SE = 1.05, p = 0.008). See 
Table  5 for details on the simple logistic regression 
results.

Given that the kappa and accuracy of the three final 
environmental data models was higher than the kappa 
and accuracy of the snail data models, the environmental 
model with the highest ROC AUC (Model 1; see Table 3) 
was used as our final prediction model. Using the final 
model, we generated a prediction surface for the entire 
study area to illustrate the predicted probability of infec-
tion across different landscapes within the study area 
(Fig.  5). The predicted probability of infection for the 
study area ranged from 0.2% to 89.6%.

Table 4 Summary of variable importance rankings for the snail and environmental data models

Model 1: Model 2: Model 3: Three-model summary:
Variable score Variable score Variable score Final variable score

Snail model predictors
Absent ditch length within 1 Km 10 10 10 30
Distance to absent field 9 9 9 27
Distance to present field 8 8 8 24
Distance to present ditch 7 7 7 21
Distance to absent ditch 6 6 4 16
Present ditch length within 0.5 Km 4 5 6 15
Absent field area within 0.5 Km 5 4 5 14
Absent ditch length within 0.5 Km 3 2 3 8
Present ditch length within 1 Km 2 3 2 7
Absent field area within 1 Km 1 1 1 3
Present ditch length within 0.25 Km 0 0 0 0
# People tested in the home 0 0 0 0
Present field area within 0.25 Km 0 0 0 0
Present field area within 1 Km 0 0 0 0
Absent ditch length within 0.25 Km 0 0 0 0
Absent field area within 0.25 Km 0 0 0 0
Present field area within 0.5 Km 0 0 0 0

Environmental model predictors
NDWI within 0.5 Km 10 10 10 30
Distance to the nearest road 9 5 9 23
NDWI within 1 Km 7 9 7 23
EVI within 1 Km 8 8 5 21
EVI within 0.5 Km 5 6 8 19
NDVI within 0.5 Km 6 4 6 16
NDVI within 1 Km 4 7 2 13
NDVI within 0.25 Km 1 3 4 8
NDWI within 0.25 Km 3 1 3 7
EVI within 0.25 Km 0 2 1 3
Elevation 2 0 0 2
Distance to nearest waterbody 0 0 0 0
Distance to nearest waterway 0 0 0 0
# People tested in the home 0 0 0 0

After dividing the snail habitat data (top), and the environmental data (bottom) 75:25 for training and validation, three balanced training datasets were obtained 
for each by oversampling the minority outcome class. These balancing repetitions were used to assess the stability of model performance metrics and variable 
importance rankings that resulted from using an oversampling approach to create a balanced training dataset. After tuning each model using ten-fold cross-
validation, the final models were run on the reserved testing data to generate model performance metrics and variable importance summaries (indicated by the Mean 
Decrease in Accuracy (MDA)). The ten predictors with the highest MDA in each model were given a score of 10 – 1 (10 being the score of the predictor with the highest 
MDA). Variable scores were then summed across the three models to create a three-model summary score of 30 – 0, 30 being the highest score possible (ranked first 
in all three models), while a score of 0 indicates that the variable was not ranked in the top ten in any of the three models. In this table, the top ~ 50% of predictors 
(determined by the three-model summary score) are shown above the dotted line in black, while those that were in the bottom 50% are below the dotted line and 
shown in gray
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Discussion
In this study, we set out to gain a better understanding 
of the strengths and limitations of on-the-ground-sur-
veillance as compared to remote sensing and open-
source environmental data for identifying pockets of 
schistosomiasis in a region approaching elimination. 
We found that the open-source environmental data 
models outperformed the snail data models in predict-
ing household S. japonicum infection status in rural 
farming communities in Sichuan, China. Across our 
models, the sensitivity, specificity, NPV, PPV, kappa and 
accuracy of the environmental data models was higher 
than the snail data models. This has important impli-
cations. Whereas snail surveys are labor-intensive and 
time-consuming pursuits, the data from the environ-
mental predictors models are readily available and free 
to download. Thus, for the purposes of estimating local 
infection risk in areas approaching elimination, the 
ultimate payoff of investing resources into snail surveys 
may be lower than what could be achieved by limiting 
field activities to human and animal infection surveys 
and focusing on environmental conditions that can be 
sufficiently characterized using open-source environ-
mental data.

As more locations approach elimination goals, inten-
sive prevention and control programs and their schisto-
somiasis-dedicated teams are likely to be phased out in 
favor of targeted surveillance and response methods. It 
is therefore becoming increasingly important to explore 
a range of lower-input alternatives to snail surveys for 
monitoring schistosomiasis risk in the years to come. In 
this study, the high specificity (0.95) and NPV (0.92) of 
our environmental models) suggests that open-source 
environmental data serves as an effective alternative to 
large-scale snail surveys for ruling in the possibility of 
schistosomiasis infection at fine spatial scales in areas on 
the verge of elimination. This is useful in the context of 
resource-limited control programs, in that it can serve as 
a first step in identifying areas where infections are likely 
to be present (and, conversely, ruling out areas where 
infections are unlikely to be found). This can enable the 
efficient direction of resources such as infection screen-
ing, preventative prophylaxis and improved sanitation to 
areas that are predicted to have high infection probability.

To validate our findings and adapt these methods for 
use in other settings, a few key actions are recommended. 
First, investigations of the suitability of different environ-
mental measures for predicting human infection across a 

Fig. 4 Variable importance plots for the snail and environmental data models. For each of the three models generated with the snail data and the 
environmental data, variable importance was determined using Mean Decrease in Accuracy (MDA). Each variable is assigned one color across all 
three models such that color can be used to highlight major shifts in variable importance ranks between models
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range of settings are needed, as snail habitat preferences, 
suitability and transmission risks may vary substantially 
from ecosystem to ecosystem [30, 53–55]. While our 
findings demonstrate the potential utility of using open-
source environmental data in lieu of snail habitat survey 

data, our analysis is focused on ten villages from two 
endemic counties in China in 2016. It remains to be seen 
if open-source environmental data performs similarly 
well in other environments and ecosystems. It is impor-
tant to replicate this analysis in other endemic regions 

Table 5 Simple logistic regression results

Snail Habitat Data Models

Scaled predictors a PE b SE c P-value
Absent ditch length within 1 Km 0.17 0.13 0.179
Distance to absent field -0.28 0.37 0.450
Distance to present field 0.92 0.33 0.005**
Distance to present ditch -0.42 0.27 0.125
Distance to absent ditch 0.05 0.75 0.944
Present ditch length within 0.5 Km 0.78 0.26 0.002**
Absent field area within 0.5 Km -2.78 1.05 0.008**
Absent ditch length within 0.5 Km -0.08 0.27 0.757
Present ditch length within 1 Km 0.32 0.08 <0.001**
Absent field area within 1 Km -0.75 0.34 0.029*
Present ditch length within 0.25 Km 0.81 0.58 0.164
# People tested in the home 0.37 0.19 0.049*
Present field area within 0.25 Km -7.83 3.59 0.029*
Present field area within 1 Km -0.97 0.43 0.023*
Absent ditch length within 0.25 Km 0.01 0.60 0.981
Absent field area within 0.25 Km -5.02 2.88 0.081
Present field area within 0.5 Km -1.52 0.73 0.036*

Open-Source Environmental Data Models

Scaled predictors a PE b SE c P-value
NDWI within 0.5 Km 1.33 1.09 0.221
Distance to the nearest road 1.30 0.60 0.029*
NDWI within 1 Km 1.03 1.31 0.432
EVI within 1 Km 0.88 0.78 0.261
EVI within 0.5 Km 1.22 0.65 0.059
NDVI within 0.5 Km -0.86 0.85 0.311
NDVI within 1 Km -0.48 0.99 0.632
NDVI within 0.25 Km -0.84 0.73 0.250
NDWI within 0.25 Km 1.23 0.93 0.184
EVI within 0.25 Km 1.11 0.56 0.050*
Elevation -0.13 0.04 <0.001**
Distance to nearest waterbody -0.07 0.18 0.706
Distance to nearest waterway -0.29 0.10 0.003**
# People tested in the home 0.37 0.19 0.049*

a For both the snail habitat data (top), and the environmental predictors data (bottom), simple logistic regression models were run to determine the direction of 
association with household S. japonicum infection status. Each predictor was scaled to make a one-unit change represent meaningful incremental changes. The units 
used for each snail variable are as follows: for the distance to the nearest present ditch, absent ditch, present field and absent field, the unit of change was 1 km; for 
the total present ditch length and total absent ditch length within 0.25 km, 0.5 km and 1 km of the home, the unit of change was 1 km; for the area of present fields 
and area of absent fields within 0.25 km, 0.5 km and 1 km of the home, the unit of change was 0.1  km2; the unit of change was 1 person. The units used for each 
environmental variable are as follows: for NDWI, NDVI and EVI, the unit of change was 0.1 (index range of -1 to + 1); for the distance to the nearest road, waterway or 
waterbody, the unit of change was 1 km; for elevation, the unit of change was 10 m; for the number of people tested in the home, the unit of change was 1 person
b Point estimate
c Standard error

* p-value ≤ 0.05

**p-value ≤ 0.01
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and for other species of schistosomes to determine how 
well open-source environmental data predicts household 
infection across distinct environments. Second, to deter-
mine whether open-source environmental predictors and 
their variable importance rankings are stable over time, it 
would be beneficial to re-evaluate the predictive capac-
ity of these open-source environmental predictors within 
similar ecosystems at multiple points in time. Finally, 
because these analyses require access to environmental 
data and local cadres of trained GIS professionals pro-
ficient in developing and analyzing geospatial data, we 
recommend that regions approaching schistosomiasis 
elimination targets invest in building their GIS work-
force and toolsets to enable locally tailored GIS-based 
solutions. Although many of the data sources used in 
this analysis are available at high resolutions across the 
globe (NASA’s MODIS imagery library, USGS Land-
sat imagery, JAXA ALOS World 3D-30 m), OSM data is 
less consistent in availability and coverage. For example, 
although shapefiles containing processed OSM data are 
now available for free from Geofabrik for most countries 
worldwide, a 2017 study estimated that the worldwide 
completeness of OSM data was 83%, with approximately 

40% of countries having fully mapped street networks 
[56]. Thus, building on local capacities to leverage open-
source data, evaluate local coverage and completeness 
and fill data gaps where they exist is a recommended next 
step for countries like China that are nearing schistoso-
miasis control and elimination targets.

In our secondary analyses, we compared several envi-
ronmental features on their capacity to predict house-
hold infection status in 2016 to provide researchers and 
control programs with insights on the relative impor-
tance of a range of local environmental features at vary-
ing spatial scales. In this study, homes that were further 
from a road were significantly more likely to have one or 
more S. japonicum infection. This finding is consistent 
with the results of other studies, which have suggested 
that schistosomiasis infection risk is higher in areas that 
are further from a city [57, 58], a phenomenon potentially 
related to lower access to healthcare in more remote loca-
tions, as has been suggested elsewhere [59]. Our results 
also highlighted that residents in homes situated in areas 
with more surface water nearby have a greater risk of 
schistosomiasis infection – a phenomenon that could 
be due to increased opportunities for human exposure 

Fig. 5 Prediction map showing the probability of S. japonicum infection using the top-performing environmental data model. The final top 
performing model was defined as the one with the highest kappa, accuracy, and receiver operating characteristic (ROC) area under the curve 
(AUC), respectively. Model performance metrics (Cohen’s kappa and accuracy) highlighted that the open-source environmental data models 
outperformed the snail data models. The top performing environmental data model was used to create a prediction surface of the probability of S. 
japonicum infection across the entire study area
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to schistosomes through water contact, as has been pre-
viously found in China, Brazil and several countries in 
Sub-Saharan Africa [17, 27, 58, 60–64]. In a similar vein, 
we found that homes that were closer to waterways, as 
well as those at lower elevations were significantly more 
likely to have S. japonicum infection than those that were 
nearer to waterways or situated at higher elevations. The 
association between low elevation and household infec-
tion could potentially be linked to water accumulation at 
lower elevations, or a greater risk of encountering snails 
at lower elevations, as has been found in China [25, 33, 
65], as well as in Côte D’Ivoire, Nigeria, Kenya, Tanzania 
and Uganda [66–69]. Taken together, the highly ranked 
predictors featured in our RF and regression models are 
consistent with what is known about the important role 
of water in the schistosomiasis transmission cycle, as 
well as measures of connectivity and remoteness, and 
highlight the utility of using measures of surface water 
accumulation and proximity to major road networks as 
a simple means of schistosomiasis risk characterization 
and surveillance.

While the models using snail survey data did not per-
form as well as the open-source environmental data mod-
els, we identified a few key predictors that shed light on 
the relationship between snail habitat and human infec-
tions. First, proximity to and the total length of ditches 
in the area surrounding the home (0.5 – 1  km radius) 
were consistently among the top predictors of household 
S. japonicum infection and generally more ditches were 
associated with greater infection risk. For example, our 
simple logistic regression models suggest that homes that 
were closer to and those with a greater density of ditches 
where snails were present were more likely to have one 
or more residents with S. japonicum infection. This 
aligns with our expectations, as an increase in the area of 
snail habitats would be expected to correspond with an 
increasing number of opportunities to encounter infected 
snails and become infected, as has been found in other 
contexts [20]. Second, we found surprising evidence that 
fields may be protective against S. japonicum infection – 
greater density of fields near the home where snails were 
present or absent, and proximity to fields where snails 
were present were all associated with decreased house-
hold S. japonicum infection risk. While determining why 
this might be the case was beyond the scope of this study, 
we hypothesize that it is related to a lower overall den-
sity of snails across fields, as compared to ditches where 
snails are likely more compactly situated. This aligns with 
the findings of a 2014 study from Brazil, where smaller 
areas of water accumulation were found to have greater 
snail concentrations, and were subsequently associated 
with higher disease prevalence [70].

We assessed which spatial scales were most relevant to 
household S. japonicum infection risk by applying three 
different buffer sizes (0.25 km, 0.5 km, 1 km) around the 
home to summarize each of our four main snail habitat 
predictor categories (present fields, absent fields, pre-
sent ditches, present ditches), and our three environ-
mental indexes measuring surface water and vegetation 
(NDWI, NDVI, EVI). For all models, only those predic-
tors that used a 0.5 or 1 km buffer were among the top 
50% of predictors. Thus, the strongest predictors of our 
high-resolution outcome (household-level infection) 
were characteristics of the neighborhood, rather than the 
area immediately surrounding the home, a finding that 
is consistent with other studies from the region, which 
have highlighted the importance of aggregated or village-
scaled measures of S.japonicum risk [71, 72]. In light of 
the recent push to incorporate precision mapping into 
schistosomiasis surveillance and control programs [73], 
this is an important consideration. Overall, this high-
lights the important role that spatial scales can play when 
assessing predictors of environmentally-mediated dis-
eases like schistosomiasis. As a result, we suggest that 
future studies and control programs consider a range of 
potential scales of influence when evaluating environ-
mental risk factors, rather than focusing solely on imme-
diate surroundings.

As the aim of our primary analysis was in essence, 
proof-of-concept, we believe that our main finding—that 
open-source, remotely sensed data can serve as a substi-
tute for time and labor-intensive snail survey data as a 
means of identifying high-risk locations—has the poten-
tial to hold global significance and therefore sets a prece-
dent for further investigations to determine the extent of 
its generalizability. Nevertheless, the relatively small geo-
graphic area (~ 700  km2) and the cross-sectional nature 
of the study restrict our ability to draw conclusions about 
other locations or points in time without further corrob-
oration. Additionally, our small study area also resulted 
in the exclusion of potentially important environmental 
predictors (e.g., temperature and precipitation) [16–18, 
74–76], as weather would not be expected to vary sub-
stantially across 25 km (the maximum distance between 
any two households in this study). Another limitation of 
this study was that we had a relatively small sample size 
(N = 283 households), given the number of predictors 
included in each model (N = 17 in the snail data mod-
els, and N = 14 in the open-source environmental data 
models). While RF models are well-recognized for being 
robust to small sample sizes and large predictor sets [77], 
smaller samples result in reduced power to detect rare 
events and an increased risk that the sample is unrepre-
sentative of the underlying population. We compensated 
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for this, in part, by running multiple models and sum-
marizing broad-scale trends in performance and variable 
rankings that held across multiple iterations of model 
building.

Class imbalance in our outcome variable was another 
limitation of this study, as misclassification rates tend 
to increase when using RF models to predict outcomes 
that do not have roughly equal numbers of observa-
tions within each category [78]. Overall, 39/283 (13.8%) 
households had one or more cases of schistosomiasis. 
To account for the high degree of class imbalance in our 
outcome, we oversampled the minority class in the train-
ing datasets. However, for the reserved validation data-
set, the class imbalance remained, resulting in inflated 
accuracy measures. As such, we recommend that readers 
prioritize the kappa statistic over the accuracy measure 
when considering the performance of our models, as this 
was developed to help correct for bias due to class imbal-
ance [49].

Another limitation in this analysis is that the variable 
importance measures were likely impacted by the high 
degree of correlation between some of our predictors 
(e.g., two different measures of vegetation, or the three 
different spatial scales used to develop predictors), as the 
variable importance rankings that are used in RF models 
become less reliable when predictors are highly corre-
lated with one another [79]. As such, the relative rankings 
of predictors should be interpreted with caution, instead 
looking at broad-scale trends in predictor rankings (e.g., 
ranked in the top 50% of predictors, versus the bottom 
50% of predictors). Finally, it is worth noting that the 
analysis presented in this paper makes use of two datasets 
that are inherently incomplete. Regarding the snail sur-
vey data, despite the use of standard protocols [32], it’s 
inevitable that not every snail is going to be detected in 
each field, ditch or other environmental feature, as snail 
surveys provide only a snapshot of highly dynamic snail 
populations. The OSM data used in this analysis also has 
notably gaps, particularly for road networks, for which 
China is one of the lowest ranked countries for OSM 
road network completeness, with less than a third of all 
roads mapped as of 2016 [56]. Nevertheless, the OSM 
data for China still has been demonstrated to have good 
coverage and accuracy for major environmental features 
[36], making them useful for applications such as these 
where our interest was in developing simple proxy meas-
ures for things like the relative remoteness of the home, 
or the likelihood of water contact. As such, both our snail 
survey dataset and our open-source environmental data-
set are likely to represent typical data for the area, mak-
ing this analysis an assessment of the predictive capacity 
of two real-world datasets, which have each been shown 

to perform reasonably well in predicting household schis-
tosomiasis risk, despite their limitations.

Conclusion

In this study, we compared the use of labor-intensive 
snail survey data with that of open-source environmental 
data for developing prediction models aimed at predict-
ing household infection status among rural farming com-
munities in China. Overall, we found that freely available 
environmental data can be used to predict household infec-
tion status among rural farming communities in Sichuan 
Province, China, with high accuracy. Furthermore, the 
open-source environmental data ultimately outperformed 
the snail habitat data, suggesting that, prior to conducting 
comprehensive snail surveys, the overarching goal of the 
surveys ought to be considered to determine whether less 
resource-intensive methods might be suitable. Not only has 
this analysis helped to improve our understanding of where 
and when transmission is most likely to be occurring in the 
study area, but it has also highlighted specific aspects of 
the local environment that were associated with household 
infection—for example, homes that were furthest from 
roads, or those surrounded by more surface water—which 
can become the target of future surveillance and con-
trol efforts. Replication of this study in other contexts can 
help assess the generalizability of our findings and allow 
the development of context-specific models. As the global 
schistosomiasis community searches for new approaches to 
identify residual transmission hotspots and maximize the 
impact of schistosomiasis surveillance efforts, this study 
shows the potential of using open-source environmental 
data to generate high-precision schistosomiasis risk maps.
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