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Abstract 

Overcrowding in densely populated urban areas is increasingly becoming an issue for mental health disorders. Yet, 
only few studies have examined the association between overcrowding in cities and physiological stress responses. 
Thus, this study employed wearable sensors (a wearable camera, an Empatica E4 wristband and a smartphone-based 
GPS) to assess the association between overcrowding and human physiological stress response in four types of urban 
contexts (green space, transit space, commercial space, and blue space). A case study with 26 participants was con-
ducted in Salzburg, Austria. We used Mask R-CNN to detect elements related to overcrowding such as human crowds, 
sitting facilities, vehicles and bikes from first-person video data collected by wearable cameras, and calculated a 
change score (CS) to assess human physiological stress response based on galvanic skin response (GSR) and skin tem-
perature from the physiological data collected by the wristband, then this study used statistical and spatial analysis to 
assess the association between the change score and the above elements. The results demonstrate the feasibility of 
using sensor-based measurement and quantitative analysis to investigate the relationship between human stress and 
overcrowding in relation to different urban elements. The findings of this study indicate the importance of consider-
ing human crowds, sitting facilities, vehicles and bikes to assess the impact of overcrowding on human stress at street 
level.
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Introduction
Global increases in population and housing density have 
exacerbated overcrowding in cities, which has been 
associated with feelings of negative emotional arousal 
[1] and a higher risk of mental health disorders [2–7]. 
Although people’s perceived violation of their personal 
space in crowded places can increase their stress levels 
[8, 9], there are a limited number of studies that have 
examined the relationships between overcrowding in the 
urban environment and physiological stress response at 
the individual level. Due to the lack of practical tools and 
high-resolution data, previous research to date has been 
severely limited in two ways. First, previous studies have 
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often focused on ‘macro’ urban characteristics, such as 
density and clusters of overcrowding in cities, with few 
studies examining the impact of ‘micro’ characteristics 
of public open space, such as street-level measurements 
of overcrowding and its impact on human health. Sec-
ond, few studies focus on the overcrowding in differ-
ent types of urban contexts to discuss the complexity of 
urban characteristics and their impact on people’s men-
tal health. Therefore, successful methods to accurately 
measure human physiological stress response in urban 
environments are needed. For example, novel wearable 
devices can monitor people’s experience, environmental 
exposures and real-time physiological responses outside 
the laboratory.

Taking advantage of personal tracking techniques, the 
focus of this paper is twofold: (1) to test the feasibility of 
using a wearable camera and machine learning to assess 
overcrowding at street level, and integrating image  data 
with human physiological response measured by a health 
tracker in the urban environment, and (2) to assess the 
relationship between urban elements that may increase 
overcrowding and human physiological stress response at 
the individual level.

Related work
Overcrowding in the built environment
Since the mid-1960s, many urban planning studies have 
been focused on discovering the health effects of the 
high population and housing density in urban areas and 
humans’ perception of overcrowding [1, 7, 10, 11]. Recent 
researchers have focused on the social sustainability [12], 
traffic problems[13], air quality [14] and  extreme heat 
[15] in higher density area, which are  closely related to 
human wellbeing. Previous research in social psychol-
ogy has identified the difference between “density” and 
“crowding”: “density” in terms of spatial parameters 
and describes the physical condition objectively, but 
“crowding” refers to the  individual’ s  perception of spa-
tial restriction caused by the interaction of spatial, social, 
and personal factors [16–18]. Previous studies have men-
tioned that overcrowding caused by pedestrians, cars and 
bicycles can negatively influence human’s travel choices 
[19], physical activities [2, 7] and mental health [5] in 
cities, and have  explored how to mitigate the negative 
effects of overcrowding, such as increasing urban green-
ery [20].

Based on this, SC Choi, A Mirjafari and HB Weaver 
[16] postulated that ‘number of people per unit’, ‘physical 
environment factors’, ‘personal factors’ and ‘ways of adap-
tation to crowding’ are factors that affect overcrowding. 
Many researchers have adopted ‘number of people in a 
given space’ to quantify the level of crowding [11, 21]. In 
terms of the crowdedness spot in the urban environment, 

it is a crowded area with an abnormal number of objects, 
such as pedestrians, parked bicycles, moving vehicles, or 
potential points of interest, such as exhibitions and com-
mercial promotions [22–24].

Personal space in crowded environments is directly 
related to an individual’s awareness of spatial restriction, 
which might cause the experience of stress [17]. Over the 
last half century, the concept of proxemics—the study of 
interpersonal space and spatial distances in different situ-
ations [8]—and personal space have been conceived as a 
possible explanation for the stressful effects of crowding. 
Some studies have shown that a reasonable personal dis-
tance1 is close to “arm’s length without touching distance” 
[8, 25, 26], and that the violation of human’s expecta-
tions in a crowded built environment can affect comfort, 
perception of crowding and human spatial behaviour 
[9, 26–29], which may generate negative effects on psy-
chological responses [30, 31]. Based on the concept of 
personal space, recent studies have also explored the pos-
sible shape of personal space [32] and simulated pedes-
trian crowd dynamics [27, 33–35].

Gehl has stated that urban design should respect per-
sonal space and ensure personal distance in the built 
environment [30]. Particularly since the COVID-19 pan-
demic, studies have clearly highlighted the importance 
of personal space in cities and suggested that the public 
sector should find solutions to overcome the pedestrian 
congestion [36–40]. There is a need to explore the street-
level measurements to better understand the impact of 
overcrowding on human health.

Estimation of crowd size
Compared to traditional methods, such as field observa-
tions, mapping, and interviews [1, 3, 7, 9, 11, 16, 30, 31], 
researchers have recently explored modern technologies 
and devices to automatically count people’s gatherings 
in a given space. For example, Kanjo et al. [41] have used 
Wi-Fi probing and density-based clustering techniques to 
detect people’s gatherings; Booranawong et al. [42] have 
used wireless networks to locate people by monitoring 
the changes or strength of radio signals; Ghose et al. [43] 
have detected proximity and crowdedness by using Blue-
tooth and mobile phones at public places. Although these 
new devices reduce the cost of time and labour, these 
methods can only count people who turn on the device 
(e.g. GPS or Bluetooth on the smartphones), while the 
radio signal is limited by the area coverage and cost.

1  The four types of “distance zones” around humans identified in current lit-
erature are intimate (0–18 in), personal (18in–4 ft.), social (4–12 ft.), and pub-
lic (12 + ft).
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There are many novel applications of imagery in urban 
studies, such as vision-based traffic monitoring sys-
tems and surveillance systems [44, 45], Google Street 
View (GSV) [46–48] and remote sensing (RS) imagery 
[49]. Some studies have applied deep learning meth-
ods, such as CNNs (Convolutional Neural Networks), 
Faster R-CNNs, Mask RCNNs, YOLO (You Only Look 
Once) algorithm and SegNet (Semantic Segmentation 
Model) to automatically detect objects such as “person”, 
“car”, “tree” and “bicycle” [50–52] from images. In order 
to better capture the contextual information, studies 
have shown the possibility of employing cameras in the 
urban environment. For example, fixed infrared cameras 
have been used for passive collection of imagery about 
traffic flow near a road crossing [53], street parking [54] 
and people visiting a playground [55]. Moreover, port-
able cameras, such as wearable cameras, are widely used 
to track individuals’ experiences at street level [56, 57] 
and are combined with GPS as a package to record views 
while moving [58, 59]. In the same vein, Kelly et al. [60] 
have  emphasised the importance of protecting the con-
fidentiality of participants and third parties while using 
wearable cameras.

The use of wearable cameras for urban studies is still 
in its infancy. However, we believe that wearable cameras 
offer a novel way of measuring street-level overcrowding 
from an individual’s perspective, as they capture personal 
images from footpaths that represent personal space.

Health trackers and stress assessment
Wearable health trackers have been employed to moni-
tor the human body’s physiological responses in the 
urban environment [61]. Recent studies have combined 
these wearable health trackers with other environmen-
tal monitors carried by individuals for the aim of study-
ing the relationship between health effects and exposure 
to environmental stressors (e.g., noise, air pollutant, 
temperature) [62–67]. Zhang et  al. [68] stated the most 
commonly used  health tracker for  integration is the 
wristband, such as Empatica E42, Microsoft Band 23, and 
Fitbit4.

Previous studies have used heart rate (HR), heart 
rate variability (HRV), skin temperature (ST) and gal-
vanic skin response (GSR) to assess people’s emotional 
responses. Researchers have found that human stress is 
associated with an increase in GSR [69] and a decrease 
in finger temperature [70]. GSR, also known as skin 

conductance or electrodermal activity (EDA), is often 
used to detect stress patterns [71, 72]. An increasing 
number of urban studies employ wristbands and GPS 
devices to measure people’s stress responses while walk-
ing or cycling and then map out the hotspots of stress in 
the built environment [62, 73].

Although recent urban studies have used health track-
ers and urban imagery (e.g., Google Street View) to inves-
tigate the effects of urban features on health [74–76], 
Zhang et al. [77] have demonstrated the benefits of inte-
grating wearable cameras and health trackers for street-
level research. Focusing on overcrowding, this study aims 
to take advantage of wearable cameras, machine learning, 
statistical and spatial analysis to assess the personal expo-
sure to overcrowding in urban space.

Methods
Data collection
The fieldwork presented in this paper was conducted in 
Salzburg, Austria, from November to December 2021. 
The study was carried out in accordance with the Dec-
laration of Helsinki and complies with the EU’s Gen-
eral Data Protection Regulation (GDPR) legislation. In 
this study, 26 participants were recruited via university 
networks and social media (16 females, 10 males), with 
the average age being 28 years (aged between 18 and 54 
years). After the fieldwork, participants were thanked for 
their time and effort and given a small gift card. Due to 
language requirements, recruitment was limited to Eng-
lish speakers.

Participants were equipped with (1) a wearable camera, 
“FrontRow (FR)”, to record first-person videos of the front 
view during walking; (2) a wearable sensor, “Empatica 
E4”, to collect skin conductance and skin temperature; (3) 
smartphone with the “eDiary” smartphone application 
developed by PLUS [78] to collect participants’ momen-
tary psychological feedback by asking participants to 
enter their subjective observations, i.e., when and where 
they felt a particular emotion, together with the cause of 
that feeling (Fig. 1b). The effectiveness of using the “eDi-
ary” application to control E4 and store data has been 
demonstrated in previous work [75, 78]. Participants 
were also provided with the “Zephyr Bioharness 3” chest 
strap to record electrocardiogram (ECG) data. The eDi-
ary app connected the E4 and Bioharness sensors via 
Bluetooth to store data, and automatically linked up the 
physiological data with the phone’s built-in GPS based 
on the timestamps. At the same time, the videos were 
stored independently in the FR cameras. We extracted a 
single image frame every second and merged the images 
with data from the eDiary using timestamps. This study 
mainly focused on E4 data and images to explore the 

2 https:// www. empat ica. com/ en- int/.
3 https:// suppo rt. micro soft. com/ en- us/ topic/ what- can-i- still- do- with- my- 
micro soft- band- a2a59 355- 5be0- 3441- 9fff- 4dc27 bcbaf b5.
4 https:// www. fitbit. com/ global/ dk/ home.

https://www.empatica.com/en-int/
https://support.microsoft.com/en-us/topic/what-can-i-still-do-with-my-microsoft-band-a2a59355-5be0-3441-9fff-4dc27bcbafb5
https://support.microsoft.com/en-us/topic/what-can-i-still-do-with-my-microsoft-band-a2a59355-5be0-3441-9fff-4dc27bcbafb5
https://www.fitbit.com/global/dk/home
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association between stress responses and overcrowding 
in personal space.

The study area was located in the centre of Salzburg 
and consisted of four sites: Mirabellgarten (green space), 
city centre (transit space), Getreidegasse (commercial 
space) and Salzach (blue space). There was a maximum 
of five participants at each slot. We provided participants 
with a printed map (Fig. 1a) and led them on a walk from 
site 1 to site 4. Participants spent 20 minutes at each site: 
5-minute sitting followed by 15-minute walking (Fig. 1c), 
and each participant walked independently. In order to 
avoid irrelevant physiological oscillations of the human 
body, participants were asked to obey the following 
guidelines at each site:

• No drinks (e.g., coffee, alcohol) 1  hour before the 
walk and throughout the walk; we provided water 
during the walk.

• No smoking during the walk.
• No eating, but we provided bananas during the break 

and sandwiches after the walk.
• No use of phone (e.g., music, chats and games) dur-

ing every 20-minute period.

• No talking with others during every 20-minute 
period.

• No medicine 24 hours before the walk.

We provided three available sessions for participants to 
register within each day, 9am-12pm, 1pm-4pm, and 5pm-
8pm. However, since this data collection was conducted 
in the winter, the camera performed poorly at night and 
the battery quickly ran out in the low winter tempera-
tures. Therefore, we only included data collected during 
the daytime. The smartphone application sometimes had 
connection problems and loading errors; therefore, we 
included the data from 20 participants after excluding 
missing data.

Assessment of physiological stress response
The stress detection was implemented based on the 
assumption that skin conductance increases, and skin 
temperature decreases when a negative experience 
occurs [69, 70]. Based on this, Kyriakou and Resch (2019) 
defined five rules, including R1–GSR amplitude increase; 
R2–Skin temperature decrease; R3–GSR rising time; R4– 
GSR response slope, R5–Duration, to detect moments of 
stress (MOS) from wearable physiological sensors [74, 

Fig. 1 Map, devices, participant guide and data collection process
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75]. Since this study focused more on the changes in 
physiological stress response during people’s movement 
rather than any specific stress event, so R1 to R4 were 
used to evaluate the continuous and momentary changes 
in human physiological stress response, and we called it 
change score (CS).

First, we filtered the GSR and ST by the pre-processing 
rules used by Kyriakou and Resch (2019) to maintain data 
with the correct frequency. Second, we adopted the ter-
nary scoring system (0, 0.5, 1) from Kyriakou and Resch 
(2019) to assess the degree of rule fulfilment: score 1 
(complete), score 0.5 (partial) and score 0 (no fulfilment), 
as shown in Fig.  2. Afterwards, the change score for a 
second is calculated by the sum of sc ∗ , where sc is the 
given score for the rules and wn is the associated weight 
of the rules [74, 75]. The CS is continuous at every sec-
ond and ranges from zero to 80, provided that all rules 
are scored with “1”. Therefore, a lower change score indi-
cates a weak physiological stress response, while a higher 
change score, in contrast, indicates a strong physiological 
stress response.

Image detection
In this study, Mask R-CNN, a region-based convolutional 
neural network [79], was adopted to automatically iden-
tify elements from the  imagery (Fig.  3a). Mask R-CNN 
can efficiently detect objects and simultaneously generate 
an instance segmentation mask for each object (Fig. 3b). 
We used the  Microsoft COCO (Common Objects in 
Context) training set to train the Mask R-CNN model 
and generated the coordinates of the  box, the  class of 
layer, the  score of the  prediction and the  instance seg-
mentation mask. From Mask R-CNN model, this paper 
detect the number of : “person”, “car”, “bicycle”, “motor-
cycle”, “bus”, “truck”, “chair”, “bench”, “dining table”, and 
classify these objects into four catogries related to over-
crowding: human crowds (“person”), motor vehicles 
(“bus”, “car”, “truck”, “motorcycle”), bikes (“bicycle”) and 
sitting facilities (chair”, “bench”, “dining table”).

Based on the result of Mask RCNN, this study further 
assessed the proxemics in the human crowds by calcu-
lating the distance of the  boxes labelled ‘person’ to the 
ground of the image (Fig. 3c) and categorising the human 

Fig. 2 Assessment of physiological stress response based on GSR and ST
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crowds into four distance zones: ‘personal space’, ‘close 
distance’, ‘medium distance’ and ‘far distance’. Accord-
ing to the principle of perspective, people at a distance 
appear small and those close to the observer appear large. 
Persons who are close to the observer are also closer to 

the bottom of the image. Therefore, we calculated the 
ratio of each mask from Mask RCNN and the distance 
from the bottom line to the ground of the image, which 
is |Yi - h|. To determine the distance zones of each object, 
we randomly selected a small number of images to find 

Fig. 3 Classifying human crowds from imagery into different distance zones
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out the average number of |Yi - h|. We then decided on 
the location of two lines, y_close and y_mid, to sepa-
rate the area of ‘close distance’, ‘medium distance’ and 
‘far distance’. If the |Yi - h| of a box falls in the (5,100), it 
means that the ‘person’ is in the middle distance from the 
observer. If the |Yi - h| of a box is over 100, it means that 
the ‘person’ is in the far distance from the observer. 
Otherwise, it is in the close distance from the observer. 
Sometimes, the ‘person’ in the image is comparably enor-
mous to others, and the possible reason is that the crowd 
has invaded the observer’s personal space. Therefore, if 
the proportion of each mask from Mask RCNN is greater 
than 10%, it is in the category of ‘personal space’.

Analysis
To address the first objective, a generalised linear mixed 
model (GLMM) was used to examine the association 
between exposure to human crowds and human physio-
logical stress response, as GLMMs can take into account 
the non-independent variables as random effect param-
eters for the correlation between observations, and deal 
with the hierarchical structure of data nested within time 
slots and participants. We used the detected persons (the 
human crowd) in four distance zones (‘personal space’, 
‘close distance’, ‘medium distance’ and ‘far distance’) and 
the number of motor vehicles, bikes and sitting facilities 
detected from the images as predictors and the change 
score as the dependent variable to explore how exposure 
to human crowds was significantly associated with physi-
ological stress responses in different urban contexts.

As the results of the GLMM analysis only indicate the 
global relationship between predictors and responses, 
local spatial variation in the association between pre-
dictors and the change score is not explored thoroughly 
(Additional file  2: Appendix Table  S1). Geographically 
weighted regression (GWR) within a GIS platform was 
used to estimate local spatial variation in the association 
between the predictors and response (Additional file  1: 
Appendix Fig. S1). We used the number of sitting facili-
ties, vehicles and bikes as predictors and change score as 
response to compare the variation in coefficients between 
urban elements and the change score by location.

Results
GLMM analysis: stress and overcrowding
As shown in Table  1, the change score of physiological 
stress is statistically positively associated with the human 
crowds in the personal space in the commercial space. In 
contrast, the result shows a negative association between 
the human crowds in the close distance and the change 
score in the green space and the transit space. Further-
more, the number of bikes is positively correlated with 
the change score in the commercial space, while the 

number of motor vehicles is negatively correlated with 
the change score in the transit space. However, GLMMs 
are not sufficient to provide an understanding of the 
results, as they only provide the global perspective of the 
analysis.

GWR analysis
To explore further, we conducted a spatial analysis to 
investigate whether the association might vary depending 
on the location of the site. The GWR results are shown 
in Fig. 4, the red spots with the higher coefficient on the 
map indicate where participants may have higher physi-
ological stress responses influenced by the predictors. 
It shows that locations with a high coefficient between 
physiological stress response and human crowds are 
found near roads in the blue space, narrow streets and 
squares in the commercial space and city centre in the 
transit space, and at the entrance to the green space. Fur-
thermore, the high coefficient between the physiological 
stress response and the number of sitting facilities can be 
found in several roadside areas and squares in the com-
mercial space.

Moreover, the result of the GWR also shows that the 
number of bicycles was associated with higher levels of 
stress response in the commercial space where the over-
whelming number of parked bicycles are parked, and 
areas nearby intersections in the transit space. Regarding 
the association between motor vehicles and physiologi-
cal stress response, we found that the number of vehi-
cles was strongly associated with a high level of change 
score in the internal network of the commercial space. 
The results suggest that parked vehicles and bicycles in 
pedestrian areas with limited walking space may increase 
the physiological stress response.

As for the psychological responses of the participants 
collected through the eDiary app, we found that most of 
the reported stressful events occurred in the transit space 
near the city centre and the roadside commercial space, 
where the large human crowds, parked bicycles and vehi-
cles coexist. Compared to subjective surveys, sensor-
based measurement and GWR analysis provide a new 
quantitative method to investigate the impact of crowd-
ing on changes in human physiological stress response by 
location, with respect to different urban elements.

Discussion
In this study, a new method was applied to measure 
personal exposure to overcrowding at street level and 
examined the association between urban overcrowding 
(human crowds, sitting facilities, bikes and motor vehi-
cles) and human physiological stress responses through 
continuous personal tracking in different urban settings 
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(blue space, transit space, green space, commercial 
space). This study confirmed the possibility of integrat-
ing wearable cameras, GPS devices and health trackers to 
statistically and spatially analyse the association between 
overcrowding and human stress at the individual level. 
Finally, this study suggests that more attention should 
be paid to the overwhelming number of people, parked 
bicycles and parked vehicles in pedestrian areas.

In this study, the number of people in the close dis-
tance and personal space can be regarded as a violation 
of the observer’s comfortable space in a commercial area. 
The result of the  GLMM shows that close exposure to 
human crowds in a commercial space and transit space 
may increase people’s physiological stress response to 
overcrowding, but not in green space and blue space. The 
possible explanation is that the context may play the role 
of “buffering” to reduce the impact of overcrowding. As 
explained in previous studies, urban nature has thera-
peutic effects on humans’ stress [80, 81]. Besides, this 
study also finds the positive correlation between bikes 
and human stress response in the commercial space and 

blue space. Researchers suggest using a context-sensitive 
approach to enhance bike-friendly design and improve 
urban management of parked bikes [82, 83] and have 
suggested strategies for creating car-free zones [84] to 
improve urban livability and human health.

The GWR analysis facilitated the exploration of loca-
tions where people may experience physiological stress 
response caused by specific urban elements, which 
provides an opportunity to reflect on our design of 
urban space. For example, previous work has shown 
that reasonable amenities can encourage people to 
engage in staying activities in POS – essential to form-
ing the local liveliness [85, 86]. These staying activi-
ties include standing, sitting, lying, talking, eating and 
drinking, reading, window  shopping, smoking, vend-
ing, playing games, and listening to musicians [87]. 
However, we may need to reconsider whether roadside 
benches are frequently used, as benches close to traffic 
may not reduce people’s physiological stress response. 
Also, while sitting areas are welcome in cities, dining 
tables and chairs in busy pedestrian areas may increase 

Table 1 GLMM result between the number of detected objects and change score (data point)

(1) ***Significant < 0.1%, **significant < 1% level, *significant < 5% level. (2) ‘N person_ID’ means ‘the number of participants’, as each participant walked from site 1 to 
site 4 each time. ‘N timeslot’ means the time sessions, we include data collected from 9 am–12 pm and 1 pm–4 pm. (3) The analysis is based on the fused data points 
collected from three sensors rather than individuals. The data points were separated into different locations by the GPS locations.

Variable Green space Transit space Commercial space Blue space
Estimates
(95% CI)

Estimates
(95% CI)

Estimates
(95% CI)

Estimates
(95% CI)

Human crowds in the personal space − 2.02
(− 4.62 to 0.59)

0.91
(− 1.79 to 3.61)

3.85
(2.05 to 5.66)***

1.11
(− 1.57 to 3.79)

Human crowds in the close distance − 0.97
(1.45 to − 0.49)***

− 0.37
(− 0.59 to − 0.15)***

− 0.02
(− 0.23 to 0.20)

0.15
(− 0.20 to 0.50)

Human crowds in the medium distance − 0.06
(− 0.30 to 0.18)

0.04
(− 0.10 to 0.17)

− 0.08
(− 0.20 to 0.04)

− 0.29
(− 0.50 to − 0.07)**

Human crowds in the far distance − 0.23
(− 0.35 to − 0.11)***

− 0.12
(− 0.19 to − 0.06)***

0.00
(− 0.05 to 0.05)

− 0.06
(− 0.16 to 0.04)

Motor vehicles 1.70
(− 0.80 to 4.20)

− 0.25
(− 0.36 to − 0.13)***

− 0.03
(− 0.17 to 0.11)

0.12
(− 0.28 to 0.04)

Bikes 0.20
(− 1.16 to 1.55)

− 0.09
(− 0.30 to 0.12)

0.23
(0.07 to 0.39)**

− 0.31
(− 0.57 to − 0.05)*

sitting facilities 0.36
(− 0.17 to 0.88)

− 0.19
(− 0.78 to 0.41)

0.39
(− 0.02 to 0.80)

− 0.46
(− 1.03 to 0.10)

Random effects

 σ2 263.67 269.91 269.92 269.41

 τ00 time_slot 0.00 0.00 0.00 0.00

 τ00 person_ID 28.28 25.63 37.30 15.88

 τ00 gender 0.00 0.00 0.00 0.00

 ICC 0.10 – – 0.06

 N timeslot 2 2 2 2

 N person_ID 19 23 21 17

 N gender 2 2 2 2

 Observation 16,082 26,340 32,184 23,402

 Marginal R2/conditional R2 0.002/0.099 0.002/NA 0.001/NA 0.001/0.057
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people’s stress if there is insufficient space to walk. 
More empirical research can be done in future studies 
to address these considerations.

This study also  finds it hard to explain the difference 
between objective measurement and subjective feedback, 
as the possible reasons are the small sample size and 
limited knowledge of psychology. However, it is worth 
discussing this issue in the next step for a comprehen-
sive understanding of the impact of urban features on 
human health. We suggest using a pre-survey before the 
sensor-based measurement and follow-up studies, such 
as interviews, to assess participants’ perceptions of urban 
features and help interpret the results.

In recent years, researchers have explored urban 
design approaches to improve the design quality of the 
built environment to provide citizens with healthy envi-
ronments [88, 89]. This paper focuses on three urban 

elements (sitting facilities, vehicles and bikes) and sug-
gests that  future studies should investigate more urban 
elements associated with overcrowding and social 
crowds, such as recreational facilities, exhibitions and 
street performances. Although urban planning in most 
European cities has evolved from car-oriented to pedes-
trian-oriented development, the “old” design in small-
scale public open spaces needs renewal to benefit human 
health. Although   in many countries relevant stakehold-
ers in urban governance have published design guidelines 
to improve street quality, current literature on how to 
make this transition remains scarce.

The main weakness of this study was the small num-
ber of participants, mainly from universities, which lim-
its the generalisability of our findings. This is a common 
limitation for studies using personal sensors [68]. Future 
research is needed to confirm our work  by  recruiting a 

Fig. 4 GWR analysis of stress responses in Salzburg. The ▲ on the map means the locations where participants reported their negative feeling due 
to the predictor. For example, on the GWR result of bikes, the points marked by the ▲ means the locations where people felt stressed
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larger number of participants and to study how dis-
tinctive groups of people (e.g., age, gender, education, 
income) respond differently to the overcrowding in the 
same environment, with a particular focus on vulnerable 
groups of people (e.g., children and the elderly).

Another limitation relates to the geography and urban 
environment. Previous studies have explained that cul-
tural factors and socio-economic differences are impor-
tant confounding variables that may lead to different 
perceptions of overcrowding [90, 91]. More importantly, 
when replicating the experiment in different cities, 
researchers should consider the regional characteristics 
and local contexts rather than simply transferring known 
characteristics from other cities. For example, we suggest 
taking into account the height of buildings and the width 
of streets when discussing overcrowding in high-density 
cities.

The investigators also encountered problems regarding 
the sensors during the data collection. First, the connec-
tion between the  sensors and the “eDiary” smartphone 
app was not stable at times, which may have led to data 
missing and failure of extracting features from data. Sec-
ond, the battery of the  cameras and phones unexpect-
edly ran out of power in the cold weather. Third, since 
the “Zephyr Bioharness 3” chest belt was designed to 
be worn around the chest and touching the skin, it was 
inconvenient for participants to put on and take off in 
the urban environment and difficult for investigators to 
check and restart sensors once connection was lost. We 
also found that the design of the chest belt is not friendly 
for female participants with smaller body sizes. Future 
studies could carefully address these technical issues to 
obtain high quality data. Besides, we suggest exploring 
other physiological data from E4, such as heart rate, and 
electrocardiogram from the chest belt, to gain a more 
comprehensive understanding of human stress.

This paper provides new evidence for integrating wear-
able cameras and wearable sensors to achieve individual-
level objective measurements in urban environments 
[57]. However, cameras can capture images of cars from 
a personal perspective but cannot evaluate the overall 
crowdedness of traffic. Therefore, our findings cannot 
be extrapolated to determine specific stressors. Further-
more, although this paper categorised people into four 
distance zones based on their position and area in the 
imagery, the threshold value of distance zones is gener-
ated from this sample, which may not be the most appro-
priate threshold value in different conditions. In future 
studies, we suggest using a more advanced algorithm to 
find the optimal threshold value and detect the direction 
of human crowds.

In terms of analysis, we attempted to use statistical 
methods to explore the potential of fused data. In this 

study, we chose specific categories of urban elements 
and used the total number of objects detected from the 
images, resulting in sparse data where most of the values 
of the independent variables are zero and a high corre-
lation between two or more independent variables. This 
also results in a very low R square in the GLMM analysis. 
Future studies can use a large data sample and regulari-
sation methods to reduce the impact of highly correlated 
independent variables on the model. We also found that 
the residuals from the GWR model were over-predicted 
in some locations, so we recommend that future research 
should explore advanced models.

Lastly, this paper did not control for the possible con-
founding effects of other environmental and social factors, 
such as traffic noise, people’s yelling from nearby rec-
reational facilities, and protests against coronavirus vac-
cination on the streets, which may have increased people’s 
stress responses. The severity of COVID-19 outbreak  in 
Salzburg during the fieldwork period, and the announced 
lockdown might have effects on people’s responses to the 
overcrowding.

Conclusion
In this study, Salzburg was used as a case study to test the 
feasibility of using wearable cameras to measure street-
level overcrowding, and to provide a workflow for statisti-
cally and spatially investigating the relationship between 
overcrowding and human physiological stress response at 
the individual level. We believe that this work provides a 
new method for studying personal space and overcrowding 
and their impact on human health, which can inspire urban 
planners and policy makers to consider negative environ-
ments from a human perspective.
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