
Wang et al. 
International Journal of Health Geographics           (2023) 22:13  
https://doi.org/10.1186/s12942-023-00335-6

RESEARCH Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

International Journal of 
Health Geographics

Quantifying the spatial spillover effects 
of non-pharmaceutical interventions 
on pandemic risk
Keli Wang1,2, Xiaoyi Han3,4, Lei Dong1,2, Xiao‑Jian Chen1,2, Gezhi Xiu1,2, Mei‑po Kwan5,6 and Yu Liu1,2* 

Abstract 

Background Non‑pharmaceutical interventions (NPIs) implemented in one place can affect neighboring regions 
by influencing people’s behavior. However, existing epidemic models for NPIs evaluation rarely consider such spatial 
spillover effects, which may lead to a biased assessment of policy effects.

Methods Using the US state‑level mobility and policy data from January 6 to August 2, 2020, we develop a quan‑
titative framework that includes both a panel spatial econometric model and an S‑SEIR (Spillover‑Susceptible‑
Exposed‑Infected‑Recovered) model to quantify the spatial spillover effects of NPIs on human mobility and COVID‑19 
transmission.

Results The spatial spillover effects of NPIs explain 61.2% [ 95% credible interval: 52.8‑84.4% ] of national cumulative 
confirmed cases, suggesting that the presence of the spillover effect significantly enhances the NPI influence. Simula‑
tions based on the S‑SEIR model further show that increasing interventions in only a few states with larger intrastate 
human mobility intensity significantly reduce the cases nationwide. These region‑based interventions also can carry 
over to interstate lockdowns.

Conclusions Our study provides a framework for evaluating and comparing the effectiveness of different interven‑
tion strategies conditional on NPI spillovers, and calls for collaboration from different regions.

Keywords COVID‑19, Non‑pharmaceutical interventions, Spatial spillover effects, SEIR, Human mobility

Background
Pandemic transmission and policy interventions are 
interdependent among regions. Interventions to contain 
the virus spread may go beyond the regions it directly 
affects [1, 2]. Specifically, interventions of one region may 
exert spatial spillover effects (SSE hereafter) to neighbor-
ing regions by affecting the human behavior of nearby 
regions. For instance, shelter-in-place orders in one 
region can restrict intraregional human mobility, leading 
to a decreased population flow in regions without shel-
ter-in-place orders  [3]. Ignoring such SSE may result in 
a biased assessment when evaluating the effectiveness of 
interventions.

Governments usually enact a series of non-pharma-
ceutical interventions (NPIs) – such as social distancing, 
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school closures, and even national lockdowns – to com-
bat infectious disease  [4]. The COVID-19 pandemic 
serves as a prime example, with numerous studies explor-
ing the necessity for NPIs and the impact of interventions 
on COVID-19 transmission  [5–12]. The most common 
method used in these studies is the infectious disease 
dynamics model. These models divide populations or 
other hosts into different compartments based on their 
health status (for example, susceptible, infected, exposed, 
etc.), and then develop transformation rules based on 
disease transmission characteristics to simulate the 
transmission dynamics of infectious diseases [13]. There-
fore, they are also called compartmental models, which 
mainly include SIR (Susceptible - Infected - Removed) 
and SEIR (Susceptible - Exposed - Infected - Removed). 
They can simulate the spread of infectious diseases over 
time and space as well as the influence of interventions 
on transmission dynamics. Researchers can simulate the 
spread of infectious diseases over time and space, as well 
as the effect of interventions on the transmission process. 
Scholars can add compartments [14] or set different con-
tact or mobility characteristics for populations to evalu-
ate interventions [15], or adjust inter-regional human 
flow to simulate the effects of inter-regional lockdown [9, 
16]. Yet, most of these studies operate under the assump-
tion that interventions only have an impact within the 
region where they are implemented [17, 18], disregarding 
any spillover effects across regions. The SSE of NPIs and 
the effectiveness of different intervention strategies con-
ditional on SSE are largely unknown.

The spillover effect occurs when the impact of poli-
cies or factors in one region extends beyond its borders, 
affecting neighboring regions. To assess the spillover 
effects, several methods have been developed and used 
in fields such as crime  [19], air pollution  [20], human 
mobility  [21, 22], and infectious diseases  [23, 24]. With 
regard to COVID-19, several studies have acknowl-
edged the presence of spillover effects. The first direction 
focuses on the spatial spread of COVID-19 by studying 
the relationship between cases in different regions  [25, 
26], suggesting that factors such as deaths, recoveries, or 
vulnerability in one region could affect confirmed cases 
in nearby regions. The second direction focuses on ana-
lyzing the disease’s spread over time and space, demon-
strating that there is a high degree of spillover among 
regions  [27]. The third direction focuses on the role of 
interventions in spillover effects related to COVID-19. 
These researches suggest that interventions can extend 
their reach, leading to better policy outcomes  [28]. Fur-
thermore, studies examining specific policies such as 
social distancing or place closures have highlighted the 
significant spillover effects of these policies in areas 
with both geographic and social network proximity, and 

considerable differences in the spillover effects produced 
by various types of places  [1, 2, 29]. However, existing 
studies tend to focus on identifying SSE and exploring 
the causal relationship between policies or environmen-
tal factors and cases or human movement, using various 
econometric methods. Comprehensive analyses, espe-
cially studies that combine compartmental mathemati-
cal model and counterfactual simulations to evaluate and 
compare the effectiveness of different intervention strate-
gies conditional on SSE, are very limited.

With the aim of filling the aforementioned gap, we 
develop a quantitative framework utilizing US state-
level policy data and mobile phone data. The frame-
work includes a panel spatial econometric model and an 
S-SEIR model (Spillover-Susceptible-Exposed-Infected-
Recovered), to evaluate the SSE of NPIs on COVID-19 
(Fig.  1). To avoid confusion with the states in the epi-
demic model, the term region is used below to denote 
the US state. We assume that the implementation of 
NPIs would affect disease transmission by influencing 
human mobility. To quantify the relationship between 
NPIs and human mobility, we use the panel spatial 
econometric model to isolate the SSE ( NPIj → mobilityi , 
where i and j represent regions i and j) and direct effects 
( NPIi → mobilityi ) of NPIs (Fig. 1B). Then, we treat the 
estimated change of intrastate human mobility from the 
panel spatial econometric model as input parameters to 
adjust the transmission rate in the S-SEIR model, and 
simulate the SSE and direct effects of NPIs on COVID-
19 cases using the S-SEIR model. We further consider 
different scenarios that vary by the intervention regions 
and interstate flows. The simulation results highlight the 
importance of intervening in regions with high human 
mobility in reducing the national cumulative confirmed 
cases. Our findings also show that lockdowns in targeted 
regions with high human mobility can effectively reduce 
more cases. This research proposes a quantitative frame-
work to isolate the direct effects and SSE of different 
NPIs on human mobility and infected cases. The frame-
work can help one understand fully the scope of policy 
influence to coordinate regional resources and search for 
more effective interventions such as region-based poli-
cies to fight against pandemic risk.

Study area and data
This study focuses on evaluating the impact of restricting 
social distance on human mobility and COVID-19 trans-
missions in the United States. We focus on the state level, 
as most NPIs policies are implemented on such spatial 
resolution. Our research covers the continental United 
States includes 48 states and Washington D.C., given the 
policy and human mobility data availability. To this end, 
three datasets are introduced, with the first one being 
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the case data. This data is obtained from the New York 
Times  [30] and provides the confirmed cases and death 
statistics at the state level in the United States. The first 
case of COVID-19 in the United States was reported on 
January 20th  [31], and since then, the country has gone 
through several epidemic waves. This study, however, 
focuses on the first wave of the outbreak in the US, which 
occurred from January to August 2020.

The policy data are obtained from the Oxford COVID-
19 Government Response Tracker (OxCGRT)  [32]. The 
OxCGRT keeps track of US state-level policy responses 
since January 1, 2020, shown in the time-series format, and 

provides ordinal policy intensity and records geographic 
scope  [32]. We focus on seven human mobility-related 
NPIs ( P1 − P7 ) (Fig. 1A), specifically, including school clo-
sures, workplace closures, cancellation of public events, 
restrictions on gatherings, public transport closures, stay-
at-home orders, and restrictions on internal movements. 
To compare the intensity of these interventions across dif-
ferent regions, we calculated the intensity of each policy 
index and aggregated them into weekly intervention inten-
sity scores (Table  1). The intensity score ranges from 0 to 
100. Based on the timing of the interventions, we define 
two phases based on the reopening time of NPIs: Phase A 

Fig. 1 The modeling framework of SSE. A The average intensity of different NPIs for all regions by week. B The influence of NPIs on intrastate 
human mobility from the spatial panel model. The mobility in region i can be influenced by the NPIs in the regions i and j. Therefore, the changes 
in intrastate human movement Yt can be explained by the sum of direct effects and SSE of NPIs and other effects. We use qit to represent the 
estimated changes in intrastate human movement from the spatial panel model. C The transmission among different states of individuals. S, E, I, 
and A indicate susceptible, exposed, symptomatic, and asymptomatic individuals, respectively. RI and RA represent the removed symptomatic and 
asymptomatic individuals. (1− qit)β0 indicates the transmission rate of symptomatic infected persons influenced by NPIs. a is the transmission 
rate of asymptomatic infected persons relative to symptomatic infected persons. Z and D denote the mean incubation period and infection period, 
whose inverse stand for the probability that exposed individuals become symptomatic infected individuals or that infected individuals are removed, 
respectively. µ is the proportion of symptomatic patients among all infectious patients. D The average intrastate human mobility trend across 
regions. E The estimated weekly confirmed cases of the Washington State

Table 1 Summary of meaning and stringency of different NPIs in US states

Variables Description Mean Std. Dev. Min Max

School closures Record closings of schools and universities 63.39 44.50 0 100

Workplace closures Record closings of workplaces 42.75 34.64 0 100

Cancellation of public events Record cancelling public events 56.54 42.72 0 100

Restrictions on gatherings Record limits on gatherings 50.29 43.61 0 100

Public transport closures Record closing of public transport 17.24 25.44 0 100

Stay‑at‑home orders Record orders to “shelter‑in‑place” and otherwise 
confine to the home

27.32 24.01 0 66.7

Restrictions on internal movement Record restrictions on internal movement 
between cities/regions

40.73 33.89 0 100
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(January 6, 2020 - April 26, 2020), an early phase in which 
interventions were introduced; and Phase B (April 27, 2020 
- August 2, 2020), a lifting phase in which interventions 
were relaxed [33, 34].

During the COVID-19 pandemic, various data sources 
emerged to characterize human movement, including 
SafeGraph, Google, Apple, Descartes Labs, and Face-
book. Kang et al. compared these sources and generated a 
dynamic human mobility flow dataset for the United States 
based on data from SafeGraph [35]. They analyzed the vis-
its of millions of anonymous mobile phone users to various 
locations, computed daily and weekly origin-to-destination 
(OD) human flow data, and aggregated the data at three 
geographic levels: census tract, county, and state. In this 
study, we select state-level daily human mobility data and 
aggregate it to the weekly level. The change of weekly intra-
state movement Yit of the region i at week t is:

where flowi(0) is the average human mobility in region 
i at the early stage without being affected by NPIs (from 
January 6, 2020, to February 2, 2020, four weeks), and 
flowi(t) denotes the human mobility in region i at week 
t. Yit greater than 0 indicates that intrastate human move-
ment at time t is lower than the early stage without being 
affected by NPIs, otherwise indicates that human move-
ment at time t is higher than that period. Fig.  1D illus-
trates the change in intrastate human mobility. Prior 
to the implementation of the interventions, intrastate 
human mobility is at a high level, but decreases sharply 
after the NPIs are implemented. With weakened inter-
ventions, human mobility slowly picks up.

Methods
A spatial panel model for NPIs and human mobility
To study the interplay between NPIs and mobility, we 
employ the panel spatial autoregressive (SAR) model to 
obtain direct effects and SSE from different NPIs  [36]. 
Unlike the linear panel model, the spatial panel model con-
siders the dependence between geographically adjacent 
units  [37]. This enables us to capture the SSE across geo-
graphical units [25].

where Y t denotes the change of human mobility for 49 
regions at week t. Xt−1 contains in total seven 1-week 
lagged NPI intensities for 49 regions, and � is the corre-
sponding slope coefficient. W  denotes the spatial weights 
matrix that captures the connectivity of 49 regions. 
WYt represents the spatial lag term of intrastate human 
mobility and ρ denotes the spatial effect across regions. 

(1)Yit =
flowi(0)− flowi(t)

flowi(0)
,

(2)Yt = ρWYt + Xt−1�+ ν + lN ξt + ǫt ,

lN represents a 49× 1 column vector of ones. ν and ξt are, 
respectively, 49× 1 vector of regional effects and a scalar 
time effect. ǫt = (ǫ1t , · · · , ǫnt)

T is a vector of disturbance 
terms, where ǫit is assumed to be independently and 
identically normally distributed for all i with zero mean 
and variance σ 2.

Note that the spatial weight matrix is an important 
pre-defined input for the spatial econometric model. The 
spatial weight matrix W = [Wij] reflects the degree of 
adjacency or association between spatial units that can 
be specified based on the adjacency or distance relation-
ship  [38]. However, it’s important to keep in mind that 
the transmission of infectious diseases, such as COVID-
19, may not always be limited to geographically close 
regions. Geographical proximity does not fully capture 
air-traffic-mediated epidemics  [39]. Thus, determining 
neighbors merely from geographical distance is not suf-
ficient. To overcome this limitation, we use the spatial 
interaction distance, which captures the dependence 
relationship by human interaction across regions. Follow-
ing the concept of KNN, we construct the K maximum 
interaction matrix (KMI) based on the spatial interaction 
distance. Like KNN, the key aspect of the KMI method 
is selecting the K-value and calculating the distances. 
We define the distance by origin–destination (OD) 
flows between region i and j as: d(i, j) = flowij , if i = j , 
d(i, i) = 0 . Then, we identify the first k regions with the 
closest interaction distances to region i as its neighbors. 
To determine the value of k, we use the deviance infor-
mation criterion (DIC) as described in Gelman [40]. The 
KMI is constructed based on the interstate human mobil-
ity data from 6 January to 2 February 2020 and all spatial 
weight matrices are normalized. The detailed specifica-
tions of the spatial weights can be found in the Supple-
mentary materials.

Derivation of direct and spatial spillover effects of NPIs
Following [36, 41], we rely on the following reduced form 
of Eq. 2 to derive the direct effects and SSE:

where In is the identity matrix of dimension n. The 
n×m matrix of Xt−1 can be partitioned by col-
umns as Xt−1 = (X1,t−1, · · · ,Xm,t−1) , where 
Xr,t−1 = (xr1,t−1, xr2,t−1, · · · , xrn,t−1)

′ is the n× 1 vector 
of the rth NPI measure for all n regions and xri,t−1 rep-
resents the rth NPI measure of region i at period t − 1 . 
Denote V (W ) = (In − ρW )−1 and Ur(W ) = V (W )�r , 
with �r being the rth coefficient of � . Equation 3 can be 
rewritten as:

(3)
Yt = (In − ρW )−1

Xt−1�+ (In − ρW )−1(ν + lN ξt + ǫt),
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Let Urij(W ) be the ith row and jth column element of 
Ur(W ) , and V (W )i be the ith row of V (W ) . The ith row 
of Eq. 3 reads:

Following LeSage and Pace [36], the marginal effect of the 
rth NPI measure of region j, namely, xrj,t−1 on the intra-
state human mobility of region i, Yit is

for j = 1, 2, · · · , n . In particular, the direct effect from 
region i’s own NPI can be captured by Urii(W ) , the ith 
diagonal element of Ur(W ) . Hence, we can derive the 
overall direct effect and SSE of all NPI measures on Yit , by 
adding the direct effect of all NPIs from region i, as well 
as the NPI spillovers from all other regions:

The intrastate human mobility of region i can then be 
expressed as:

which further implies

In terms of estimation, we use the summation of the 
posterior means of the overall direct effect, the SSE, and 
the regional and time effect influence V (W )i(ν + lN ξt) 
to approximate Yit . Additionally, we set the estimated 
value of Yit equal to qit , which means qit is the estimated 
change of intrastate human mobility. We use the Bayes-
ian Markov Chain Monte Carlo (MCMC) method to esti-
mate the coefficients of panel spatial econometric model. 
Details on the MCMC estimation algorithm as well as the 
direct effect and SSE estimates are provided in the Sup-
plementary materials.

(4)

Yt = V (W )

m∑

r=1

�rXr,t−1 + V (W )(ν + lN ξt)+ V (W )ǫt ,

=

m∑

r=1

Ur(W )Xr,t−1 + V (W )(ν + lN ξt)+ V (W )ǫt .

(5)Yit =

m∑

r=1

[Uri1(W )xr1,t−1 + · · · +Urin(W )xrn,t−1] + V (W )i(ν + lN ξt)+ V (W )iǫt .

(6)
∂Yit

∂xrj,t−1

= Urij(W ),

(7)

DEit =

m∑

r=1

Urii(W )xri,t−1,

SSEit =

m∑

r=1

n∑

j=1,j �=i

Urij(W )xrj,t−1.

(8)
Yit = DEit + SSEit + V (W )i(ν + lN ξt)+ V (W )iǫt ,

(9)E(Yit) = DEit + SSEit + V (W )i(ν + lN ξt).

Based on the spatial panel SAR model, we evalu-
ate the impact of NPIs on intrastate human mobility. 
The change in human mobility can significantly affect 
the transmission of infectious diseases like COVID-19. 
For example, the stay-at-home order restricts people’s 
travel and reduces human flow in the region, which 
minimizes contact between infected and susceptible 
individuals and ultimately contains infectious disease 
transmission. Therefore, many studies use the change in 

human mobility before and after interventions to con-
struct infectious disease models that simulate disease 
transmission and evaluate the impact of policies [42, 43]. 
Here we use the estimated changes ( qit ) in human move-
ment to develop the infectious disease model because it 
includes the direct effects and SSE of NPIs, which can 
help us simulate the effect of SSE of NPIs on disease 
transmission.

Parameter inference of S‑SEIR
The introduction of the classical SEIR model is necessary 
prior to develop our infectious disease model, as it serves 
as an important reference. The basic form of the SEIR 
model can be expressed as:

where S, E, I, and R are susceptible, exposed, infected, 
and removed populations, N denotes the total population 
( N = S + E + I + R ). β denotes the transmission rate, 
which is related to disease characteristics and population 
exposure. Z and D denote the incubation and infection 
periods. The inverse of the incubation period indicates 
the fraction of exposed individuals that become infected, 
while the inverse of the infection period indicates the 
fraction of infected individuals who recover or dead. 
Classical SEIR models typically assume that many disease 
characteristics, such as the transmission rate and infec-
tion period, are constant. However, this assumption does 
not apply to the complex transmission of COVID-19.

The change of intrastate human mobility can reflect 
the influence of NPIs  [44], which may also affect the 

(10)

dS

dt
=− β

IS

N
dE

dt
=β

IS

N
−

E

Z
dI

dt
=
E

Z
−

I

D
,

dR

dt
=

I

D
,
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transmission rate of infectious diseases. When the inter-
ventions occur, the transmission rate can be quantified as 
βt = (1− q)β0 , with q being the proportion of an infec-
tious individual’s daily susceptible contacts who will not 
go on to develop diseases and thus can be temporarily 
removed from the susceptible pool  [45]. β0 is the initial 
transmission rate. To incorporate the effects of NPIs on 
the transmission rate, we utilize the estimated changes 
( qit ) in intrastate human mobility from our panel spatial 
econometric model to represent the number of removed 
susceptible contacts. Meanwhile, the estimated changes 
in intrastate human mobility can help us isolate the direct 
effects and SSE of NPIs. Therefore, we can develop the 
S-SEIR metapopulation model, taking into account the role 
of SSE on intrastate human mobility change during disease 
transmission.

Si , Ei , Ii , Ai , and Ni are susceptible, exposed, symp-
tomatic infected, and asymptomatic infected 
persons and total population of region i, with 
Si + Ei + Ii + Ai + RIi + RAi = Ni . RIi and RAi are 
removed for symptomatic and asymptomatic patients, 
respectively. dRIi/dt = Ii/Di , dRAi/dt = Ai/Di . For 
model parameters, β0 can be expressed as β0 = R0/D , 
in which R0 is the basic reproductive number, indicat-
ing the average number of people infected by an infec-
tious person. (1− qit)β0 indicates the transmission rate 
of symptomatic infected individuals, adjusted by the NPI 
direct effects and SSE influence of region i at time t. a is 
the transmission rate of asymptomatic infected persons 
relative to symptomatic infected persons. µi denotes the 
reported fraction of symptomatic infections in region i, 
Di is infectious period in region i. In addition, our model 
characterizes the interactions and movements between 
different subpopulations across time and space  [46–48]. 
Specifically, the human movement among regions leads 
to weekly changes in the population of each region: 

(11)

dSi

dt
=− (1− qit)β0

IiSi

Ni
− a(1− qit)β0

AiSi

Ni

+ θ
∑

j

�MjiSj

Nj − Ij
− θ

∑

j

�MijSi

Ni − Ii
,

dEi

dt
=(1− qit)β0

IiSi

Ni
+ a(1− qit)β0

AiSi

Ni
−

Ei(t)

Z

+ θ
∑

j

�MjiEj

Nj − Ij
− θ

∑

j

�MijEi

Ni − Ii
,

dIi

dt
=µi

Ei

Z
−

Ii

Di
,

dAi

dt
=(1− µi)

Ei

Z
−

Ai

Di
+ θ

∑

j

�MjiAj

Nj − Ij
− θ

∑

j

�MijAi

Ni − Ii
.

Ni(t + 1) = Ni(t)+ θ
∑

j �Mji(t)− θ
∑

j �Mij(t)  , 
�Mij(t) denotes the population flows from region i to j 
at week t. θ is an adjustment factor to adjust the human 
movement data as it is only a sample data set. Inter-
regional population movement can cause case exchange 
across regions. We assume that symptomatic individu-
als are immobile but susceptible, exposed, and asympto-
matic patients can move across regions. �MijSi , �MijEi 
and �MijAi denote the susceptible, exposed, asympto-
matic patients moving from i to j, respectively.

Following recent literature [49–53], we estimate model 
parameters by an iterative Bayesian inference algorithm 
[ensemble adjustment Kalman filter (EAKF)]. This 
method has been applied to metapopulation models and 
to infer epidemiological parameters for many infectious 
diseases successfully [50, 52, 54]. EAKF is a Monte Carlo 
implementation of the Bayesian update problem. It com-
bines observations with the probability density function 
(prior) generated by the model simulation over time to 
generate a posterior estimate of the model state variables 
(including the variables and parameters). Therefore, we 
can estimate the four variables(S, E, I, A) of each region 
and infer six model parameters ( R0 , a, θ , µ , Z, D).

The spread and evolution of infectious diseases is 
a dynamic process, and their associated epidemio-
logical parameters can vary over time and region. For 
instance, the infection period may be influenced by fac-
tors such as hospital admission policies and contact trac-
ing. Accelerated hospital admissions or early isolation 
of close contacts can significantly shorten the infection 
period. Meanwhile, the reporting rate of the cases can 
be impacted by testing and record-keeping practices, 
which can vary across regions. Hence, we assume that 
the reporting rate ( µi ) and the infection period ( Di ) are 
subject to change with time and region, while the other 
four parameters are inherent properties of the virus and 
remain constant. In addition, to account for reporting 
delays in reported cases  [54], we introduce a Gaussian-
distributed report delay term ( Dr ), which varies by 
month. Details of model inference and initialization are 
provided in Supplementary materials.

Counterfactual simulations
We delve into different counterfactual scenarios to inves-
tigate the SSE of NPIs on regional COVID-19 trajectories 
further and to measure intervention effects by compar-
ing cumulative confirmed cases in different scenarios. 
Due to the spatial dependence among regions, the NPIs 
in some specific key regions may exert larger SSE δsp . 
Targeting these key regions and exploring the role of SSE 
in these specific regions on COVID-19 cases can help 
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us maximize the impact of NPIs. To do this, we divide 
the US states into different groups based the intrastate 
human mobility, and implement different counterfactual 
scenarios within each group, specifically changing the 
intensity of different NPIs, determining the more effec-
tive regions, and restricting interstate human mobility.

Firstly, to locate appropriate intervention areas, we 
divide US states into four groups based on K-means clus-
tering [55]. This algorithm, based on Euclidean distance, 
considers that the closer the distance between two tar-
gets, the greater the similarity. Therefore, we first define 
the distance between the targets. We calculate the aver-
age intensity of intrastate human mobility in each region 
from 6 January to 2 February. If the difference in human 
mobility within the two states is small, we assume that 
the two states are closer together. We then select the 
number of clusters based on the elbow method. Even-
tually, four different categories of regions are identified 
(Fig. 2A).

Results
Estimation results of spatial econometric model
We first determine the spatial weight matrix by selecting 
the matrix with K maximum interaction (KMI, K = 8 ) 
for Phases A and B based on the DIC described in Gel-
man  [56] (See supplement materials). The flow matrix 
with the nearest K neighbors is a 49× 49 interstate inter-
action matrix, with each region connected to its closest K 
neighbors. In this case, K = 8 , meaning each region has 8 
neighbors that interact most frequently with it (Fig. 2B). 
Next, we employed the Bayesian MCMC method to 

estimate the panel SAR model. The estimation results are 
summarized in Table  2.

The findings reveal that the spatial effect is positive 
and significant in both Phase A and Phase B, indicating 
a strong interdependence among regions. This highlights 
the importance of considering spatial econometric mod-
els. When introducing NPIs, workplace closures, cancel-
lation of public events, restrictions on gatherings, and 
stay-at-home orders show statistically significant coeffi-
cients. Except for restrictions on gatherings which would 
have a counteractive effect on reducing human mobility, 
the other three NPIs are found to have positive impacts. 
When lifting NPIs, all interventions are found to be sta-
tistically significant except for restrictions on internal 
movements. Notably, school closures had a more signifi-
cant impact on reducing human mobility in Phase B as its 
coefficient is the largest among all NPIs.

Direct and spatial spillover effects of NPIs on human 
mobility
Table 3 and Table 4 show the average direct and spatial 
spillover effects of each NPI estimated by Eq.  6. Most 
NPI impact estimates are significant, but not all NPIs 
can result in an increase in change of intrastate human 
mobility and thus a reduction in human mobility. Work-
place closures, cancellation of public events, and stay-at-
home orders have positive and significant direct effects 
and SSE that enlarge the changes in human mobility dur-
ing both Phases A and B, whereas restrictions on gather-
ing always exhibit negative and significant direct effects 
and SSE. During Phase A, an one standard-deviation 

Fig. 2 Geographical representation of class map and spatial weight matrix.A The class map by Kmeans method according to the intrastate 
human mobility. Note: US states are divided into four groups: (1) Region 1 ( r1 ): 22 regions with relatively low human mobility; (2) Region 2 ( r2 ): 18 
regions with intermediate human mobility; (3) Region 3 ( r3 ): 6 regions with higher human mobility; (4) Region 4 ( r4 ): 3 regions with the highest 
human mobility. B Flow matrix with nearest 8 neighbors: 49× 49 interstate interaction matrix, where each region is only connected to its closest 8 
neighbors. The purple line represents neighbors of California. The color indicates the size of the element of the spatial weights. The darker the color, 
the larger the weight value
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increase in the intensity of workplace closures in one 
region can directly increase by 0.0006 in human mobil-
ity change in the region, which corresponds to 1,414 

individuals in the mobility sample, while increasing the 
change of the human mobility in its neighboring region 
by 0.0010, corresponds to 2,356 individuals. Note that 

Table 2 The coefficients of different NPI estimates from the spatial econometric model

Our data includes 48 states (regions) and Washington D.C. Coef.: Posterior mean of coefficients. S.D.: Standard Deviation. We run a Markov chain of 50,000 iterations 
with a 50% burn-in ratio. We treat the posterior mean of parameters as their Bayesian point estimates. We rely on the Bayesian 95% CI to judge the significance of 
parameters. Bolded color indicates significance

Phase Phase A Phase B

Variables Coef. S.D 95% CI Coef. S.D 95% CI

Spatial effect 0.6830 0.0360 [0.6142, 0.7464] 0.7790 0.0280 [0.7241, 0.8329]

School closures − 0.0002 0.0001 [− 0.0005, 0.0001] 0.0004 0.0001 [0.0003, 0.0006]

Workplace closures 0.0005 0.0001 [0.0003, 0.0007] 0.0001 0.0001 [0.0000, 0.0002]

Cancellation of public events 0.0004 0.0001 [0.0001, 0.0006] 0.0001 0.0000 [0.0001, 0.0002]

Restrictions on gatherings − 0.0002 0.0001 [− 0.0004, − 0.0001] − 0.0001 0.0000 [− 0.0002, − 0.0000]

Public transport closures − 0.0000 0.0001 [− 0.0001,0.0001] − 0.0002 0.0001 [− 0.0003, − 0.0001]

Stay‑at‑home orders 0.0003 0.0001 [0.0001, 0.0005] 0.0002 0.0001 [0.0001, 0.0003]

Restrictions on internal movements 0.0001 0.0001 [0.0000, 0.0003] − 0.0001 0.0000 [− 0.0001, 0.0000]

Obs. 784 686

R
2 0.9690 0.9740

Table 3 The coefficients estimates of average direct effects from spatial econometric model

Our data includes 48 states (regions) and Washington D.C. Coef.: Posterior mean of coefficients. S.D.: Standard Deviation. We run a Markov chain of 50,000 iterations 
with a 50% burn-in ratio. We treat the posterior mean of parameters as their Bayesian point estimates. We also report the standard deviation of the posterior samples 
of parameters in parentheses. We rely on the Bayesian 95% CI to judge the significance of parameters. Bolded color indicates significance

Variables Phase A Phase B

Coef. S.D. 95% CI Coef. S.D. 95% CI

School closures −0.0002 0.0002 [−0.0005, 0.0001] 0.0005 0.0001 [0.0003, 0.0007]
Workplace closures 0.0006 0.0001 [0.0004, 0.0008] 0.0002 0.00005 [0.0001, 0.0003]
Cancellation of public events 0.0004 0.0001 [0.0002, 0.0006] 0.0002 0.00004 [0.0001, 0.0003]
Restrictions on gatherings − 0.0003 0.0001 [− 0.0005, − 0.0001] − 0.0001 0.00004 [− 0.0003, − 0.0000]
Public transport closures −0.0000 0.0001 [−0.0002, 0.0001] − 0.0003 0.0001 [− 0.0004, −  0.0001]
Stay‑at‑home orders 0.0003 0.0001 [0.0001, 0.0005] 0.0002 0.0001 [0.0001, 0.0003]
Restrictions on internal movements 0.0002 0.0001 [0.0000, 0.0003] −0.0001 0.0001 [−0.0001, 0.0000]

Table 4 The coefficients estimates of average spatial spillover effects from spatial econometric model

Our data includes 48 states (regions) and Washington D.C. Coef.: Posterior mean of coefficients. S.D.: Standard Deviation. We run a Markov chain of 50,000 iterations 
with a 50% burn-in ratio. We treat the posterior mean of parameters as their Bayesian point estimates. We also report the standard deviation of the posterior samples 
of parameters in parentheses. We rely on the Bayesian 95% CI to judge the significance of parameters. Bolded color indicates significance

Variables Phase A Phase B

Coef. S.D. 95% CI Coef. S.D. 95% CI

School closures −0.0004 0.0003 [−0.0011, 0.0001] 0.0020 0.0003 [0.0010, 0.0020]
Workplace closures 0.0010 0.0002 [0.0006, 0.0016] 0.0004 0.0002 [0.0000, 0.0010]
Cancellation of public events 0.0007 0.0003 [0.0003, 0.0013]  0.0005 0.0001 [0.0002, 0.0009]
Restrictions on gatherings ‑0.0005 0.0001 [− 0.0009, − 0.0002] − 0.0004 0.0001 [− 0.0006, − 0.0001]
Public transport closures −0.0000 0.0001 [−0.0003, 0.0002] − 0.0008 0.0002 [− 0.0010,− 0.0003]
Stay‑at‑home orders 0.0006 0.0002 [0.0002, 0.0011] 0.0006 0.0002 [0.0002, 0.0011]
Restrictions on internal movements 0.0003 0.0001 [0.0000, 0.0006] −0.0001 0.0001 [−0.0005, 0.0001]



Page 9 of 16Wang et al. International Journal of Health Geographics           (2023) 22:13  

our mobile data is not the whole population, so the num-
ber of individuals represents only the number calculated 
based on our human mobility sample. But during Phase 
B, an one standard-deviation increase in the intensity 
of workplace closures in one region can only increase 
the change of the human movement in the region and 
its neighboring region by 0.0002 and 0.0004, respec-
tively, corresponding to 372 and 745 individuals. During 
Phase A, workplace closures exert significant influences 
on restricting human movement. But during phase B, 
stay-at-home orders become more important. We also 
notice interventions such as restrictions on gathering and 
public transport closures tend to have negative impacts 
on the intrastate human mobility change. This may be 
because public transport closures may force people to 
resort to alternate modes of travel such as walking or 
driving, which may not effectively reduce human move-
ment. Moreover, a strengthening of the restrictions on 
gatherings like indoor gatherings or dine-in may result in 
increased traffic as people tend to increase their outdoor 
communication instead. To demonstrate the robustness 
of the model findings, we also estimate the average direct 
effects and SSE of using the panel spatial Durbin model, 
and the results are similar to those estimated by the SAR 
model. For more information, see Supplementary materi-
als for details.

In addition to the average direct effects and SSE of the 
NPIs, we also calculate and isolate the direct effects and 
SSE of all NPIs according to Eq.  7. The results indicate 

that the SSE of all NPIs on human mobility during Phase 
A and Phase B turns out to be stronger than direct effects 
(Fig.  3A). This demonstrates that NPIs in neighboring 
regions can significantly influence human mobility in one 
region. Then, we can combine the overall direct effects 
and SSE of all interventions, estimate curves of change in 
intrastate human mobility for regions, and compare them 
with factual observed mobility (Fig.  3B). The observed 
and estimated curves are fairly close for most regions, 
with results for all regions presented in Supplementary 
materials. And the R2s during phases A and B are 0.969 
and 0.974, respectively, indicating that our model can 
accurately describe changes in human mobility.

S‑SEIR model for disease transmission
By incorporating the estimated changes in human mobil-
ity within states into the S-SEIR model, we evaluate the 
role of SSE of NPIs in COVID-19 transmission. We cali-
brate the model for each region by minimizing the RMSE 
to the weekly confirmed case. The RMSE on weekly 
confirmed cases is 500, and the Pearson R is 0.98. The 
fitted model can capture the trajectory of weekly con-
firmed cases well at the national (Fig. 4A) and state-level 
(Fig. 4D). Results for each individual region are presented 
in Supplementary materials. The model structure and 
calibration also allow us to estimate the infectious period 
and reporting rate at the national and state levels, with 
the national-level results displayed in Fig. 4. The national 
infectious period (D) decreased from 7.72 days ( 95% CI: 

Fig. 3 The effects of all NPIs estimated by the panel SAR model. A The direct effects and SSE of all NPIs in four representative regions: California, 
Florida, New York, and Texas are shown. B Comparison of the change of human movement estimated by the spatial econometric model versus 
factual value. The white (shaded) area indicates the introduction (lifting) phase in which interventions were initialized (relaxed). Results for all 
regions are presented in Supplementary materials
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7.50−7.91) during January and February 2020 to 6.50 
days ( 95% CI: 6.26−6.97) during March and August 2020. 
Additionally, we find that the national reporting rate ( µ ) 
is low but gradually increased over time. In particular, µ 
is only about 4.53% ( 95% CI: 3.70 - 5.14% ) from January 
to February 2020. Many early missed diagnoses may also 
be responsible for the rapid increase in infections. These 
inference results are robust to different parameter set-
tings and model configurations.

Based on the S-SEIR model, we can assess the impact 
of both the direct effects and the SSE of all NPIs on 
COVID-19 transmission. To compare the effect of SSE 
over the entire study period (Fig. 5), we quantify the con-
tribution of direct effects and SSE using cumulative con-
firmed cases as an indicator:

where Cdirect and Cspillover denote the contribution of 
the direct effects and SSE of NPIs to COVID-19 cases, 
respectively. Caseno is the cumulative cases estimated by 
no change in human mobility, Casedirect is the cumulative 
cases estimated by only direct effects of NPIs. Casespillover 
is the cumulative cases estimated by only spillover effects 

(12)Cdirect =
Caseno − Casedirect

Caseno − CaseS−SEIR

(13)Cspillover =
Caseno − Casespillover

Caseno − CaseS−SEIR

of NPIs. CaseS−SEIR is the cumulative cases estimated 
by S-SEIR model. Caseno − CaseS−SEIR corresponds to 
the number of cases that can be reduced by the change 
of intrastate human mobility. In all the scenarios men-
tioned above, we assume interregional human flows keep 
consistent, and only focus on the contribution of direct 
effects and SSE of NPIs within regions calculated by 
S-SEIR model.

Fig. 4 Model fitting and parameter inference of the S‑SEIR model. A Model fitting to weekly case numbers (orange line) in the United States. 
The line and shaded area represent the median and 95% CI, respectively. The blue line means the estimated cases and the orange line means 
the reported cases. B Distribution of infectious periods in the United States. C Distribution of report rates in the United States. Monthly posterior 
estimates from January 6 to August 2, 2020, are provided. In B and C, the center line shows the median, box bounds represent 25th ( Q1 ) and 75th 
( Q3 ) percentiles, and whiskers show Q1 − 1.5× IQR and Q3 + 1.5× IQR . IQR means interquartile range. D  Model fitting to weekly case numbers in 
the four states (regions) with the most cases. All distributions in this figure are from n = 100 ensemble members

Fig. 5 The contribution of direct effects and SSE of all NPIs on 
national cumulative cases. The line and shaded area represent the 
median and 95% CI, respectively
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We find that the SSE of all NPIs can explain the 61.2% 
( 95% CI: 52.8-84.4% ) of national cumulative confirmed 
cases, while the direct effects of NPIs can explain the 
27.2% ( 95% CI: 21.3-45.2% ). The results suggest that the 
NPIs of one’s neighbors exhibit a larger influence on the 
transmission of COVID-19 in one region. This may be 
due to the fact that, in the early stages of the pandemic, 
regions with fewer locally reported cases place greater 
emphasis on preventing the spread of the virus from 
neighboring regions. As a result, more attention is paid 
to the interventions and confirmed cases in neighboring 
regions.

Comparing the effectiveness of region‑based interventions
Our objective is to compare the effectiveness of differ-
ent region-based intervention strategies. We also aim to 
examine the impact of SSE in these regions and deter-
mine if it is linked to population size or intrastate human 
mobility. We divide the regions into four groups based 
on the intrastate human mobility and K-means cluster-
ing method. The four groups are (1) Region 1 ( r1 ): 22 
regions with relatively low human mobility (e.g., Nevada, 
Montana); (2) Region 2 ( r2 ): 18 regions with interme-
diate human mobility (e.g., Wisconsin, Washington); 
(3) Region 3 ( r3 ): 6 regions with higher human mobil-
ity (e.g.New York, Illinois); (4) Region 4 ( r4 ): 3 regions 
with the highest human mobility. In addition, we define 
Region 5 ( r5 ) including the r3 and r4 . All subsequent anal-
yses will be based on these five intervention regions.

We first altered the intensities of specific NPIs in the 
targeted regions, while keeping others constant. We eval-
uate the impact of this targeted intervention by compar-
ing the counterfactual cumulative cases at the national 

level with actual cases (Fig.  6). Our spatial econometric 
model aids us in determining the NPIs that are effective 
in reducing intrastate human mobility. We anticipate that 
these same NPIs may also have a substantial impact on 
reducing COVID-19 cases. To test this, we selected the 
NPIs that had the greatest impact on reducing human 
mobility, namely workplace closures ( P2 ) and stay-at-
home orders ( P6 ), increased their intensities to 100, and 
incorporated these enhanced NPIs into the S-SEIR model 
for each region group to generate the counterfactual 
cases.

We observe that the implementation of enhanced P2 
and P6 in different regions leads to a comparable reduc-
tion in the national number of confirmed cases. We find 
that the regions r5 and r2 are the more effective targets 
for interventions, especially when not intervening in all 
forty-nine regions simultaneously. Importantly, when 
fully implemented in r2 and r5 , a 100 intensity P2 inter-
vention results in a comparable reduction in the num-
ber of national confirmed cases for both scenarios. The 
reduction in cases is estimated to be 2,177,620 ( 95% 
CI: 113,630–2,692,363) when implemented in r2 and 
2,198,963 ( 95% CI: 165,130–2,664,901) when imple-
mented in r5 . A concentrated intervention with P6 in r5 
yields even greater reduction in confirmed cases com-
pared to r2 . The reduction in cases is estimated to be 
26.1% ( 95% CI: 1.5-34.2% ) with P6 in r2 , corresponding to 
1,261,481 ( 95% CI: 58,873–1,688,624) cases. Meanwhile, 
The reduction in cases is estimated to be 34.7% ( 95% CI: 
2.1-43.7% ) within P6 in r5 , corresponding to 1,676,151 
( 95% CI: 82,696–2,159,600) cases.

Additionally, the intervention in r5 proves to be a close 
second to intervention in all forty-nine regions. If a tar-
geted intervention on nine regions in r5 with 100 intensity 

Fig. 6 The estimated counterfactual national cumulative confirmed cases by strengthening NPIs.A The estimated counterfactual national 
cumulative confirmed cases by strengthening the intensity of P2 and P6 in all regions. The intensity of each NPI is set to 100. The baseline scenario 
is the epidemic curve estimated by the S‑SEIR model. B–C The counterfactual national cumulative confirmed cases at t = 30 week. The intensity 
of each NPI is set to 100. B strengthening the intensity of P2 in different intervention regions. C Strengthening the intensity of P6 in different 
intervention regions. In B– C, the center line shows the median, box bounds represent 25th ( Q1 ) and 75th ( Q3 ) percentiles, and whiskers show 
Q1 − 1.5× IQR and Q3 + 1.5× IQR . IQR means interquartile range. All distributions are obtained from n = 100 ensemble members
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P2 and P6 , the number of cases compared to interven-
ing in all regions would increase by only 23.1% ( 95% CI: 
1.6-28.5% ) and 19.4% ( 95% CI: 2.1-22.8% ) respectively. 
Our findings suggest that strengthening NPIs in regions 
with high human mobility can have a significant impact 
in reducing the number of COVID-19 cases nationwide. 
Particularly, the NPIs in r5 exhibit a greater spillover 
effect compared to other groups, and therefore, more 
intensive interventions for the nine high human mobility 
regions in r5 may have a considerable effect in reducing 
cases across the country.

Restricting the interstate human mobility
The effectiveness of lockdown policies in flattening the 
COVID-19 epidemic curve has been well-established 
in previous studies [57, 58]. Here we investigate various 
targeted lockdown scenarios, from a complete lockdown 
strategy where all movements in and out of targeted 
regions are prohibited, to a partial lockdown strategy that 
restricts either origin-based or destination-based flows. 
The superiority of a complete lockdown over a partial 
lockdown strategy is yet to be determined. Moreover, 
we are also not sure whether a lockdown of regions with 
higher human mobility can result in greater reduction 
in COVID-19 cases. Hence, we generate counterfactual 
simulations for complete or partial lockdown on different 
regional groups to answer those questions.

Our findings suggest that the complete lockdown strat-
egy does not seem to be more effective than the partial 
lockdown strategy (Fig. 7A, B). Taking r4 and r5 as exam-
ples, when r4 is targeted, the destination-based lockdown 
is the most effective one that gives the lowest number of 
cases. On the other hand, when r5 is targeted, the origin-
based lockdown becomes the most effective strategy. 
Additionally, we observe that lockdown of more regions 
with higher human mobility can deliver fewer confirmed 
cases nationwide. Particularly, a targeted lockdown on r5 
can decrease more cases than targeting at r4 . When the 
lockdown (whether complete or partial lockdown) is 
given on r5 , there is a maximum reduction of 587,194 (95 
%CI : 69,206–976,481) cumulative nationwide confirmed 
cases, while given on r4 , there is a maximum reduction 
of 47,920 (95 %CI : -356,401–123,269) cases. But this 
observation should be interpreted with caution and the 
decrease in cases can not be simply attributed to the 
increase in the number of targeted regions. See Supple-
mentary materials for more discussion.

Although from a national perspective, lockdown-
type policies manage to reduce cumulative confirmed 
cases. But not every region obtains an equally significant 
reduction in the number of cases. Rather, the difference 
from the baseline scenario exhibits obvious spatial het-
erogeneity (Fig.  7C, D). Targeted lockdown on r4 could 

significantly reduce cases in almost all regions, with the 
exception of Florida having a slight increase in cases. For 
r5 , an origin-based partial lockdown is able to lower cases 
in most regions, especially North Carolina. But the cases 
in some regions may increase slightly, particularly in Lou-
isiana and some of the neighboring regions of California. 
This is because North Carolina closely interacts with 
most regions in r5 . Origin-based lockdown of r5 reduces 
the importation risk into North Carolina, thus lowering 
the number of confirmed cases. In contrast, Louisiana 
only has strong interactions with Texas and relatively 
infrequent interactions with other regions of r5 . Origin-
based lockdown of r5 , although reduces the importation 
risk from Texas to Louisiana, also affects the exportation 
of Louisiana to Texas, thus leading to an increase in the 
susceptible population and the local transmission risk in 
Louisiana within the S-SEIR system. In general, we do 
not recommend a complete lockdown strategy for tar-
geted regions and instead opting for either origin or des-
tination-based partial lockdown, which seems to be more 
effective. The influence of lockdown-type policies may 
also vary depending on the targeted region group, so the 
choice of which OD flows to restrict should be based on 
the specific region being intervened.

Discussion and conclusions
In this work, we quantify the spillover effects of differ-
ent NPIs on human mobility and pandemic risk and find 
that 1) the spatial spillover effects of NPIs can explain 
61.2% [ 95% CI: 52.8-84.4% ] of national cumulative con-
firmed cases, This suggests that the NPI spillovers exhibit 
significant impact on COVID-19 transmission across 
regions, and the presence of the spillover effect signifi-
cantly enhances the NPI influence. 2) strengthening NPIs 
in the key regions with high internal human mobility 
can significantly reduce the cumulative case nationwide. 
Local governments can take into account possible SSE 
of NPIs from neighboring regions when adjusting their 
own policies. Thus, our findings call for collaboration and 
resource coordination across countries and regions to 
combat the pandemic [59–61].

Strong NPI spillovers imply that regional epidemics 
may be heavily affected by interventions from neighbor-
ing regions. Even if certain regions do not implement 
strict NPIs, their epidemic curve can be effectively flat-
tened by the SSE of NPIs in neighboring regions. This 
phenomenon also occurs in vaccination, where the 
spillover effects of vaccination have been extensively 
studied in the literature  [62, 63], with herd immunity 
being a good example. Few literatures has discussed the 
spillover effects of different NPIs as we do. Examination 
of the spillover effects of NPIs and vaccines is equally 
important and can be combined in the future for better 
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regional resource coordination [64]. In addition, the NPIs 
in these key regions with frequent human mobility have 
greater spillover effects and reduce more cases. This 
may be due to the fact that these regions usually inter-
act more frequently with other regions, similar to a hub 
node in a complex network. However, these regions may 
also be more vulnerable, and significantly strengthen-
ing NPIs in these regions may result in greater economic 
loss and investment. Although this makes coordination 
more difficult in the real world, our simulation provides 
a more moderate scenario (see Supplementary materials). 
Region-based interventions are still effective even when 
NPIs are strengthened at very low intensities.

This study also has some limitations. First, the dataset 
we use does not cover all people, and there may be a bias in 
extracting interstate interactions. We propose a movement 
adjustment factor ( θ ), but it may not reflect real-world 
human movement accurately. Although our S-SEIR model 
manages to assess the relationship of NPIs’ SSE, human 
mobility, and virus transmission, mobility data that rep-
resent a larger proportion of the population are still nec-
essary. Secondly, we use the reduction in human mobility 
to completely replace the removed susceptible contacts in 
the disease transmission. In addition to social distancing, 
the decrease in susceptible contacts may also be related to 
contact tracing, isolation, etc. Further exploration of the 

Fig. 7 The estimated counterfactual national cumulative confirmed cases by lockdown in r4 or r5 . We consider the baseline scenario as the 
epidemic curve estimated by S‑SEIR model for A, B, C, D. A The estimated counterfactual national cumulative confirmed cases by lockdown in 
r4 , which means the human mobility between some regions and r4 is set to 0, including travel flow from r4 (denoted as ’O’) and travel flow to r4 
(denoted as ’D’). (B) The estimated counterfactual national cumulative confirmed cases by lockdown the flow in r5 . (C) The median differences in 
estimated national cumulative confirmed cases at t = 30 week by the destination‑based lockdown in r4 and baseline scenario. (D) The median 
differences in estimated national cumulative confirmed cases at t = 30 week by the destination‑based lockdown in r5 and baseline scenarios. The 
size of the circle indicates the absolute value of the differences. Bottle green indicates that the cases estimated by counterfactual scenarios are 
fewer than the baseline. Purple indicates the cases estimated by counterfactual scenarios are higher. All distributions are obtained from n = 100 
ensemble members
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more complex mechanisms of human mobility variations 
will lead to a deeper understanding of the policy effects.

Our study quantifies the spillover effects across regions 
and clarifies the intervention range, and provides an 
operational insight for how to search for the most effec-
tive region-based policies conditional on spillovers. This 
finding will not only contain the current outbreak, but 
also help us determine better response strategies when 
dealing with similar challenges, such as influenza, mon-
keypox, dengue fever, and respiratory syncytial virus. 
Moreover, our modeling framework may also be modi-
fied or generalized to other contexts such as crime  [19] 
and traffic  [65] where meaningful spillover effects are 
present and collaborations among different regions are 
important.
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estimated by the complete lockdown (OD), origin‑based lockdown (O), 
destination‑based lockdown (D) in r4 or r5 and baseline scenario. Figure 
S11. The change of intrastate human mobility in each state.  Figure S12. 
The distribution of the dependent variables in different weeks. Figure 
S13. Estimation results of the change of intrastate human mobility and 

spatial spillover effects of NPIs by panel SAR model. The matrix during 
introduction phase is flow weight (8 neighbors) matrix, during lifting 
phase is the inverse distance matrix with a cut‑off distance of 600 km.  
Figure S14.  Estimation results of the change of intrastate human mobility 
and spatial spillover effects of NPIs by panel SAR model. The matrix during 
introduction phase is the inverse distance matrix with a cut‑off distance of 
600 km, and during lifting phase is flow weight (8 neighbors).  Figure S15. 
Estimation results of the change of intrastate human mobility and spatial 
spillover effects of NPIs by panel SAR model. The matrix during introduc‑
tion phase is the inverse distance matrix with a cut‑off distance of 600 km, 
and during lifting phase is the inverse distance (the max distance is 800 
km). Figure S16. Estimation results from the S‑SEIR model, taking changes 
in actual human mobility as intervention effects. Figure S17. Estimation 
results from the Sp‑SEIR model, the initial seed is the number of cases 
in the five days from T0 to T0+4. Figure S18. Estimation results from 
the Sp‑SEIR model. During initialization, symptomatic patients are not 
assigned an initial value. Figure S19. Estimation results from the Sp‑SEIR 
model, the range of movement fixed factor (θ) is from 1 to 10. Figure S20. 
Estimation results from the Sp‑SEIR model. We assume that the infection 
of asymptomatic patients relative to symptomatic patients also varies over 
time and region.
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