
Gilardi et al. 
International Journal of Health Geographics           (2023) 22:11  
https://doi.org/10.1186/s12942-023-00333-8

RESEARCH Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

International Journal of 
Health Geographics

Long-term exposure and health risk 
assessment from air pollution: impact 
of regional scale mobility
Lorenza Gilardi1*  , Mattia Marconcini2  , Annekatrin Metz‑Marconcini2  , Thomas Esch2   and 
Thilo Erbertseder1   

Abstract 

Background The negative effect of air pollution on human health is widely reported in recent literature. It typically 
involves urbanized areas where the population is concentrated and where most  primary air pollutants are produced. 
A comprehensive health risk assessment is therefore of strategic importance for health authorities.

Methods In this study we propose a methodology to perform an indirect and retrospective health risk assessment 
of all‑cause mortality associated with long‑term exposure to particulate matter less than 2.5 microns  (PM2.5), nitrogen 
dioxide  (NO2) and ozone  (O3) in a typical Monday to Friday working week. A combination of satellite‑based settlement 
data, model‑based air pollution data, land use, demographics and regional scale mobility, allowed to examine the 
effect of population mobility and pollutants daily variations on the health risk. A Health Risk Increase (HRI) metric was 
derived on the basis of three components: hazard, exposure and vulnerability, utilizing the relative risk values from the 
World Health Organization. An additional metric, the Health Burden (HB) was formulated, which accounts for the total 
number of people exposed to a certain risk level.

Results The effect of regional mobility patterns on the HRI metric was assessed, resulting in an increased HRI associ‑
ated with all three stressors when considering a dynamic population compared to a static one. The effect of diurnal 
variation of pollutants was only observed for  NO2 and  O3. For both, the HRI metric resulted in significantly higher 
values during night. Concerning the HB parameter, we identified the commuting flows of the population as the main 
driver in the resulting metric.

Conclusions This indirect exposure assessment methodology provides tools to support policy makers and health 
authorities in planning intervention and mitigation measures. The study was carried out in Lombardy, Italy, one of the 
most polluted regions in Europe, but the incorporation of satellite data makes our approach valuable for studying 
global health.
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Background
The causal relationship between air pollution and the 
exacerbation of health outcomes, ranging from acute res-
piratory and cardiovascular diseases to chronic illnesses, 
has been comprehensively documented in medical lit-
erature [1, 2]. According to the European Environmen-
tal Agency, roughly 360,000 premature deaths could be 
attributed to the exposure to the main air pollutants in 
Europe in 2019 [3]. In 2020, 95%, 94% and 89% of the 
European urban population was exposed to concentra-
tions of particulate matter less than 2.5 microns  (PM2.5), 
nitrogen dioxide  (NO2) and ozone  (O3), respectively, 
exceeding the recommendations from the World Health 
Organization (WHO) [4]. Furthermore, the exacerbation 
of detrimental health endpoints from air pollution con-
tributes to increase the susceptibility to infectious dis-
eases [5]. To gain a better understanding of the related 
processes and interactions, enhanced tools are needed to 
enable planners and decision makers to effectively quan-
tify the exposure of the population to air pollution.

A health risk assessment should include three compo-
nents: the assessment of the hazard (i.e., the air pollu-
tion concentration), the vulnerability of the individuals 
(i.e., the dose–response functions) and the probability 
of exposure [6–8]. The latter cannot be assessed by air 
pollutant levels alone [9]. In fact, neglecting the mobil-
ity pattern can lead to systematic errors in air pollution 
exposure and health burden assessments [10, 11]. An 
exposure assessment can be accomplished at the indi-
vidual level using surveys, wearables, microsensors, or 
mobile data [10, 12–14]. Besides Geographic Informa-
tion System (GIS)-based modelling approaches [15], data 
from Global Positioning System (GPS) devices [16], such 
as mobile phones, have been successfully exploited for 
a dynamic assessment of exposure to air pollution [10]. 
Despite the valuable results of studies implementing 
these systems, they can only provide a temporally and 
spatially limited snapshot of the complex reality; extrapo-
lations to long-term effects and other areas are prone to 
large uncertainties. Population mobility patterns can also 
be assessed with self-reported household travel surveys 
[17, 18]. Major disadvantages of this approach are the 
large non-response rate, the non-representativeness of 
samples and the high costs [18, 19].

For the above-mentioned reasons, many health risk 
assessments and epidemiological studies assume a static 
population, i.e. the air pollution concentration at the 
geolocation of the residential address is considered [20–
22]. Another possible solution to assess the exposure is 
the definition of so-called microenvironments. This sim-
plification of the real world allows for the clustering of 
exposure scenarios with similar features, to which the 

population is dynamically assigned on the basis of typical 
time patterns [9, 23, 24].

However, recent studies assessing the health risk from 
air pollution incorporating assumptions on population 
dynamics and making use of microenvironments are 
often confined to single cities, short time periods, single 
air pollutants and the use of in-situ measurements [17, 
25, 26]. Hence, the representativity of these studies to 
draw general conclusions is limited [9]. The challenge is 
therefore to fill this data and methodological gaps with a 
scalable approach that can be easily applied to multiple 
areas of interest. In particular, to meet the requirement 
for global health studies a worldwide applicable method 
is necessary.

To fill these gaps, we present a scalable method based 
on a combination of data assets, to quantify the long-
term population exposure to air pollutants and to per-
form a health risk assessment, considering the  daily 
variation of multiple pollutants and  the population 
dynamics. The resulting effects were examined by two 
metrics: the Health Risk Increase (HRI) and the Health 
Burden (HB).

Methods
Outline
HRI due to  PM2.5,  NO2 and  O3 was quantified using a 
top-down approach, introducing a combination of sat-
ellite remote sensing imagery, mobility patterns, dose–
response functions, infiltration ratios and chemical 
transport modelling data. Diurnal air quality variability 
was obtained from hourly data of the multi-year reanaly-
sis of the Copernicus Atmospheric Monitoring Service 
(CAMS) [27, 28]. The Fraction of Settled Area (FSA) was 
calculated from the World Settlement Footprint 2019 
(WSF 2019) dataset [29] and used as a proxy for the prob-
ability of population’s presence. Indoor/outdoor concen-
tration’s ratios (IOR) were taken from the literature [30, 
31] and assigned to areas marked as “settled-building” in 
the WSF 2019. Relative Risk (RR) values from the WHO 
were utilized [32]. These data layers were combined to 
quantify the HRI of all-cause mortality, associated with 
the long-term exposure to air pollutants during the day 
and the night hours. The expression “all-cause mortality” 
refers to natural causes of death. Accidental or violent 
causes of deaths are therefore excluded. In the study, we 
compared the exposure of population to increasing HRI 
ranges in a static and in a dynamic population scenario.

The Health Burden (HB) aims at providing a measure 
of the potential impact of the exposure to air pollution on 
the economic and sanitary systems. This metric con-
siders the number of people and their diurnal mobility 
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patterns, obtained from publicly available mobility data 
for the Lombardy region, the “Matrice Origine/Desti-
nazione 2014” (MO/D 2014). To build it, the novel WSF 
2019 was employed [29, 33], which proportionally redis-
tributes population figures available at the finest possible 
administrative level using local imperviousness and land-
use information gathered from OpenStreetMap [34]. The 
data processing and methodology adopted in our study 
are outlined in Fig. 1. Information on all data layers and 
a detailed explanation of the HRI and HB metrics can be 
found later in this chapter.

Study area
The area of interest is Lombardy, in northern Italy, 
see Fig. 2. The location is particularly suitable for the 
intended study for a number of reasons. The region is 
one of the most densely populated areas in Europe: it 
hosts about one sixth of the total Italian population 
(around ten million people) and accounts for about 
one fifth of the share of the national gross domes-
tic product [35]. The region is highly industrialized. 
The Po Valley is historically known to be susceptible 
from an air quality perspective. Due to its peculiar 

Fig. 1 Conceptual representation of the data processing and derivation the Health Risk Increase and the Health Burden metrics
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morphology, where the Alpine and Apennine moun-
tain ranges limit the diffusion in the boundary layer 
[36, 37], high pollution levels are frequently reported. 
Despite the general emissions reduction following 
the strict lockdown measures implemented in Italy 
in 2020, mean yearly pollution concentration values, 
above the WHO air quality guidelines, have still been 
recorded for the area [4]. Furthermore, for the Lom-
bardy region, datasets of population mobility are pub-
licly available.

Air pollution data
CAMS is a service part of the Copernicus Program that 
provides hourly data on the regional atmospheric com-
position. The product consists of an ensemble of seven 
regional chemical transport models that have been 
increased to nine models after the upgrade performed 
in 2019 [28, 38]. Every day, analyses and forecasts data of 
the main pollutants are released with an hourly temporal 
resolution and a horizontal spatial resolution of 0.1 x 0.1 
degrees.

The present study used CAMS reanalysis hourly data 
for the surface level of concentrations  PM2.5,  NO2 and 
 O3 from 2014 to 2018. These where the most recent rea-
nalyses data available at the time of the study. They are 
derived from near-real time datasets of previous years by 
means of the assimilation of and validation with in-situ 
observations from the European Environmental Agency.

Population density and mobility data
Mobility data for the Lombardy region were obtained 
from the “Matrice Origine/Destinazione 2014”, a data-
set developed within the regional mobility and transport 

program of Regione Lombardia. This is a matrix that pre-
sents the number of hourly displacements on a typical 
weekday within and between 1450 defined mobility zones 
in Lombardy. The matrix considers 8 modes of travel (e.g. 
car-driver, car-passenger, on foot, by bicycle, etc.) and 5 
different motivations (e.g. study, work, occasional, etc.). 
The information is the result of the complex interaction 
between transport modelling, on-line questionnaires, 
face-to-face interviews carried out at railway and road 
borders, analysis of available surveys and of the existing 
demand detected [39]. It was built based on a transport 
model integrating the results of a survey held from Feb-
ruary to May 2014 with data from the “2011 Census” of 
the Italian National Institute of Statistics (ISTAT) and 
with contributions from local authorities and stakehold-
ers from the mobility sector. The number of permanent 
residents for each mobility zone is also available in the 
matrix and derived from the “2011 ISTAT Census”.

For this work, the data of the matrix were elaborated 
in order to obtain, for each hour of the day, the differ-
ence between the total number of displacements to/from 
each mobility zone, which represents the area-specific 
net number of commuters. The percentage in relation to 
the resident population was then obtained and the mean 
commuters’ oscillation across Lombardy and during the 
different times of the day was derived. The result is illus-
trated in Fig. 3.

Most travel takes place between 6 and 9 a.m. and 
between 4 and 7 p.m. In these time ranges, the net com-
muters increase the residents of 2%. Between 9 a.m. and 
4 p.m., the population of the areas is stable. Figure  4 
shows a spatial visualization of the percentage of net daily 
commuters traveling to/from different mobility areas in 
relation to the resident population.

Based on this observational data set, two scenarios 
were elaborated: a “DAY” scenario, where the population 
of the areas is given by the residents plus the net com-
muters, calculated considering the population at 3 p.m., 
before the start of the back-commuting and a “NIGHT” 
scenario, with residents only.

Population density and world settlement footprint
In order to assess the population exposure within the 
mobility zones, two data layers were derived. The first, 
the Fraction of Settled Area, was obtained from the 
World Settlement Footprint, a global settlement extent 
mask derived at 10  meters spatial resolution by jointly 
exploiting multitemporal satellite imagery from Senti-
nel-1 to Sentinel-2 [29]. The layer classifies each pixel 
as “non-settled”, “settled-building” or “settled-road”. 
The FSA was derived assigning a unitary value to set-
tled pixels and zero to non-settled ones and performing 

Fig. 2 Geographical location of the study area Lombardy, Italy
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an “average” resampling to 100 m spatial resolution. The 
FSA is used as a proxy for the probability of population 
presence.

The second layer is a population distribution layer 
for the “DAY” and “NIGHT” scenarios. For this pur-
pose, the novel WSF 2019 population layer was 
employed, which estimates, for each 10 meters resolu-
tion pixel marked as settlement in the WSF 2019, the 

corresponding number of inhabitants. Specifically, this 
was obtained by proportionally redistributing the pop-
ulation figures derived from the MO/D 2014 by means 
of the local imperviousness, i.e. a reliable proxy for the 
built-up density [40], as well as land-use information 
gathered from OpenStreetMap. In the two scenarios, 
the total population was distributed to areas classified 
with specific land use labels. In the NIGHT scenario, 
from 8 p.m. to 6 a.m., the resident population only was 
distributed across areas labelled as “Residential”. Dur-
ing the DAY scenario, from 6 a.m. to 8 p.m., the popula-
tion composed by residents plus/minus the commuters 
was distributed over areas classified as “Residential”, 
“Industrial” and “Commercial”.

Calculation of the health risk increase
The hourly pollution data layers were oversampled in 
order to match a grid with resolution of 100 × 100 meters 
and interpolated using a bilinear method. Yearly aggre-
gates of mean  PM2.5,  O3 and  NO2 concentrations were 
calculated for the area of interest from the CAMS rea-
nalysis data, separately for DAY and NIGHT hours. 
For  PM2.5 and  NO2 the yearly mean concentration was 
derived. For  O3 a different metric was considered. Spe-
cifically, since  O3 concentration presents relevant diurnal 
and seasonal fluctuations, the peak season aggregate was 
calculated for each year. This is obtained by performing 
the average of daily maximum in an 8-h rolling mean 
in the 6 consecutive months of the year, with the high-
est 6-month running-average  O3 concentration [32, 41]. 

Fig. 3 Ratio of net commuters and resident population averaged over Lombardy (Italy) for the different hours of the day. The dashed line 
represents the mean while the shaded area represents the standard deviation. Most of the displacement occurs between 6 and 9 a.m. and between 
4 and 7 p.m

Fig. 4 Percentage of net daily commuters traveling to/in different 
mobility zones with respect to the area’s resident population in the 
Lombardy region (Italy). Orange to red colours represent an increased 
daily population with respect to the resident one while green to blue 
colours represent a decrease
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Finally, multiyear means between 2014 and 2018 were 
calculated.

Indoor/Outdoor Ratio coefficients, specific for each 
pollutant, obtained from the study of Monn et  al. [30] 
and Cyrys et al. [31], were applied in correspondence to 
pixels classified as “settled-building” in the WSF 2019. 
A unitary coefficient was applied to pixels classified as 
“settled-street”. The IOR adopted for  NO2,  O3 and  PM2.5 
were, respectively: 0.8 (ref. [30]), 0.8 (ref. [30]) and 0.7 
(ref. [31]). It is important to underline that these values 
do not consider indoor sources. The risk assessment 
therefore refers only to the contribution to health effects 
from outdoor sources. For each IOR coefficient, a range 
of values has been provided in literature. From these 
ranges, the highest value was considered in this study, in 
order to work according to a worst-case scenario.

The vulnerability to air pollutants on the increased all-
cause mortality was determined using the dose–response 
functions provided by the WHO and expressed in terms 
of RRs. These are listed values derived by epidemiologi-
cal studies, accompanied by their 95% Confidence Inter-
val (CI). The WHO has recently released new RR values 
obtained through a meta-analysis conducted on the exist-
ing literature and published within the WHO air quality 
guidelines in 2021 [32]. They quantify the increase of the 
probability of a health outcome for a group exposed to an 
increased concentration of 10 µg/m3 of pollutants com-
pared to the probability of a control group. The ratio of 
these two probabilities is the relative risk, see Eq. 1. If the 
RR is greater than one, the exposure to the factor consid-
ered is detrimental to the health. If the RR is smaller than 
one, it is beneficial. To be considered statistically signifi-
cant, the CI should not range across positive and nega-
tive values [42]. For this study, RRs for all-cause mortality 
associated with the long-term exposure to  PM2.5,  NO2 
and  O3 were used. The considered values with their 95% 
confidence interval were 1.08 [1.06–1.09], 1.02 [1.01–
1.04] and 1.01 [1.0–1.02], respectively. For  PM2.5 and  NO2 
these values refer to the yearly mean concentration while, 
for  O3, to the yearly seasonal peak metric, as described 
by the WHO [32]. In accordance with the approach 
adopted by the WHO, a linear dose–response relation-
ship was assumed. However, as reported in the WHO 
Air Quality Guideline 2021 [32], a supralinear behav-
ior can be expected at low concentrations, suggesting a 
steeper risk increase at lower exposure levels. Population 
exposure was quantified indirectly, using the Fraction 
Settled Area as a proxy variable and obtained from the 
WSF 2019. This was used as a measure the probability of 
human presence. Finally, the Health Risk Increase was 
calculated by multiplying the three components for each 
grid-cell in the domain, as shown in Eq. 2. The HRI was 
thus obtained for both the DAY and NIGHT scenarios. 

Geographical aggregates of the HRI were derived for the 
commuting areas.

where: RR: Relative risk of mortality referred to a concen-
tration of 10 µg/m3

The Probability of the disease with and without the 
exposure to the target factor is provided as relative fre-
quency of the health outcome in the exposed group and 
in the control group.

Relative risks do not deliver information on the abso-
lute risk of a certain health outcome but provide informa-
tion on the increased or decreased likelihood of a certain 
health event, given an exposure to an external factor. This 
increased/decreased likelihood is expressed by the dis-
tance of the resulting relative risk from the unit value, 
corresponding to RR-1.

where: RR: Relative risk of mortality referred to a con-
centration of 10 µg/m3. C: Pollutant concentration in µg/
m3. FSA: Fraction settled areas from WSF. IOR: Indoor/
outdoor ratio (this is posed equal to 1 for pixels labelled 
“street”)

In line with the WHO assumption of a linear dose–
response relationship, the risk increase is obtained by 
multiplying the pollutant concentration by the slope coef-
ficient (RR -1)/10. The normalization by 10 is adopted 
because RR values by WHO are given for an incremen-
tal pollutant concentration of 10  µg/m3. The pollutant 
concentration is corrected by the IOR factor for pixels 
labelled as “building”. Finally, the value is weighted by the 
FSA, a number between 0 and 1, which is used as a proxy 
for the probability of human presence.

Calculation of the Health Burden
The HB metric has been formulated in order to provide 
a measure of the potential economic and public health 
impact. This metric considers the number of people and 
their mobility patterns. As illustrated in Fig.  1, it was 
derived by multiplying pixelwise the HRI by the total 
number of inhabitants (P), obtained from the WSF 2019 
population layer for the day and night scenarios, as illus-
trated in Eq. 3. The population group considered for the 
calculations included, in the DAY scenario, the residents 
plus/minus the commuters and, in the NIGHT scenario, 
the residents only. Geographical aggregates of the HB 
were derived for the commuting areas.

(1)RR=
Probability of disease with exposure

Probability of disease without exposure

(2)HRI = C ∗

RR− 1

10
∗ FSA ∗ IOR

(3)HB = HRI ∗ P
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Results
The HRI and the HB associated with the all-cause mor-
tality were quantified for the years from 2014 to 2018 in 
relation to  O3,  PM2.5 and  NO2 concentrations in the day 
and in the night hours. Mean and maximum were deter-
mined for small geographical aggregates (i.e. the com-
muting zones) utilized in the mobility matrix dataset. 
The multi-annual mean HRIs for  PM2.5,  NO2 and  O3 are 

reported for the DAY scenario, with the highest HRIs 
associated with  PM2.5. The results are reported in Fig. 5. 
The highest HRI values, up to 12.5%, were observed in 
metropolitan areas around Milan, Mantua and Brescia 
for both DAY and NIGHT scenarios. A similar pattern 
was observed for HRI associated with  O3 during the day, 
with more modest values exceeding 5% in commuting 
areas of several cities. The highest daily HRI daily values 
for  NO2, up to 5.5%, were highly localized over urban 
areas.

Table 1 displays a summary of the statistical aggregates 
of the multi-year HRI, calculated for the whole of Lom-
bardy, for the DAY and NIGHT scenarios. A T-Student 
test was performed to compare the mean multiannual 
HRI for each pollutant in the DAY and NIGHT scenar-
ios. The results showed that the DAY HRI for  NO2 and 
 O3 was significantly lower compared to the NIGHT sce-
nario. No significant result could be derived for  PM2.5.

Additional file 1: Table S1 shows the top ten commut-
ing zones with the highest multi-annual mean of HRI for 
 PM2.5,  NO2 and  O3 during the day and night. The geo-
graphical classification is based on the MO/D 2014 data.

The difference in the number of people exposed to dif-
ferent HRI ranges is investigated by comparing the static 
(i.e., residents) and dynamic (i.e., residents plus/minus 
commuters) population for the DAY scenario using the 
MO/D 2014 mobility data. The analysis was performed 
for the 95% CI for each pollutant-specific relative risk, 
too. The results, shown in Fig.  6, indicate that a larger 
portion of the population is exposed to higher HRI 

Fig. 5 Multiannual mean Health Risk Increase (HRI) of all‑cause 
mortality for daily hours scenario, associated with the exposure to 
 PM2.5,  NO2 and  O3

Table 1 Mean day and night statistical aggregates for Lombardy 
obtained from the multiyear geographical mean, minimum and 
maximum values of HRI of the commuting areas

In brackets the values obtained using the 95% confidence interval values of 
the relative risks as denoted. In the last two rows, the results from the T-test 
comparing the HRI obtained for the DAY and the NIGHT scenarios, are shown

*One-tailed T-test with null hypothesis  H0: µ ≥ µ0. The mean daily HRI is equal or 
greater than the mean night HRI

NO2 O3 PM2.5

Day
Min 0.001% (0.0006–

0.003)
0.01% (0.0–0.003) 0.004% (0.003–0.004)

Mean 0.76% (0.38–1.52) 1.23% (0.0–2.46) 2.32% (1.74–2.61)

Max 3.29% (1.64–6.58) 6.4% (0.0–12.76) 11.31% (8.48–12.72)

Night
Min 0.001% (0.0006–

0.003)
0.002% (0.0–0.003) 0.004% (0.003–0.004)

Mean 0.87% (0.44–1.75) 1.32% (0.0–2.65) 2.34% (1.75–2.63)

Max 3.88% (1.94–7.76) 6.91% (0.0–13.82) 11.46% (8.59–12.89)

p-value
0.0001* 0.0033* 0.56*

H0 rejected H0 rejected H0 can’t be rejected
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Fig. 6 Number of people exposed to different ranges of mean (left column) and maximum (right column) HRI of all‑cause mortality, associated 
with the long‑term exposure to  PM2.5,  NO2 and  O3. The solid histogram bars represent the HRI calculated using the RR values provided by the WHO, 
the green dashed‑dotted line represents the HRI calculated using the RR’s 95% CI lower limit, while the red dashed line, the one using the upper the 
95% CI upper limit
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ranges in the dynamic population scenario, particularly 
for maximum HRI aggregates, with a difference of hun-
dreds of thousands of inhabitants. For  PM2.5, 418,649 
people were found to be exposed to higher multiannual 
mean HRI while for  O3 and  NO2 the numbers are 415,010 
and 350,694 respectively. For maximum HRI aggregates 
these values correspond to 386,464, 29,107 and 257,223.

The results for the Health Burden are displayed in 
Table 2 and Fig. 7. The population size is the most impor-
tant factor influencing the HB score. In most of Lom-
bardy, during the DAY scenario, the HB score is close or 
equal to zero. Higher values are only observed in urban 
areas, especially for  NO2. The results for  O3 and  PM2.5 
show low to moderate values over a wider area. A com-
parison of the HB scores between the DAY and NIGHT 
scenarios reveals the impact of back-commuting to the 
area of residence on the final result. Major urban cent-
ers and industrial clusters show a negative difference 
between the NIGHT and DAY scenarios, which is par-
ticularly visible in Milan and its surroundings. In Fig.  8 
a view within a radius of 0.4 degrees around Milan is 
provided.

A T-student test was performed between the multi-
annual mean HB values for  PM2.5,  NO2 and  O3 during the 
day and night, using a one-tailed T-test. The null hypoth-
esis assumed a mean of the day distribution greater 
than or equal to the mean of the night distribution. The 
p-value in all three cases was greater than 0.05 and, 
therefore, no significant conclusion could be drawn. The 
top-10 commuting areas with the highest Health Burden 

associated with  PM2.5,  NO2 and  O3 for the day and night 
scenarios are presented in Additional file 2: Table S2.

Discussion
Key findings
Mobility data from the MO/D 2014 were elaborated in 
order to find the mean time pattern of the displacements 
between the commuting areas in Lombardy, Italy and to 

Table 2 Mean day and night statistical aggregates for Lombardy 
obtained from the multiyear geographical mean, minimum and 
maximum values of HB of the commuting areas in Lombardy

In the last two rows the results from the T-test when comparing the HRI 
obtained for the DAY and the NIGHT scenarios

*One-tailed T-test with null hypothesis H0: µ ≥ µ0. The mean daily HB is equal to 
or greater than the mean night HB

NO2 O3 PM2.5

Day
Min 0.0 0.0 0.0

Mean 20.0 26.7 53.8

Max 156.5 271.5 465.9

Night
Min 0.0 0.0 0.0

Mean 20.7 26.6 49.8

Max 239.9 382.9 625.4

p-value
0. 38* 0.51* 0.76*

H0 can’t be rejected H0 can’t be rejected H0 can’t 
be 
rejected

Fig. 7 Multiannual mean Health Burden of all‑cause mortality 
associated with the exposure to  PM2.5,  NO2 and  O3 in the daily hours
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define a DAY and a NIGHT scenario. It was found that, 
on average, the commuting areas have a stable popula-
tion between 8 p.m. and 6 a.m. and between 9 a.m. and 
4 p.m. The majority of travels takes place in the comple-
mentary timeframes. For the three pollutants considered, 
the long-term daily HRI calculated assuming a dynamic 
population increases considerably compared to a static 
population scenario. This is consistent with the fact that, 
during the day, people that commute for studying and 
working purposes tend to travel to main urban centres, 
where commercial and industrial activities are concen-
trated. As a result, the daily population density in these 
areas is much higher than the nominal one, that counts 
only the residents. DAY HRI for  NO2 and  O3 was found 
to be significantly lower than the NIGHT one. HRI for 
 PM2.5 doesn’t present significant diurnal variation. Con-
sidering the HB metric, no significant pattern could be 
derived for the whole region. The daily fluctuation of 

the population figures exhibits a higher influence on the 
resulting value. Hence, the daily number of commuters 
and the difference between DAY and NIGHT HBs rise 
with increasing degree of urbanization.

Comparison with previous studies
Previous studies have assumed a static population for 
the health impact assessment [20–22]. Other studies 
have determined the personal exposure by considering 
the conditions in the occupied environments and the 
duration of the stay [32]. Our methodology adopted a 
dynamic population approach in order to better assess 
the exposure to air pollutants. The mobility dataset 
utilized captures the average travelling and commut-
ing habits within a 5-days working week in Lombardy. 
This implies the loss of detail at individual level, that 
can be provided by wearables and mobile data [10, 14, 
16]. On the other hand, this dataset allows an exposure 

Fig. 8 Difference of multiannual Health Burden between the night and day scenarios due to exposure to  PM2.5,  NO2 and  O3: zoom over the Milan 
region with a radius of 0.4° from the city centre
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evaluation from an indirect perspective. A similar 
approach was adopted by Reis et  al. [43]. They found 
that the population-weighted exposure to yearly mean 
concentrations of  NO2 and  PM2.5, considering the 
workplace of the population, was 6.2% and 1% higher 
with respect to the exposure obtained considering the 
place of residence only. For  O3, the exposure resulted 
to be 0.4% lower. The use of WSF 2019 provides an 
estimation of population presence by means of the 
FSA and allows the use of infiltration ratios applied to 
mask areas classified as “settled-building”. Furthermore, 
the WSF 2019, in combination with land use masks, 
provides a detailed population distribution in the 
geographical areas in the two scenarios that we con-
sidered. This opens a global perspective in health risk 
assessments.

Recent studies on the assessment of health risk from air 
pollution are predominantly limited to single cities, short 
time periods or single air pollutants [17, 26]. Dewulf et al. 
[10] presented a high spatial resolution and dynamic 
exposure assessment for Belgium but limited the study to 
 NO2 and covered a time period of 48 h only. Ramacher 
et al. [25] introduced a dynamic population approach for 
exposure estimation for three cities in Northern Europe 
for the year 2012. This approach was subsequently 
adopted by Fenech and Aquilina [9] to study air pollu-
tion exposure in an area of Malta. However, it was lim-
ited to  NO2 and made use of in-situ measurements from 
a single station to represent the variability of pollution 
over a large area. Our work provides a methodology to 
carry out a health risk assessment that is applicable to 
multiple air pollutants typically associated with health 
impairments. Furthermore, the geographical domain 
considered, includes several urban and rural environ-
ments in the whole region. In our study we addressed the 
health risk assessment of all-cause mortality associated 
with the long-term exposure to air pollutants. However, 
our approach can be easily replicated for the evaluation 
of further health impairments due to long-term exposure 
to air pollution, using suitable dose–response functions 
from medical literature. For example: mortality due to 
cardiovascular or respiratory diseases and hospitalization 
due to cardiovascular or respiratory diseases.

Strengths and limitations
The CAMS European air quality reanalysis from an 
ensemble of nine chemical-transport models currently 
provides the most reliable and best systematically vali-
dated multiannual air pollution data set for the regional 
scale. The major drawback of CAMS Europe is its rela-
tively coarse native spatial resolution. The interpolation 
method adopted to resample it on a finer grid was the 
bilinear one, as recommended by Stroh et al. [44]. In their 

study on pollution exposure modelling, they report that, 
for urban areas, the standard deviation between concen-
trations observed in a finer grid (100 × 100  m) and in a 
coarser one (1600 × 1600 m), resampled bilinearly to the 
same finer resolution, drops of about 78% when aggregat-
ing on a weekly basis with respect to the original hourly 
data, whilst it tends to zero for rural areas. The conclusion 
is that the accuracy of coarser datasets resampled biline-
arly to a finer grid increases together with the aggregation 
time. In our study yearly aggregates were used. Moreover, 
De Ridder et al. [45] report that the yearly mean concen-
tration of  NO2 decreases by about 11% when the resolu-
tion is artificially reduced from 1 to 8 km and by about 
21% when it is reduced to 15 km. Alternative datasets are 
in-situ measurements or Earth observation satellite data. 
However, in-situ data are already assimilated into the 
CAMS reanalysis and, although satellite-borne instru-
ments enable the monitoring of  NO2 [46, 47] and  PM2.5 
[48, 49], they are not yet capable of observing their diur-
nal cycles; due to the geometry of their Low Earth Orbit, 
they deliver just one or two overpasses per day. Hence, a 
combination of these observations with chemical trans-
port models is still advisable.

The main challenge to the replicability of our method 
to other areas of interest is the acquisition of high-qual-
ity mobility data. However, initiatives are growing in this 
direction and new datasets of potential interest are being 
released and/or updated. These include the Mobility 
Data Specification, a data sharing platform that provides 
mobility data from multiple cities and transport agencies 
and the National Renewable Energy Laboratory, which 
provides mobility data on various cities, including infor-
mation on traffic flow, speed and incidents, as well as 
data on public. In contrast, the WSF-2019 masks, utilized 
in this study for the first time for a health risk assess-
ment, are already available worldwide and are currently 
being updated. The information on building use from 
OpenStreetMap is globally available. CAMS reanalyses 
with the resolution of 0.1 × 0.1 degrees are available for 
the European continent only. The CAMS global reanaly-
ses dataset, with spatial resolution of 0.75 × 0.75 degrees, 
can be considered for a global application of the method-
ology. In this case, a higher uncertainty in the results is to 
be expected due to the loss of information in correspond-
ence of urban hotspots. Future studies should address 
this aspect and provide a quantification of the introduced 
uncertainty and strategies for its compensation (Addi-
tional file 3: Table S3).

Conclusions
With the COVID-19 pandemic and its early impact on 
the population of Lombardy, this region has become 
an area of interest for medical research. In this sense 
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the COVID-19 pandemic substantiated the interaction 
between non-communicable and communicable diseases 
[50, 51]. Therefore, it is important to deliver a robust 
basis to assess the relationship between non-communi-
cable diseases and air pollution. To our knowledge, this 
is the first study for Lombardy that combines dynamic 
mobility pattern and Earth observation data for a long-
term exposure assessment from air pollution including 
 O3,  NO2 and  PM2.5. Our approach demonstrates how 
the inclusion of mobility patterns and the differentiation 
between day and night population substantially impacts 
the exposure and health risk assessment. Our work aims 
at supporting public health protection and the United 
Nations Sustainable Development Goals by providing 
policy makers with an easy and replicable method to 
perform health risk assessment that accounts for popu-
lation exposure and that is easily applicable to different 
geographical contexts. Our work can potentially support 
researches on causal relationships between air pollution 
and health outcomes exploiting an ecological design. We 
see the necessity of further studies to assess the perfor-
mance of the application of our health risk assessment 
methodology to a global scale, possibly validating it with 
health data.
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