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Abstract 

Background National prevalence could mask subnational heterogeneity in disease occurrence, and disease map-
ping is an important tool to illustrate the spatial pattern of disease. However, there is limited information on tech-
niques for the specification of conditional autoregressive models in disease mapping involving disconnected regions. 
This study explores available techniques for producing district-level prevalence estimates for disconnected regions, 
using as an example childhood overweight in Malaysia, which consists of the Peninsular and Borneo regions sepa-
rated by the South China Sea. We used data from Malaysia National Health and Morbidity Survey conducted in 2015. 
We adopted Bayesian hierarchical modelling using the integrated nested Laplace approximation (INLA) program in 
R-software to model the spatial distribution of overweight among 6301 children aged 5–17 years across 144 districts 
located in two disconnected regions. We illustrate different types of spatial models for prevalence mapping across 
disconnected regions, taking into account the survey design and adjusting for district-level demographic and socio-
economic covariates.

Results The spatial model with split random effects and a common intercept has the lowest Deviance and Watan-
abe Information Criteria. There was evidence of a spatial pattern in the prevalence of childhood overweight across 
districts. An increasing trend in smoothed prevalence of overweight was observed when moving from the east to 
the west of the Peninsular and Borneo regions. The proportion of Bumiputera ethnicity in the district had a significant 
negative association with childhood overweight: the higher the proportion of Bumiputera ethnicity in the district, the 
lower the prevalence of childhood overweight.

Conclusion This study illustrates different available techniques for mapping prevalence across districts in discon-
nected regions using survey data. These techniques can be utilized to produce reliable subnational estimates for any 
areas that comprise of disconnected regions. Through the example, we learned that the best-fit model was the one 
that considered the separate variations of the individual regions. We discovered that the occurrence of childhood 
overweight in Malaysia followed a spatial pattern with an east–west gradient trend, and we identified districts with 
high prevalence of overweight. This information could help policy makers in making informed decisions for targeted 
public health interventions in high-risk areas.
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Background
Health indicators that are routinely collected by national 
surveys are usually reported at the national level, 
including the prevalence of overweight and obesity. 
These are important indicators for monitoring trends and 
making comparisons between countries. Nevertheless, 
national averages could mask the fine geographical 
variations and inequalities regarding health indicators 
[1]. In addition, local stake holders have great need for 
reliable estimates at the subnational level, such as the 
district or sub-district level. This information can be used 
for ensuring equitable resource allocation, facilitating 
optimal local-level planning, and implementation of 
interventions and health programs [2]. Obtaining reliable 
estimates at these levels requires a large sample size that 
is representative of the population, and this could greatly 
increase the survey cost and time, which could be a 
burden in countries with limited resources. To overcome 
this issue, mapping disease prevalence has been widely 
used to identify spatial pattern of disease, identify areas 
with high disease burden, assist in disease surveillance, 
and understand the aetiology of diseases [3]. However, 
direct estimates of disease prevalence in an area based 
on samples available in the area could lead to unstable 
estimates.

To address this problem, Bayesian hierarchical 
modelling incorporating spatial smoothing has been 
commonly used in disease mapping to improve 
prevalence estimates. In Bayesian spatial analysis, 
information from a neighbouring area is used, and 
the mean of an area is assumed to be the average of 
neighbouring areas [4]. This “borrowing of information” 
helps to overcome issues of data sparseness and account 
for spatial dependency. In addition, complex sampling 
designs are often used in the collection of survey data 
and need to be accounted for in the analysis. Mercer 
et  al. [5] and Vandendijck et  al. [6] have reviewed 
methods for the analysis of spatial health surveys with a 
complex sampling design and possible missing data. They 
demonstrated that methods that considered sampling 
weight in the analysis performed well in simulations and 
decreased non-response and selection bias [5, 6].

In disease mapping, the spatial dependency between 
neighbouring areas needs to be defined prior to analysis. 
The intrinsic conditional autoregressive (ICAR) model 
is the most popular approach for specifying the spatial 
dependency [7]. When defining the ICAR model, it 
is necessary to specify a graph that consists of nodes 

and edges that represent the respective regions and 
neighbouring relationships between them [8]. In a 
connected graph, all pairs of nodes are connected, while a 
disconnected graph can arise when there are nodes with 
no neighbours or when the study region is split, resulting 
in separate subgraphs [8].

However, there is limited information on techniques 
for the specification of the ICAR model in disease 
mapping involving disconnected regions. In the present 
study, we propose an adapted Bayesian spatial model to 
deal with disconnected regions, which is later denoted 
as the split random effects model. We explore such 
techniques using as an example childhood overweight 
in Malaysia, which is geographically split into Peninsular 
and Borneo regions separated by the South China 
Sea. Studying this is important because worldwide, 
prevalence of overweight and obesity is increasing among 
children. If not prevented early, the condition can persist 
into adulthood and be associated with multiple chronic 
diseases and psychological disorders [9, 10]. In addition, 
premature mortality and productivity losses associated 
with the condition have impacts on a country’s economy 
from indirect costs [11]. The prevalence of overweight 
and obesity among adolescents in Malaysia is among the 
highest in Southeast Asia [12], and there is evidence of 
increasing trends over time [13]. However, the broader 
geographical distribution and areas that are most affected 
remain unclear. Therefore, the identification of vulnerable 
areas is vital to improve the prevention of childhood 
overweight and obesity.

The aims of the present study were to analyse the 
geographical variation of the estimated prevalence of 
overweight (including obesity) and to identify areas 
of unusually high prevalence at the district level. This 
analysis examined children aged 5–17 years in Malaysia 
using Bayesian hierarchical modelling. Malaysia is 
geographically split into two disconnected regions: 
Peninsular Malaysia and Borneo’s East Malaysia, which 
are separated by the South China Sea, and which makes 
the analysis more difficult. Models for producing district-
level prevalence estimates for disconnected regions were 
explored.

Methods
Study design
We used cross-sectional population-based survey 
data from the National Health and Morbidity Survey 
(NHMS) conducted in 2015. The NHMS applied a 
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two-stage stratified cluster sampling method to obtain 
a nationally representative sample of urban and rural 
populations. Malaysia was stratified into states includ-
ing Federal Territories, followed by secondary strata, 
which consist of urban and rural strata formed within 
the primary stratum. In total, 30 urban and rural strata 
were created.

In the first sampling stage, 536 and 333 enumeration 
blocks (primary sampling units) were selected in 
proportion to the population sizes from urban and 
rural strata, respectively. The sampling frame of the 
enumeration blocks was provided by the Department 
of Statistics Malaysia. Each enumeration block 
comprises an average of 80 to 120 living quarters with 
an average population of 500 to 600 people. In the 
second sampling stage, 12 living quarters (secondary 
sampling units) were randomly selected from each 
selected enumeration block. A total of 10,428 living 
quarters were selected in this survey [14].

All households and their members within the 
selected living quarters were included in the study. 
The response rates were 89.2% and 96.9% at the living-
quarter level and the individual level, respectively. 
The overall response rate was 86.4% [14]. The NHMS 
carried out face-to-face interviews using a pre-tested 
questionnaire. Children aged 13  years or older were 
interviewed directly, while parents or guardians 
provided responses by proxy for children younger than 
13  years old. Physical measurements of height and 
weight were conducted by trained research assistants.

Study area
Malaysia is situated in the Southeast Asia region at 
4.1936° N, 103.7249° E [15]. It is split into two regions: 
Peninsular Malaysia, which covers the southernmost 
point of Eurasia, and Malaysian Borneo (East Malay-
sia), which is on the island of Borneo. Malaysia covers 
an area of 329,847  km2 (127,355  miles2) and consists 
of 16 states, including 3 federal territories and 144 

administrative districts: 87 in the Peninsular and 57 in 
Borneo. The population was 31.2 million in 2015 [16].

Dependent variable
In this study, information from children aged 5 to 
17 years was used. The outcome variable was overweight 
(including obesity) based on measured height and weight. 
The children’s body mass indexes (BMIs) were classified 
according to the age and sex-specific BMI criteria of 
the International Obesity Taskforce (IOTF) 2012, which 
uses cut-offs for BMI that correspond to adult BMI cut-
offs of 25 at age 18 [17]. For each child who participated 
in the survey, the coordinates of the living quarter were 
recorded.

District‑level covariates
Table  1 shows several district-level covariates that were 
considered in our analysis. These include the proportion 
of district population aged 5–17  years, proportion of 
females, proportion of Bumiputera ethnicity, average 
household size, median gross monthly household income 
(in Malaysian ringgit), and population density (in  km2). 
All district-level covariate information was obtained 
from the Department of Statistics Malaysia [18].  

Ethical considerations
NHMS 2015 received ethical approval from the Medical 
Research Ethics Committee, Ministry of Health Malaysia 
(NMRR–14-1064-21877). Written informed consent 
was obtained from each participant, including parents 
or guardians of the children. The present study was 
registered at the Malaysia National Medical Research 
Register, and approval for data usage was received from 
the Director General of Health, Malaysia.

Statistical analysis
Traditional spatial smoothing model
Using the design-based approach, district-level 
prevalence estimates of overweight can be obtained 
directly from the available samples in each district. 

Table 1 District-level covariates used in our analysis of prevalence of overweight among Malaysian children. [18]

District‑level covariates Details

Proportion of children aged 5–17 years A state-level proportion of 5–17 years old in 2015 was used 
for projection of district-level proportion, based on 2016 
data

Proportion of females District-level population and demography statistics 2016

Proportion of Bumiputera ethnicity District-level population statistics by ethnicity 2016

Average household size Population statistics 2016: Average household size by district

Median household income (Malaysian ringgit) Household income and expenditure statistics 2016

Population density (square km) Population statistics 2016: Population density by district
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However, in districts not included in NHMS 2015, 
no estimates can be obtained. In addition, estimates 
with large variances are inevitable in districts with 
sparse data. Therefore, we employed a fully Bayesian 
hierarchical modelling framework that allows spatial 
smoothing to obtain prevalence estimates in unsampled 
districts and to produce more reliable estimates with 
smaller variances.

We can assume a Bernoulli model for the binary 
response variable of overweight ( yij = 1 if overweight 
versus yij = 0 if non-overweight) for an individual child 
i ( i = 1, …, 6301) in administrative district j ( j = 1, …, 
144) as follows:

In this model, pij is the probability of the i th child 
in the j th district being overweight. The logit link 
function was applied to link the probability with the 
potential district-level covariates xj with associated 
parameters β . The intercept α represents the overall 
risk of being overweight.

This model-based approach allows for incorporation 
of random effects to account for the spatial correlation 
between districts, while the unstructured random 
effects allow each district to vary independently of its 
adjoining neighbours. We applied the Besag, York, and 
Mollié model, which partitions the random effects at 
the district level into unstructured ( vj ) and spatially 
structured ( uj ) effects [7]. We incorporated the ICAR 
prior in the spatially structured random effects, which 
has the following conditional distribution:

where N  denotes the normal distribution, and 
wjj′ is a neighbourhood weight. We denote this 
as  uj ∼ CAR(τ ,W ) , with W = (wjj′) . This ICAR prior 
allows us to borrow information between neighbouring 
areas, yielding a smoothed prevalence map. A scaled 
version of W  is recommended such that τ can be 
interpreted as the marginal precision [19].

Accounting for the study design
In order to reduce bias due to non-random sampling 
and non-response, sampling weight was accounted for 
in all analyses. First, we computed the design-based 
Horvitz-Thompson estimator [20], p̂j , which is the 

(1)yij ∼ Bernoulli(pij)

(2)logit(pij) = α +

∑
k
βkxjk + vj + uj

(3)uj|u(−j) ∼ N

(∑
j
′w

jj
′u

j
′

∑
j
′w

jj
′

,
1

τ
∑

j
′w

jj
′

)
,

district-specific prevalence of overweight, using the 
observations in each district:

where sij is the sampling weight of individual child i in 
district j . This estimator takes into account the design of 
the study. We then obtain an area-level summary by 
applying the empirical logistic transformation of p̂j , as 
described by Mercer et al. [5] in a study comparing differ-
ent weighting methods when using spatial smoothing in 

small-area estimations (i.e. yjL = log
[

p̂j
1−p̂j

]
 ) [5]. We then 

model this summary data as:

where var(p̂j) is the variance of the Horvitz-Thompson 
estimator p̂j and pj from the previous section, which 
takes into account the study design in both the estimator 
and its variance.

Bayesian inference
We performed the Bayesian analysis using an integrated 
nested Laplace approximation (INLA) program in R 
software [21]. The deterministic algorithm approach for 
Bayesian inference in INLA has been proven to reduce 
the computing time and provides accurate results [22, 23]. 
In Bayesian inference, prior distributions for parameters 
to be estimated were specified before modelling was 
commenced. In R-INLA, the default Gaussian prior 
with mean and precision equal to 0 was specified for the 
intercept of the model, α. For the fixed effects, Gaussian 
priors with mean equal to 0 and precision equal to 0.001 
were assigned.

We specified the unstructured random effect as a 
normal distribution with a standardized mean of zero. 
A gamma distribution (0.5, 0.005) was specified for the 
hyperpriors for the precision of random effects. We 
report the covariate effects using the mean and 95% 
credible intervals, which represent the range of values 
that contains the true value with a probability of 95%.

To evaluate the model fit, the deviance information 
criterion (DIC) and Watanabe information criterion 
(WAIC) were used [24, 25]. Lower DIC or WAIC values 
signify better model fit. Once the best-fit model was 
identified, it was used to produce prevalence estimates 
for each district. District-level covariates were then 
introduced to the model individually. The model was 

(4)p̂j =

∑
i yijsij

sij

(5)yLj |pj ∼ N
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built using a forward stepwise regression approach, and 
its performance was again assessed using the DIC and 
WAIC values.

Proposed spatial models for disconnected regions
The Bayesian hierarchical spatial model uses 
neighbourhood weights that are traditionally defined 
as wjj′ = 1 when areas j and j′ share a boundary and as 
wjj′ = 0 otherwise [26]. This definition defines a graph 
as a compilation of nodes and edges representing the 
respective districts and the set of neighbours for each 
district. Most often in disease mapping, we assume 
that the graph is a connected graph, meaning that all 
the nodes connect to at least one other node. However, 
disconnected graphs can arise when there is an island 
with no neighbour or when the study region is split, 
resulting in separate subgraphs [8].

Analysis involving disconnected subgraphs is not as 
straightforward as the analysis for a connected graph 
and is very rarely discussed. Hodges et  al. [27] discuss 
the theory of setting disconnected subgraphs [27], while 
Freni-Sterrantino et  al. [8] give some recommendations 
in INLA [8]. We give an overview of techniques available 
in INLA for producing district-level prevalence estimates 
for disconnected regions. The focus is on the setting of 
disconnected regions that consist of multiple areas j 
(thus, there are no singletons).

We assume that the total study region with areas j (e.g., 
districts) is split up into disconnected regions r . In the 
application presented in this paper, the South China Sea 
separates the region of Malaysia into two disconnected 
regions (Peninsular Malaysia and Borneo).

Model I: single sum‑to‑zero constraint
The ICAR distribution has an improper distribution, 
and the standard method to deal with this is by adding 
a sum-to-zero constraint—i.e., the sum of all random 
effects is equal to zero. This is the standard method used 
in disease mapping with a connected graph. In the case 
of disconnected regions, this assumption can still be 
made. Using this assumption, the overall mean of the 
random effects across the whole study area is zero. The 
spatial random effects for area j in region r , uj(r) , can be 
interpreted as the area-specific deviation from the overall 
risk.

(6)logit(pij(r)) = α + vj + uj(r)

(7)uj(r) ∼ CAR(τ ,W )

By setting the option adjust.for.con.comp = FALSE, 
INLA interprets this as a sum-to-zero constraint for the 
union of the subgraphs. This is specified in INLA as:

formula = y ~ 1 + f(struct, model=’besag’, graph=W.
graph, adjust.for.con.comp = FALSE, scale.model = 
TRUE) + f(unstruct, model =’iid’)

In this formulation, “struct” and “unstruct” correspond 
to a vector (1, …, N) with a number of areas N, and 
“W.graph” is the neighbourhood structure. The 
specification scale.model = TRUE defines a scaled version 
of the random effects such that the variance parameter 
can be interpreted as a marginal variance.

Model II: sum‑to‑zero constraints for each region
When specifying the graph for the ICAR prior in INLA, 
INLA interprets this as a sum-to-zero constraint for each 
subgraph by default, imposing a separate sum-to-zero 
constraint of the random effects for each region r.

This model assumes a common intercept for all 
disconnected regions, so the overall risk in the separate 
regions is the same. The spatial random effects uj(r) 
in this case need to be interpreted as the area-specific 
deviation from the overall risk, which varies around zero 
in each disconnected region.

This default setting is equivalent to setting the option 
adjust.for.con.comp = TRUE in INLA, such that a 
separate sum-to-zero constraint of the random effects is 
applied for each region.

formula = y ~ 1 + f(struct, model = ’besag’, graph = 
W.graph, adjust.for.con.comp = TRUE, scale.model = 
TRUE) + f(unstruct, model =’iid’)

In this case, scaling is done with respect to each 
subgraph.

Model III: sum‑to‑zero constraint and intercept for each 
region
A more flexible model assigns one intercept to each 
region in addition to using a sum-to-zero constraint for 
each connected region. By adding an intercept for each 
region, we infer that the baseline prevalence is different 
in the disconnected regions.

(8)
∑

r

∑
j∈r

uj(r) = 0.

(9)logit(pij(r)) = α + vj + uj(r)

(10)uj(r) ∼ CAR(τ ,W )

(11)∀r :

∑
j∈r

uj(r) = 0
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The spatial random effects uj(r) can be interpreted as 
the area-specific deviation from the region-specific risk 
in this case. The intercepts for the disconnected regions 
need to be explicitly specified in INLA:

formula = y ~ -1 + region + f(struct, model=’besag’, 
graph=W.graph, adjust.for.con.comp = TRUE, scale.
model = TRUE) + f(unstruct, model =’iid’)

Model IV: split random effects model
Models 1–3 assume one random effects distribution for 
all areas in the region, with the random effects variance 
corresponding to the variation of the random effects 
over all areas in all the disconnected regions. As the 
disconnected regions can be quite different in terms 
of demographics, socioeconomics, infrastructure, and 
development, we can also assume that the variation 
in these regions is different. A separate analysis could 
be conducted for the two regions, but this would be 
restrictive in the model comparison (e.g., the use of DIC 
or WAIC for model comparison would not be possible in 
this case). Therefore, a split random effect is proposed so 
that use of DIC and WAIC are still possible to assess the 
model fit.

(12)logit(pij(r)) = αr + vj + uj(r)

(13)uj(r) ∼ CAR(τ ,W )

(14)∀r :

∑
j∈r

uj(r) = 0

(15)logit
(
pij(r)

)
= αr + vj + uj(r)

(16)∀r : uj(r) ∼ CAR(τ r ,Wr)

This model assumes separate ICAR random effects for 
the disconnected regions, so each subgraph has its own 
spatial variance. These random effects are defined in 
the subgraph Wr for a sub-region r and have a separate 
spatial precision. This can be specified in INLA as 
follows:

formula = y ~ -1 + region + f(struct1, model = ’besag’, 
graph = W.graph1, scale.model = TRUE) + f(unstruct1, 
model = ’iid’) + f(struct2, model = ’besag’, graph = 
W.graph2, scale.model = TRUE) + f(unstruct2, model = 
’iid’)

In this specification, “struct1” and “unstruct1” 
correspond to a vector  (11, …,  N1), where  N1 is the 
number of areas in region 1, and “W.graph1” is the 
neighbourhood structure amongst these areas. “struct2”, 
“unstruct2”, and “W.graph2” correspond to similar 
properties for region 2.

Results
A total of 6,812 children aged 5 to 17 years participated in 
NHMS 2015. For BMI, 5% of the data were missing, while 
2% of the geolocation information were missing or inva-
lid. Figure 1 shows the geographical distribution of par-
ticipating children with complete BMI and geolocation 
information (n = 6301). The samples range from 0 to 363 
per district (Median = 28). There were 85 districts (59%) 
that had sample sizes less than 50, and 18 districts had 
no samples. This indicates high variability in the sample 
sizes between districts. The national prevalence of over-
weight (including obesity) was 23.8% (95%CI 22.2, 25.4), 
the prevalence for boys was 24.5% (95%CI 22.3, 26.9), and 
the prevalence for girls was 23.0% (95%CI 21.1, 24.9).

(17)∀r :

∑
j∈r

uj(r) = 0

Fig. 1 Geographical distribution of participating children across districts in Malaysia, National Health and Morbidity Survey 2015
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Geographical variation in prevalence of overweight
The main focus of this study was to explore the 
geographical variation in the prevalence of overweight 
in children aged 5 to 17  years and to identify districts 
with high prevalence. The direct estimate of district-level 
prevalence of overweight in sampled areas was 23.4% (SE 
1.25). The lowest was in the district Lahad Datu at 1.6% 
(SE 1.6), and the highest was in the district Sarikei at 
82.7% (SE 16.8) (see Additional file 1).

Figure  2 illustrates the design-based weighted preva-
lence of overweight per district (see Additional file 2 for 
the uncertainty of the prevalence estimates). Substantial 
heterogeneities can be observed across districts. Districts 
with high overweight prevalence can be seen next to dis-
tricts with low overweight prevalence. Areas indicated in 
grey show districts where no estimates could be obtained 
as there were no samples in these areas.

Table  2 shows the posterior summary statistics of 
the different models considered in the analysis. Model 
IVa (with a common intercept specification and split 
random effects) had the lowest DIC and WAIC values. 
The posterior summary statistics of the model with 
split random effects and separate intercepts are also 
shown (Model IVb). Upon comparison, Models Va and 
Vb showed the summary statistics of the models when 
separate analysis was conducted for the Borneo and 
Peninsular regions. These analyses showed that when 
specifying split random effects and separate intercepts 
(Model IVb), it is the same as running two separate 
models (Models Va and Vb) but with the advantage of 
one DIC/ WAIC value being obtained to assess the model 
fit and the possibility of testing for a common effect (such 
as a common intercept).

Using Model IVa, we introduced each district-level 
covariate separately (as shown in Table  1) and tested 
each covariate for an interaction effect with the Region 

variable. Table  3 shows the best-fit model with the 
lowest DIC and WAIC after adjusting for district-level 
covariates. No significant associations were observed 
between other covariates with overweight prevalence 
except for the proportion of Bumiputera ethnicity. 
There was a significant negative association between 
the proportion of Bumiputera ethnicity and prevalence 
of overweight in the district: the higher the proportion 
of Bumiputera ethnicity in the district, the lower the 
prevalence of childhood overweight. The same effect 
applies to both regions, but the amount of spatial 
variation is different between them. 

Figure 3 illustrates the effects of spatial smoothing on 
the prevalence estimates (see Additional file  2 for the 
uncertainty of the prevalence estimates). The top map 
corresponds to Model I with a single sum-to-zero con-
straint for both regions. The middle and bottom maps 
correspond to Model II (sum-to-zero constraints for each 
region) and Model III (sum-to-zero constraint and inter-
cept for each region), respectively. These district-level 
maps reveal a spatial pattern in the prevalence of over-
weight. No obvious difference can be seen in prevalence 
estimates in the Peninsular region across the three mod-
els. Districts located in the eastern, northern, and south-
ern part of the Peninsular region have a lower prevalence 
of overweight than districts located in the northwest and 
central west of this region. An increasing trend in the 
prevalence can be seen when moving from the east to the 
west part of the Peninsular region.

Districts in Borneo showed some variations in the dif-
ferent model specifications. A more homogeneous pat-
tern in overweight estimates can be observed across 
districts in Borneo in the top map of Fig. 3 (with a single 
sum-to-zero constraint) than in the middle and bottom 
maps (with sum-to-zero constraints for each region). An 
increasing trend in the prevalence was observed when 

Fig. 2 District-level weighted overweight prevalence of children aged 5–17 years, NHMS 2015, Malaysia
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moving from the east to the west part of Borneo. A more 
distinct pattern occurred when a similar baseline mean 
was specified in these two regions, as evident in the mid-
dle map in Fig. 3. These variations in the different model 
specifications seen in Borneo can be attributed to the 
fewer data available in this region: 15 of the 57 districts 
in Borneo had no observations, so the outcome was more 
dependent on model assumptions. Thus, the choice of 
the model can seriously impact the result.

Figure  4 illustrates the effect of split random effects 
specification and the addition of covariates on the 
smoothed prevalence estimates (see Additional file 2 for 
the uncertainty of the prevalence estimates). The top and 
middle maps correspond to Models IVa and IVb, respec-
tively, as presented in Table 2. The pattern in the top map 
of Fig. 4 (split random effects with a common intercept) 
was similar to the middle map in Fig.  3 (sum-to-zero 
constraints for each region). The pattern in the middle 
map in Fig.  4 was similar to the bottom map in Fig.  3 
(sum-to-zero constraint and intercept for each region). 
A reduction in variance of the prevalence estimates can 
be seen in the bottom map in Fig. 4 when adjusting the 
model with the proportion of Bumiputera ethnicity in the 
district.

Discussion
This paper provides the first overview of different spatial 
model types when dealing with a study area that is split 
into separate disconnected regions. This has not yet been 
discussed widely in the literature. The presented software 
implementation in R-INLA, a widely used R package for 

spatial disease mapping, can help to practically imple-
ment the different model types. While methods are 
illustrated in the context of a spatial health survey with 
complex sampling designs, the different model types are 
applicable in a broader context whenever a study region 
is split into disconnected regions.

In this study, we found that the model with split ran-
dom effects and a common intercept (a similar baseline 
mean) in the two regions (Model IVa) was the model with 
the best fit for describing the prevalence of childhood 
overweight across districts. Based on this selected model, 
a common level of childhood overweight prevalence is 
apparent in the two regions, but with different spatial 
variations between them. This highlights the importance 
of exploring different types of spatial models when map-
ping disease prevalence to find the best model, especially 
when dealing with disconnected regions.

We estimated that around 24% of Malaysian children aged 
5–17 years had overweight in 2015 (approximately 1.4 mil-
lion children). The NHMS provided estimates at the national 
and state level, but these estimates could mask variations at 
the district level. Our study is the first to report estimates of 
overweight among children in this age group at the district 
level, which could help in monitoring and addressing the 
overweight epidemic at the subnational level in Malaysia.

The results showed that there was a two-fold variation in 
the prevalence of overweight among children between dis-
tricts in Malaysia (17–34%). Our study also revealed that 
there was a spatial pattern in overweight occurrences across 
districts with increasing trends observed when moving from 
east to west in the Peninsular and Borneo regions. These 
spatial disparities can be attributed to many factors, includ-
ing compositional factors such as differences in demographic 
and socioeconomic backgrounds of the population living 
in the area. Possible contextual factors include differences 
in the development, infrastructure, and built environments 
between the areas. These factors warrant further assessment.

When the selected model was further adjusted with 
district-level covariates, our results revealed a significant 
negative association between the proportion of Bumi-
putera ethnicity in the districts and the prevalence of 
childhood overweight. The Bumiputera ethnicity com-
prises the Malay, Orang Asli, Sabah Bumiputera, and 
Sarawak Bumiputera ethnicities and constitutes the main 
ethnic group in all states except for Penang state, which 
is located in the northwest of the Peninsular region, and 
the capital city Kuala Lumpur, which is located in the 
central west of the Peninsular region [28]. No previous 
local studies have reported associations of district-level 
determinants and overweight prevalence in children for 
comparison.

To our knowledge, this is the first study to use data 
from a large nationally representative survey to obtain 

Table 3 Posterior summary statistics of the best-fit adjusted 
model

a Proportion of Bumiputera ethnicity at the district level. Bumiputera ethnicity 
comprises of Malay, Orang Asli, Sabah Bumiputera and Sarawak Bumiputera
b RE: Random effects
c DIC: Deviance information criterion [24]
d WAIC: Watanabe information criterion [25]

District‑level covariate Mean 95% Credible interval

Lower Upper

Intercept − 1.204 − 1.294 − 1.113

% Bumiputera  ethnicitya − 0.101 − 0.191 − 0.010

Variance

 Borneo

  Structured  REb 0.035 0.009 0.101

  Unstructured  REb 0.052 0.008 0.164

 Peninsular

  Structured  REb 0.014 0.002 0.057

  Unstructured  REb 0.044 0.010 0.110

DICc 203.7

WAICd 206.2
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subnational prevalence estimates of overweight among 
Malaysian children. Using Bayesian hierarchical model-
ling enabled us to predict prevalence in unsampled dis-
tricts. We also illustrated techniques for the specification 
of graphs for disconnected regions. In addition, complex 
survey design was considered in all analyses to reduce 
bias from non-response and non-random sampling. 

Regarding limitations, we have specified neighbourhood 
structure using the most widely used definition, i.e., two 
areas are neighbours if they share a common border 
(contiguity). However, there are other approaches, such 
as the distance-based method, which measures the dis-
tance between two points or centroids, that are worth 
further investigation in future research. In addition, the 

Fig. 3 District-level predicted prevalence of overweight in children aged 5–17 years old, NHMS 2015, Malaysia. The top map corresponds to Model 
I, a single sum-to-zero constraint. The middle map corresponds to Model II, sum-to-zero constraints for each region and a common intercept. The 
bottom map corresponds to Model III, sum-to-zero constraint and intercept for each region
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association observed at the aggregate level in this ecolog-
ical study cannot be inferred to the individual level. Thus, 
both district- and individual-level covariates should be 
included in the mapping of overweight prevalence in 
future research.

Conclusion
The findings from this study have several implications. 
First, we described different model specifications for 
disease mapping of disconnected regions using R-INLA. 
From this description, we demonstrated techniques 
that can be utilized to produce reliable subnational 
estimates of disease prevalence for disconnected regions 

Fig. 4 District-level predicted prevalence of overweight in children aged 5–17 years old, NHMS 2015, Malaysia. The top map corresponds to Model 
IVa, split random effects (RE) with a common intercept. The middle map corresponds to Model IVb, split RE with separate intercepts. The bottom 
map corresponds to Model IVa adjusted for district-level covariate (Proportion of Bumiputera ethnicity)
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using survey data. This is much needed information 
for local stakeholders for prioritized intervention and 
optimal planning. Second, using mapping of overweight 
prevalence among children in Malaysia as an example, 
we showed that overweight occurrences among children 
in Malaysia followed a spatial pattern with an east–west 
gradient trend. We also identified districts with high 
prevalence of overweight. This could help policy makers 
in making informed decisions to enhance public health 
interventions in high-risk districts to curb the overweight 
epidemic in Malaysia.
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