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Abstract 

Background The exponential growth of location‑based social media (LBSM) data has ushered in novel prospects 
for investigating the urban food environment in health geography research. However, previous studies have primar‑
ily relied on word dictionaries with a limited number of food words and employed common‑sense categorizations 
to determine the healthiness of those words. To enhance the analysis of the urban food environment using LBSM 
data, it is crucial to develop a more comprehensive list of food‑related words. Within the context, this study delves 
into the exploration of expanding food‑related words along with their associated energy densities.

Methods This study addresses the aforementioned research gap by introducing a novel methodology for expanding 
the food‑related word dictionary and predicting energy densities. Seed words are generated from official and crowd‑
sourced food composition databases, and new food words are discovered by clustering food words within the word 
embedding space using the Gaussian mixture model. Machine learning models are employed to predict the energy 
density classifications of these food words based on their feature vectors. To ensure a thorough exploration of the pre‑
diction problem, ten widely used machine learning models are evaluated.

Results The approach successfully expands the food‑related word dictionary and accurately predicts food energy 
density (reaching 91.62%.). Through a comparison of the newly expanded dictionary with the initial seed words 
and an analysis of Yelp reviews in the city of Toronto, we observe significant improvements in identifying food words 
and gaining a deeper understanding of the food environment.

Conclusions This study proposes a novel method to expand food‑related vocabulary and predict the food energy 
density based on machine learning and word embedding. This method makes a valuable contribution to build‑
ing a more comprehensive list of food words that can be used in geography and public health studies by mining 
geotagged social media data.
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Background
As urbanization continues to rapidly progress, urban 
spaces are becoming increasingly complex, resulting in 
the emergence of heterogeneous urban environments. 
With the abundance of location-based social media data 
and the spatial information it provides, advanced stud-
ies are now possible [1] to understand the urban envi-
ronment and investigate human interactions with urban 
spaces across geographic regions [2–6].

Traditionally, information about the urban environ-
ment was derived from authoritative datasets such as 
nationwide surveys (census), remote sensing imageries, 
light detection and ranging data, and geographic infor-
mation systems (GIS). Remote sensing data have been 
widely used to classify and monitor urban land use and 
functions [7–10], while GIS data have been used to derive 
the urban built environment from different perspectives, 
such as walkability [11–13] and livability [14–16]. Social 
environment characteristics have also been aggregated 
using GIS and census data at different scales [17, 18].

However, the data used in these conventional studies 
are mostly generated and aggregated by governments or 
authorities [19]. They typically only cover the physical 
aspect of the urban space or simple inferences of social 
environment characteristics from census data, while 
citizens’ perceptions and experiences of the urban space 
are mostly ignored [19]. Moreover, data collection using 
these methods is labour intensive and time-consuming, 
limiting the study to a relatively large scale and lacking 
fine-scale attributes. Additionally, there is always a tem-
poral lag between when the data are collected and when 
they are publicly available for use.

To enrich the knowledge of the urban environment and 
interactions between citizens and urban spaces at a fine 
scale, scholars have tried to integrate the experiences and 
perceptions of urban spaces by local citizens. Researchers 
have used focus group surveys, interviews, observation of 
places, and cognitive mapping to understand the urban 
environment [19–21]. Geo-narrative is one of the widely 
utilized ways to derive local knowledge of urban spaces. 
This approach applies the semantic analysis of geospatial-
related narrative content, such as travel logs, oral histo-
ries and biographies [22], to help bridge the semantic gap 
between human’s perception of space and the urban envi-
ronment [23]. For example, researchers have employed 
geo-narrative to investigate the citizens’ perception and 
experience of the green and blue space in their daily life 
[24], to explore qualitative activity space according to 
individual perception of the urban environment [25], to 
infer thematic places based on individual sense of place 
[26].

Although the advancements in geo-narrative 
techniques improved the capability to process 

geospatial-related narrative materials and advanced the 
understanding of urban spaces based on local knowledge, 
they have been constrained by the quantity and quality 
of available data sources [27]. However, the popularity of 
social media platforms, such as Twitter, Instagram, Face-
book, and Foursquare, has led to more people using these 
mediums to share their thoughts and opinions. These 
billions of posts generated worldwide can be served as 
a rich source of information about personal experiences 
and public perspectives. Most social media platforms 
allow the user to track their location (geographic coordi-
nates) embedded in their posts, namely Location-based 
Social Media (LBSM). The pervasiveness of LBSM pro-
vides large volumes of spatial data combined with soci-
odemographic information generated by real-world users 
in real-time [28]. Unlike conventional ways of data col-
lection, multiple fields have benefited from mining this 
rapidly available data to profile different environments, 
including political analyses [29–32], natural hazards and 
disaster management [33–35], epidemiology outbreak 
tracking [36–39], medical and pharmaceutical services 
[40, 41], and others [42–44].

A growing trend in urban environment analyses is the 
use of publicly accessible LBSM data sources [3, 4, 45]. 
Within LBSM data, users provide real-time information 
about urban environments [46, 47] twenty-four hours 
a day, seven days a week. Although the LBSM data are 
often being criticized for their biased representation of 
the population (e.g., the users tend to be younger) and 
noise [48], utilizing social media data as a supplemen-
tary data source for urban environment studies has value 
since the information on millions of users’ opinions and 
daily behaviours can enrich the conventional GIS data 
sources [49, 50] if tuned to the right frequency (like radio 
waves in the air).

With the rapid advancements in machine learn-
ing (ML) and natural language processing (NLP) 
techniques, there is a growing trend towards har-
nessing these technologies to analyze urban environ-
ment through the lens of human perception utilizing 
geotagged social media data [51–54]. NLP proves inval-
uable in exploring unstructured text data [55], such as 
social media posts, where the integration of sentiment 
analysis through machine learning, encompassing tech-
niques like artificial neural network and support vec-
tor machine, can unveil hidden patterns and emerging 
trends within vast social media datasets [56, 57]. By 
incorporating the location details from the geotags 
associated with social media data, the synergistic uti-
lization of ML and NLP offers a potent means to com-
prehensively understand the various facets of the urban 
environment as perceived by individuals [58]. Illustra-
tively, this synergy can pinpoint tourist hotspots using 
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Flickr imagery and travel blogs [26, 59], unveil citizens’ 
conceptualization of places via geo-referenced tweets 
or micro lifelogs [47, 60], extract urban functional 
regions from tweets, Foursquare venues, and user 
check-in behaviour [45, 61], and analyze the urban food 
environment through geotagged tweets [62, 63].

Among the different urban environments, the food 
environment—the environment within which we make 
our daily food choices—is a critical factor contributing 
to obesity [64]. According to the Health Canada [65], 
obesity in adults is defined as having a body mass index 
(BMI) of 30 or greater, while overweight is defined as 
a BMI of 25 to less than 30. The prevalence of obesity 
in North America has rapidly increased [66]. In March 
2020, the U.S. obesity prevalence increased to 41.9% 
[67]. In Canada, about 35% of adults have either over-
weight or obese as of 2021 [68]. Evidence shows that 
exposure to an unhealthy food environment (e.g., high 
density of fast food outlets) has significant associations 
with obesity and other obesity-related chronic diseases 
[69, 70].

In spatially focused food environment studies, 
researchers are increasingly turning to LBSM data to 
gain a more fine-grained understanding of the urban 
environment [63, 71]. This approach allows research-
ers to move beyond conventional area-based geo-
graphic boundaries, such as census tracts and buffer 
zones, which provide a limited view of individuals’ food 
choices and misrepresent the reality of their perceived 
food environment and dietary patterns [72]. Instead, 
researchers are using LBSM data to analyze food envi-
ronments based on location points tagged through 
social media posts [62, 73]. By using LBSM data to 
analyze the urban environment and understand the 
interactions between citizens and urban spaces, health 
geography researchers have new opportunities to gain 
insights into public health.

However, previous food environment studies focused 
primarily on the spatial distribution of healthy and 
unhealthy foods relying on common sense catego-
rizations. For instance, words like "vegetables" were 

considered healthy, while words like "french fries" were 
considered unhealthy [62, 63]. To expand the analy-
sis of the urban food environment using LBSM data, 
researchers need a more comprehensive list of food-
related words with their associated healthiness degrees.

Although some studies have examined opinion word 
expansions [74], few have focused specifically on food 
word expansion for geographic analysis with LBSM data. 
To address this research gap and establish a foundation 
for urban food environment studies using LBSM data in 
health geography, this research proposes a novel method 
for expanding food-related words and predicting their 
food energy density based on machine learning and word 
embedding techniques.

Methods
Energy density classification
We classified food words based on its energy density 
(ED), which refers to the amount of energy or calories in 
a given weight of food, typically measured in kilocalories 
per gram. Foods with lower ED contain fewer calories per 
gram than those with higher ED [75]. The British Nutri-
tion Foundation classification system divides foods into 
four levels based on their ED: very low, low, medium, and 
high. Foods with an ED lower than 0.6 kcal/g are consid-
ered very low, while those with an ED between 0.6 and 
1.5 kcal/g are considered low. Foods with an ED between 
1.5 and 4 kcal/g are classified as medium, and those with 
an ED above 4 kcal/g are classified as high. According to 
the British Nutrition Foundation and previous studies, a 
healthy diet should consist mainly of very low and low 
ED foods, while moderate consumption of medium ED 
foods and limited consumption of high ED foods [76].

In this study, we classified foods into two categories 
based on their ED. Foods with very low and low ED were 
classified as "L-ED", while those with medium and high 
ED were classified as "H-ED". Table 1 shows the new clas-
sification system. It is important to note that in this study, 
"L-ED" and "H-ED" refer specifically to their association 
with the prevalence of obesity, and not general health. 

Table 1 New classification based on the British Nutrition Foundation classification

British nutrition foundation New classification

Classification Energy density (ED in 
kcal/g)

Example words Classification Energy 
density (ED in 
kcal/g)

Very Low ED < 0.6 Asparagus; cabbage L‑ED ED < 1.5

Low 0.6 ≤ ED < 1.5 Edamame; haddock

Medium 1.5 ≤ ED ≤ 4 Breadstick; chicken H‑ED ED ≥ 1.5

High ED > 4 Potato chips; peanut butter
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To avoid confusion, we will use "L-ED" and "H-ED" to 
describe the two classifications of the foods thereafter.

Data and preprocessing
To build the food word dictionary, we started by compil-
ing an initial set of food words, or "seed words", from the 
United States Department of Agriculture (USDA) food 
composition database1 and the Open Food Facts (OFF) 
database.2 The USDA database contains detailed nutri-
tional information on 7524 food items, while the OFF is a 
crowdsourced website with nearly 665,000 user-reported 
food items with nutritional information, including food 
words from different cultures, such as French food items 
and other international food brands not commonly found 
in official food reports. This is particularly important 
for a multicultural city like Toronto, which has a diverse 
range of food outlets.

To ensure accuracy, data was cleaned to remove dupli-
cates, and food items were manually checked to eliminate 
any non-identifiable foods and brands. USDA food words 
were preliminarily cleaned and combined to ensure their 
suitability for natural language processing. The USDA 
dataset contains many detailed keywords, so similar food 
words were combined into one representative word. For 
example, all types and brands of beer in the database 
were aggregated into one item listed as ’Beer’, and the 
mean energy density was calculated. Following preproc-
essing, 967 food words were extracted from the USDA 
database and categorized as L-ED or H-ED based on 
their mean energy density.

On the OFF website, all food products are described 
by their label name on sale and their nutrition facts label. 
With millions of listed food products, the Natural Lan-
guage Toolkit3 was used to clean the data. All punctua-
tion and non-word characters were removed, and food 
items lacking energy density information were excluded 
from further processing. After the initial cleaning, food 
words were selected from the OFF database to complete 
the initial seed words dictionary.

To expand the food words from these existing food 
words, we utilized the embedded vectors of each word 
to find new, similar food words in the embedding space. 
Embedded vectors (also known as word embedding), are 
utilized in natural language processing to depict words 
as numeric value vectors, capturing the sematic relation-
ship between them. [77] These vectors, typically ranging 

from 100 to 300 dimensions, are generated by unsuper-
vised learning algorithms (e.g., Word2Vec) that analyze 
the co-occurrence patterns of words from large text data 
sets. [78] The embedding space is the multi-dimensional 
vector space where words are mapped as embedded 
vectors. Each dimension in this space corresponds to a 
specific feature or aspect of the word’s meaning. In the 
embedding space, words with similar features tend to 
have vectors that are close to each other, while dissimi-
lar ones are farther apart. Google’s pre-trained Word-
2Vec4 model was employed as the word embedding space 
for the preprocessed seed words. This model includes 
a vocabulary of almost 3 million words and phrases, 
trained on roughly 100 billion words from the Google 
News dataset. Each word is represented by 300 feature 
vectors in the embedding space. Out of the combined 
preprocessed seed words from the USDA and OFF data-
bases, 5151 words can be found in the embedding space. 
Finally, after removing duplicates and non-retrievable 
food products, we obtained 3761 food words associated 
with energy density values are set as the initial diction-
ary of food words. Figure 1 illustrates the workflow of the 
data preprocessing.

Machine learning models for food energy density 
prediction
In daily language usage, high ED food words (e.g., burg-
ers, fries, etc.) tend to appear together, while low ED 
food words (e.g., fruits, vegetables, etc.) cluster closely. 
While there may be some exceptions and complexities, 
food words with similar attributes (e.g., energy density) 
may be clustered with multiple centroids in the hyper-
dimension word embedding space. Therefore, we used 
300 feature vectors of the cleaned 3761 seed food words 
as prediction variables and their food energy density clas-
sification (i.e., L-ED or H-ED) as the target variable to 
train machine learning models.

To ensure a comprehensive exploration of the pre-
diction problem, we tested ten widely used machine 
learning models. The models include Artificial Neu-
ral Network (ANN), Support Vector Machine (SVM), 
Gaussian Process (GP), AdaBoost (AB), Naïve Bayes 
(NB), Quadratic Discriminant Analysis (QDA), Gradi-
ent Boosting (GB), k-Nearest Neighbors (KNN), Random 
Forest (RF), and Decision Tree (DT). The selected models 
are widely recognized in machine learning literatures and 
have demonstrated successful application in a variety of 
domains. Each model represents a distinct approach and 
has its own unique strengths and assumptions about the 1 Standard Reference of food composition originally available via the USDA 

National Nutrient Database—final release April 2018 (https:// fdc. nal. usda. 
gov/ downl oad- datas ets. html).
2 Open Food Fact database (https:// world. openf oodfa cts. org/ data).
3 Natural Language Toolkit is a “platform for building Python programs to 
work with human language data” (https:// www. nltk. org/ index. html).

4 Word2Vec “provides an efficient implementation of the continuous bag-
of-words and skip-gram architectures for computing vector representations 
of words” (https:// code. google. com/ archi ve/p/ word2 vec/).

https://fdc.nal.usda.gov/download-datasets.html
https://fdc.nal.usda.gov/download-datasets.html
https://world.openfoodfacts.org/data
https://www.nltk.org/index.html
https://code.google.com/archive/p/word2vec/
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data. Furthermore, these models include a wide range of 
machine learning families that are designed with differ-
ent paradigms, which enables a thorough comparison of 
different algorithmic approaches. By evaluating multiple 
models, we increase the chances of finding the one that 
performs exceptionally well for the food words predic-
tion task. To determine the model that predicts the food 
energy density category with the highest accuracy, we 
tested these models using fivefold cross-validation.

Food word expansion based on cluster analysis of word 
embedding space
In order to expand the food word dictionary by discover-
ing new words, we follow the assumption that food words 
with similar characteristics will exhibit certain patterns 
in the word embedding space [79]. This means that simi-
lar words can be clustered together and form clusters in 
the word embedding space based on the different food 
groups they belong to. We also expect these clusters to 
follow a finite number of Gaussian distributions in the 
word embedding space. To analyze and discover these 
clusters, we used a probabilistic model known as the 
Gaussian mixture model. This model attempts to repre-
sent normally distributed subpopulations within a nor-
mally distributed overall population [80]. It assumes that 
the data points follow patterns of several clusters with a 
Gaussian distribution, making it an ideal method to ana-
lyze and discover new food words around the centroids 
of these clusters.

Using the Gaussian mixture model on the initial food 
seed words, we created a probabilistic field with sev-
eral cluster centers in the word embedding space. The 
probability level determines the likelihood that a word 
in the embedding space belongs to a discovered clus-
ter. At a given probability level, multiple hyperellipses 
are formed in the word embedding space, where all the 
words contained inside these hyperellipses can be similar 
food-related words within the range of that specific prob-
ability level. Therefore, the higher the probability level, 
the higher the chance that the newly discovered words 
are food-related, but a smaller number of new words can 
be discovered.

In order to reduce the computation time required to 
search for new words in the embedding space, we also 
set a similarity level in conjunction with the probability 
level. The similarity level is the cosine distance between 
two locations in the word embedding space. By setting 
this similarity level, we can limit the number of words 
tested to see if they belong within the same probability 
level. We use the Genism5 Python library to extract all 
the words within a specific similarity level from the dis-
covered cluster centroids. We then test these words one 
by one to determine whether they are distributed inside 
these hyperellipses with a specific probability level. We 
try different probability and similarity level combina-
tions and compare the results. Finally, the accuracy of the 

Fig. 1 The workflow of the data preprocessing

5 https:// github. com/ RaRe- Techn ologi es/ gensim.

https://github.com/RaRe-Technologies/gensim


Page 6 of 16Wang et al. International Journal of Health Geographics           (2023) 22:22 

expanded food words being related to food words is veri-
fied by human interpretation with a random subset of the 
expanded food words.

There is a trade-off relationship between accuracy 
and the number of newly discovered food words. When 
adjusting the similarity and probability levels, we found 
that there is a balance between accuracy and the number 
of new words identified. If we set similarity and proba-
bility levels low, the accuracy of the results decreases by 
incorrectly identifying food words. Conversely, setting 
the levels high results in a reduced number of newly dis-
covered words, as the model becomes overly conserva-
tive. Therefore, finding an optimal balance is crucial to 
strike a trade-off between achieving high accuracy and 
maximizing the number of food words discovered.

Results
Food energy density prediction model
The first step was to test various machine learning mod-
els to determine the most accurate predictor of the food 
energy density level of the food words. The 300 feature 
vectors of the seed words were used as the prediction 
variable, and their food energy density level was used as 
the target to train the different machine learning mod-
els. The Scikit-learn6 module for Python was employed 
to train the model with default parameter settings for the 
initial selection. Table 2 lists the mean accuracy and asso-
ciated standard deviation of the fivefold cross-validation 
of the ten different machine learning models used to pre-
dict the food energy density of food words.

Of the ten models, ANN, SVM, GP, KNN, and RF, 
exhibited the highest prediction accuracies, with the 
SVM (90.74% accuracy) ranking number one. These five 

models were further evaluated with hyperparameter 
tuning to optimize their hyperparameters (results are in 
Table 3). Machine learning models normally have differ-
ent setting parameters known as hyperparameters that 
control their learning process. Prior to training a model, 
it is crucial to define these hyperparameters. By system-
atically exploring different combinations of hyperparam-
eter values, the optimal configuration can be determined 
when the model achieves the highest accuracy. This 
procedure is commonly referred to as hyperparameter 
tuning. From the tuned models, the SVM still achieved 
the highest mean accuracy (an increase to 91.62% from 
90.74%) in correctly predicting the food energy density 
classification of the food words.

Food word clustering in word embedding space
The clustering analysis of the initial seed words was car-
ried out using the Gaussian mixture model. The model 
has four options to constrain the covariance between 
the estimated classes, which determines the degree of 
freedom in shape, length of axes, and direction of all 
the ellipsoids of formed clusters. This hyperparameter 
includes "diagonal," "tied," "full," and "spherical." Addi-
tionally, the number of components (clusters) needs to be 
defined, with which the algorithm will form the clusters 
in the given number. The number of clusters and covari-
ance type need to be calibrated to find the best-fit model. 
We iterated the four covariance types and the number of 
clusters to train the model and compared their results 
with the AIC values. The best model performance (with 
the lowest AIC value) is achieved when the number of 
clusters equals 36 (see Additional file 1 for more details 
of the calibration).

Food words expansion and food energy density prediction
The results of the Gaussian mixture model indicated 
that 36 clusters were identified from the seed words. 
Using the centroids of the clusters, we tested different 

Table 2 The mean accuracy and standard deviation of fivefold 
cross‑validation of the machine learning models

Machine learning models Mean accuracy 
(Std. Dev.) (%)

Artificial Neural Network (ANN) 87.55 (7)

Support Vector Machine (SVM) 90.74 (7)

Gaussian Process (GP) 85.70 (4)

AdaBoost (AB) 59.24 (30)

Naïve Bayes (NB) 67.44 (18)

Quadratic Discriminant Analysis (QDA) 78.12 (5)

Gradient Boosting (GB) 62.82 (23)

k‑Nearest‑Neighbor (KNN) 84.86 (3)

Random Forest (RF) 82.51 (9)

Decision Tree (DT) 30.43 (23)

Table 3 The mean accuracy and standard deviation of fivefold 
cross‑validation of the machine learning models before and after 
hyperparameter tunning

Machine learning models Mean accuracy
before tuning (%)

Mean 
accuracy
after 
tuning 
(%)

ANN 87.55 89.10

SVM 90.74 91.62

GP 85.69 85.86

KNN 84.86 85.29

RF 82.51 83.69

6 https:// scikit- learn. org.

https://scikit-learn.org
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combinations of probability and similarity levels to deter-
mine which one produced the best likelihood of the 
newly discovered words being food-related. For each set 
of food word expansion tested, we randomly selected 100 
words and evaluated their accuracy in identifying food-
related words through human interpretation. We also 
assessed the percentage of existing L-ED and H-ED food 
words among the newly discovered food words. Table 4 
and Fig. 2 present the results of the word expansion using 
distinct similarity and probability configurations. Within 
both the table and figure, the alphabetic labels A to G 
represent diverse expansion scenarios, each character-
ized by a unique combination of similarity and probabil-
ity settings.

The results show that as the similarity and probability 
levels increase, fewer words are discovered, but with a 
higher likelihood of being food words. Conversely, lower 
similarity and probability levels result in more words 

discovered, but with a lower chance of them being food 
words. The highest number of food words discovered 
was 32,637 words, which was obtained with a combina-
tion of a 0.55 similarity level and a 0.7 probability level 
(food word expansion A). This combination resulted 
in an accuracy of 71% of the 32,637 words being food-
related words. However, a slightly higher accuracy of 75% 
was achieved with a higher probability level of 0.8 (food 
word expansion B) for the same 0.55 similarity level. 
Although these combinations yielded the highest num-
ber of newly discovered words, they obtained the lowest 
accuracy scores out of all similarity and probability level 
combinations.

In terms of food-word accuracy, the highest accuracy 
score of 94% was obtained in three situations. First, with 
the highest level of 0.8 similarity and probability levels 
(food word expansion G), only 378 new words were dis-
covered, marking it as the combination with the lowest 

Table 4 Diverse Expansion Scenarios: Results of Word Expansion Using Varied Similarity and Probability Settings

The columns labeled with alphabetic identifiers A to G depict distinct expansion scenarios, each defined by a unique combination of similarity and probability levels

Food word expansion scenarios

A B C D E F G

Similarity Level 0.55 0.55 0.6 0.6 0.65 0.7 0.8

Probability Level 0.7 0.8 0.7 0.8 0.75 0.7 0.8

Number of expanded words 32,637 32,637 19,826 19,826 11,957 5,636 378

Accuracy 71% 75% 83% 92% 94% 94% 94%

Percentage of L‑ED food words 6.08% 6.08% 5.98% 5.98% 5.02% 4.67% 5.82%

Percentage of H‑ED food words 93.92% 93.92% 94.02% 94.02% 94.98% 95.33% 94.18%

Fig. 2 Number of new words discovered with different similarity and probability levels, and their respective accuracy rates achieved
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number of words discovered. At the 0.7 similarity and 
probability level (food word expansion F), the num-
ber of new words discovered increases to 5,636 while 
maintaining an accuracy of 94% that the new words are 
food-related words. Lastly, for the same accuracy score, 
the combination of a 0.65 similarity level and 0.75 prob-
ability level (food word expansion E) achieved the high-
est number of new words discovered, with 11,957 new 
words. Other combinations (food word expansion C 
and D) yielded a higher number of new words discov-
ered, with 19,826 new words, but scored lower accuracy 
of 83% (food word expansion C) and 92% (food word 
expansion D). Considering all different combinations, 

we determined that food word expansion E achieved 
the best results with a relatively high number of new 
words discovered (11,957 new words) while maintain-
ing a high accuracy score of 94% for the new word being 
food-related.

With the newly discovered food-related words and 
their 300 feature vectors, we used the trained SVM 
model to predict the food energy density classification of 
these new words. Given that the optimized SVM model 
achieved a mean accuracy of 92% with fivefold cross-val-
idation in predicting the food energy density classifica-
tion of the initial seed words, we can assume that the new 
classification predictions of the newly discovered food 
words will also yield a similarly high level of accuracy.

Table  5 presents examples of the food energy density 
classification predictions of new food words obtained 
with the SVM model. The predictions seem to correctly 
classify the new words, where more fruit- and vegetable-
related words (i.e., lemon peel, basil, persimmons) are 
classified as L-ED, and meat and processed foods are cat-
egorized as H-ED.

With the addition of the newly discovered food words, 
the expanded food word dictionary consisted of 14,152 
food words that were classified by food energy density. 
Additionally, the food word dictionary contained food 
words with varying numbers of words. For instance, 
2-word food words (e.g., chocolate chip), 3-word food 
words (e.g., sweet potato fries), and 4-word food words 
(e.g., freshly squeezed lime juice), were present in the 
dictionary. Table 6 demonstrates that the expanded food 
word dictionary exhibited a significant increase, particu-
larly in the multi-word food words. The variety of food 
words enables more precise descriptions of food, and 
more crucially, enables the identification of words that 
describe diverse dishes, highlightingredients included.

Case study: yelp reviews analysis
To evaluate the performance of the expanded diction-
ary, which contains new food words with their food 
energy density classification, in the context of food envi-
ronment studies, we compared and tested the datasets 
using Yelp reviews to analyze the food words mentioned 

Table 5 Examples of newly discovered food words and their 
predicted food energy density classification (1: L‑ED; 2: H‑ED) at a 
0.65 similarity level and a 0.75 probability level

Newly discovered words Food energy density 
classification 
prediction

Banana_cream_pie 2

Blueberry_pancakes 2

Lemon_peel 1

Basil 1

Bbeef_stew 2

Coconut_milk 1

Kfc 2

Samosas 2

Tomato_salad 1

Sweet_potato_fries 2

Braised_lamb 2

Blueberry_muffins 2

Jambon 2

Raclette 2

Balsamic_vinegar 1

Mango_peach 1

Fried_calamari 2

Beef_shawarma 2

Gnocchi 2

Persimmons 1

… …

Table 6 Comparison of the food words between the original and expanded dictionary

1-word food word 2-word food word 3-word food word 4-word food words Total

Original food words 1609 1835 303 14 3761

Newly discovered food words 1694 7926 2186 151 11,957

Example words Macaron;
Tapenade

Chocolate fudge; Lemon peel Cinnamon toast 
crunch; Vanilla ice 
cream

Freshly squeezed orange juice

Percentage of increase 2.57% 62.40% 75.65% 83.03% 52.14%
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by reviewers on food outlets in the City of Toronto. 
Toronto is the largest municipal jurisdiction in Canada 
and the fourth most populated city in North America. It 
is renowned for being one of the most multicultural cities 
in North America, with almost half of its residents being 
immigrants born outside of the country, contributing to a 
diverse food environment.

The data were collected from March 2019 to March 
2020 for all food outlets listed on Yelp in the City of 
Toronto. We identified a total of 5,855 of the most 
reviewed food outlets from Yelp, excluding grocery 
stores, to investigate the city’s food environment. We 
analyzed the six districts of the city: East York, Etobicoke, 
North York, Old Toronto, Scarborough, and York. We 
compared differences in the quantity of identified words 
and further performed Pearson’s t-tests to evaluate if the 
differences in words identified with the expanded dic-
tionary showed a significant improvement over the origi-
nal dictionary.

The results from Table  7 and Fig.  3 demonstrate that 
the expanded food word dictionary was able to identify 
more food words in the Yelp reviews for all districts in 
Toronto. Specifically, the expanded dictionary yielded an 
increase of more than 7% in the number of food words 

identified. Pearson’s t-tests were then conducted to assess 
the significance of the difference in the number of words 
identified with the expanded dictionary compared to the 
original dictionary, as shown in Table 8. The results indi-
cate that the difference is significant for the North York 
and Old Toronto districts, which have the highest num-
ber of food outlets. However, the significance of the dif-
ference may vary due to the variation in the number of 
food outlets and reviews across districts.

Since Yelp reviews reflect consumers’ experiences 
with food outlets, the abore descriptive food words 

Table 7 Total number of food words identified in Yelp reviews of food outlets in the districts of Toronto

Districts East York Etobicoke North York Old Toronto Scarborough York

Number of Food Outlets 487 746 1,194 2219 797 412

Number of Words Identified with the Original Dictionary 11,838 23,667 50,057 111,668 40,179 18,379

Number of Words Identified with the Expanded Dictionary 13,969 27,715 58,452 130,185 46,991 21,763

Percentage of Increase in Words Identified 8.26% 7.88% 7.74% 7.66% 7.81% 8.43%

Fig. 3 Number of food words identified in Yelp reviews with the original and expanded dictionaries in the six districts of Toronto

Table 8 T‑test comparing the analysis results of Yelp reviews 
based on the expanded and original food word dictionary

* p < 0.05, ** p < 0.01

Districts df t-value p-value

East York 946.15 − 1.578 0.115

Etobicoke 1452.1 − 1.697 0.090

North York 2327.7 − 2.126 0.034*

Old Toronto 4329.1 3.276 0.001**

Scarborough 1554.1 − 1.839 0.066

York 796.62 1.364 0.173
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associated with specific cuisines and different types of 
meals is essential for analyzing the culturally diverse 
urban food environment in Toronto. As presented in 

Table  9, the expanded dictionary was able to detect 
more multi-word food words, with 2-word food words 
showing an increase of 34.69% and 3-word and 4-word 
food words showing increases of over 50%.

Further analysis was conducted using Pearson’s 
t-tests to identify significant differences in the number 
of words discovered between the original and expanded 
food word dictionaries for two-word and three-word 
food words. The results in Table  10 show that the 
expanded dictionary captured significantly more food 
words than the original for both two-word and three-
word combinations.

Figure  4 displays the mean percentage of change in 
the number of 2-word food words identified before 
and after the expanded dictionary implementation. The 
map illustrates a significant change, with most neigh-
bourhoods exhibiting a more than 50% increase. How-
ever, some residential-only neighbourhoods, such as 
Princess-Rosethorn, Maple Leaf, and Lambton-Baby 
Point, have few food outlets and thus no food words 
were identified in these areas during the study.

In terms of density, although the number of 3-word 
food words identified per food outlet was much lower 
than that of 2-word food words, Fig.  5 shows that the 
expanded dictionary still yielded a higher number of 

Table 9 Number of food words identified in the Yelp reviews 
with the original and expanded dictionary

1-word 
food 
words

2-word 
food 
words

3-word 
food 
words

4-word 
food 
words

Original Words 87,669 10,733 432 5

Expanded Words 91,383 22,137 1411 16

Percentage increase 
in words identified

2.07% 34.69% 53.12% 52.38%

Table 10 T‑test comparing the analysis results of Yelp reviews 
based on the expanded and original food word dictionary

* p < 0.05, ** p < 0.01

df t-value p-value

1‑word Food Words 67.887 0.140 0.889

2‑word Food Words 48.681 2.294 0.026*

3‑word Food Words 41.114 3.247 0.002**

4‑word Food Words 49.175 1.888 0.065

Fig. 4 The difference in densities of food words identified per food outlet with the original and expanded dictionary by the mean percentage 
of change in the number of 2‑word food words discovered by neighbourhood in Toronto
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food words per food outlet. Most neighbourhoods can 
be seen to have an 11% to 50% increase in the num-
ber of 3-word food words identified, and some neigh-
bourhoods showed a significant increase between 51 
to 100%. Despite the lower density, the expanded dic-
tionary significantly improved the detection of more 
3-word food words in the reviews compared to the 
original dictionary.

Finally, Fig.  6 displays the differences in the density 
of food words identified by neighbourhood between 
the original and expanded dictionaries. The majority of 
neighbourhoods showed an increase of between 5 to 15% 
in the number of food words detected, with some neigh-
bourhoods recording an increase of over 15%.

The mean percentage change depicted in Figs.  4, 5, 6 
highlights the disparity in the densities of identified food 
words per food outlet between the original and expanded 
food word databases. This comparative analysis exposes 
the potential inaccuracies that may arise when relying 
solely on the unexpanded food words database, as a sig-
nificant number of food words could be overlooked. By 
examining the spatial distribution of food words with dif-
ferent energy density, we could gain valuable insights into 
the prevalence and prominence of various food catego-
ries within a specific area or time period. Any observed 

shifts over time may indicate changes in food consump-
tion patterns, the impact of environment or policy factors 
on food choices, and potential disparities in food access. 
Such analyses can contribute to a better understanding of 
evolving dietary patterns, enabling informed decisions to 
enhance public health.

Discussion
In this study, we collected initial seed words from both 
an official list of food items extracted from USDA and a 
crowdsourced database containing multicultural food 
products extracted from OFF. This allowed us to expand 
the food word dictionary, which had previously been lim-
ited to stereotypical food words representing the healthi-
ness of foods (e.g., fruits and vegetables, fast food items). 
Building the initial food word dictionary based on these 
sources was beneficial because it included multicultural 
food items not commonly included in North American 
food environment studies.

The compilation of food words from the OFF database 
brought an assorted of food words not typically found in 
official reports. Because the information on food items is 
crowdsourced, we can assume that the users contributed 
food items are what they typically consume. Further-
more, using Google’s Word2Vec model, which is trained 

Fig. 5 The difference in densities of food words identified per food outlet with the original and expanded dictionary by the mean percentage 
of change in the number of 3‑word food words discovered by neighbourhood in Toronto
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on Google’s News platform, we were able to include 
more descriptive variations of food items, resulting in 
an expansive and descriptive range of food words in the 
expanded food word dictionary.

Expanding the food word dictionary is a balance of 
accuracy and quantity. The Gaussian mixture model 
allowed us to find clusters of food-related words in the 
hyper-dimension word embedding space. We discovered 
new words from those clusters using two parameter set-
tings: similarity and probability. The higher the similarity 
and probability settings, the fewer words were discov-
ered, but with a relatively higher chance of the words 
being food words (higher accuracy). Conversely, the 
lower the similarity and probability levels, the higher the 
number of words discovered, but the chance that these 
words were food words was relatively lower. In this pre-
liminary study, we chose the settings of a 0.65 similarity 
level and a 0.75 probability level, resulting in the discov-
ery of 11,957 new words while still maintaining an accu-
racy of 94%. However, the minimum accuracy levels or 
the target number of words to be discovered may differ 
in specific applications, which must be flexibly adjusted 
accordingly.

Machine learning models were established to pre-
dict the food energy density of newly discovered food 

words. The prediction models were trained by the ini-
tial seed words dictionary associated with ED values. 
Seed words were classified by the food energy den-
sity according to the ED of the food, considering that 
food environment studies are mainly focused on health 
issues related to the prevalence of obesity. Based on the 
British Nutrition Foundation’s categorization, four lev-
els of classification (very low, low, medium, and high) 
were categorized into two categories by grouping very 
low and low into one classification (L-ED), and medium 
and high into another (H-ED). This division followed 
dietary recommendations that encouraged the con-
sumption of relatively low ED foods while consuming 
relatively high ED foods in moderation. In our model, 
the 300 feature vectors (in the word embedding space) 
of the seed words were set as the prediction variables, 
while the food energy density classification (L-ED or 
H-ED) acted as the target variable to train the machine 
learning models. Among the different models being 
tested, the SVM model yielded the highest accuracy 
in predicting the classification. This model was able to 
predict the classifications of the new words with a rela-
tively high accuracy of 91.62%.

We tested the newly compiled food dictionary, which 
contains a total of 14,152 food words and their predicted 

Fig. 6 The difference in densities of food words identified per food outlet with the original and expanded dictionary by the mean percentage 
of change in the total number of food words discovered by neighbourhood
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food energy density categories, on Yelp reviews of food 
outlets in the City of Toronto to compare the number of 
food words identified. Results showed that the expanded 
food dictionary identified many more food words com-
pared to the original dictionary. Further analyses showed 
that the expanded dictionary was especially effective in 
identifying 2-word food words and 3-word food words. 
This finding is particularly valuable in understanding the 
food environment, as the expanded food word dictionary 
can capture a variety of descriptive dishes found on res-
taurant menus and different types of cuisines that would 
otherwise not be identifiable with simple food words.

The positive results of these preliminary analyses on 
food outlets within the city’s districts and neighbour-
hoods suggest that this food word expansion could fur-
ther assist spatial analyses in food environment studies. 
Further studies utilizing social media data to investi-
gate the spatial component of food environments could 
benefit from the addition of this food word expansion. 
Additionally, the expanded dictionary can be used for 
sentiment analysis on Yelp reviews to evaluate the emo-
tional tone of the reviews towards different food outlets. 
This can provide insights into how the food environment 
and its related words affect people’s emotions towards 
the food outlets in different districts of Toronto. This 
can be useful for understanding the food environment’s 
impact on people’s overall well-being and the poten-
tial for improving it through promoting healthier food 
choices. Overall, the expanded food word dictionary can 
provide valuable information for food environment stud-
ies and interventions.

The proposed method for food word expansion and 
food energy density prediction can be used to analyze 
the urban food environment using LBSM data, provid-
ing insights into the urban environment and the interac-
tions between citizens and urban spaces. This technique 
could also be used in other studies using LBSM to under-
stand the urban environment, such as the friendliness of 
physical activity and the utility of urban green space. The 
results of the urban environment analysis based on the 
proposed word expansion method can help urban plan-
ners and city managers better understand the city and 
serve their citizens.

Beyond analyzing the food and urban environment, 
our modeling approach has significant implications for 
public health policy. By identifying the prevalence of 
low and high energy density foods, we can gain insights 
into the overall food environment and its evolving over 
time. The findings can inform public health strategies, 
such as targeted interventions to promote the avail-
ability and accessibility of low energy density foods or 
initiatives to educate and empower individuals to make 
healthier food choices. Additionally, by comparing the 

food environment before and after an implementation of 
a health policy, the model can help policymakers in eval-
uating the effectiveness of the policy to create support-
ive environments that foster healthier eating habits and 
combat diet-related diseases.

Although the expanded food word dictionary dem-
onstrated promising results in identifying food words, 
there are several limitations to consider. First, the initial 
seed words used may be limited to the context of North 
America, and food words from other cultures or lan-
guages that are not popular in North America may not be 
included in the expansion. Thus, applying the expanded 
food words dictionary may require further validation if 
used in regions other than North America. Second, the 
Word2Vec model used in this study is trained based on 
Google News, which may not capture informal expres-
sions of foods used in daily life. Finally, although the 
expanded food words dictionary was tested on the Yelp 
reviews analysis with good results, further validation is 
still needed with other social media data for food envi-
ronment analysis.

Conclusion
This study proposes a novel method to expand food-
related vocabulary and predict the food energy den-
sity based on machine learning and word embedding. 
This method makes a valuable contribution to building 
a more comprehensive list of food words that can be 
used in geography and public health studies by mining 
geotagged social media data. Previous studies catego-
rized food items based on the common understanding of 
their healthiness, but this study used the ED to categorize 
foods, which allowed for a wider variety of food items 
to be included. The final food word dictionary included 
an array of descriptive dishes, specific ingredients, and 
cooking methods, including international food products 
and brands. This advancement is significant because it 
enables the portrayal of a diverse and multicultural food 
environment that is not limited to stereotypical healthy 
and unhealthy foods, thereby providing a better under-
standing of the spatial disparity of food environment and 
its evolving over time.

The results of this study provide a foundation for future 
urban food environment studies using widely available 
social media data. By employing the proposed modeling 
approach, we can expand our understanding of the food 
environment, identify emerging trends, and pinpoint 
areas where interventions can have the most impact. 
Ultimately, the aim is to improve population health out-
comes by promoting healthier diets and reducing the 
burden of diet-related diseases.
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