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Abstract 

Background Childrens’ outdoor active play is an important part of their development. Play behaviour can be 
predicted by a variety of physical and social environmental features. Some of these features are difficult to measure 
with traditional data sources.

Methods This study investigated the viability of a machine learning method using Google Street View images 
for measurement of these environmental features. Models to measure natural features, pedestrian traffic, vehicle traf-
fic, bicycle traffic, traffic signals, and sidewalks were developed in one city and tested in another.

Results The models performed well for features that are time invariant, but poorly for features that change over time, 
especially when tested outside of the context where they were initially trained.

Conclusion This method provides a potential automated data source for the development of prediction models 
for a variety of physical and social environment features using publicly accessible street view images.

Highlights 

– This study describes an  automated method for  selecting StreetView images in  a  given area and  extracting 
from them measures of the built and social environment.

– Measures obtained in this way are benchmarked against publicly available ground truth measures.
– The effectiveness of this method varies depending on the nature of the variable being measured.
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Background
Children’s outdoor active play is an important part of 
their healthy development, though not all children have 
equal access to it [1]. Outdoor active play provides chil-
dren with an opportunity to be physically active and a 
chance to develop important social and emotional skills 
by interacting with their peers [2]. Children can only 
engage in outdoor play when they have a social and 
physical environment which is suitable for it. Key social 
factors include the availability of other children to play 
with, the trust of their parents to venture outside unsu-
pervised, and their own feeling of safety with regards to 
the other people in the neighbourhood [3]. Furthermore, 
the physical environment needs to contain affordances, 
which are objects and spaces that can be used for play [1], 
and it needs to be safe from physical danger such as traf-
fic and environmental hazards [4–6].

Measures of salient features used to describe outdoor 
play environments are typically only available in data 
sources held by local municipalities or not available at all. 
Traffic safety can be approximated using nationally avail-
able features such as road speed limit or easily calculated 
metrics such as street connectivity, but these features by 
themselves do not provide a full picture of street safety 
from the perspective of children and parents [7]. Pedes-
trian features such as sidewalks, bicycle paths, and cross-
walks, traffic calming features such as speed humps and 
low speed zones, and traffic density all need to be con-
sidered. Children also play with and amidst other people, 
both adults and children, in urban street environments 
[8].

While the aforementioned environment features are 
difficult to measure across multiple jurisdictions with 
traditional data sources, there exists a large, easily acces-
sible database of images from the perspective of the 
street for almost every location in most middle- and 
high-income countries: Google’s StreetView database 
[9]. Recent advances in deep learning architecture have 
made automated processing of these StreetView images 
possible [10]. This type of processing has already been 
used to identify “playability” directly from StreetView 
images, although interpretation such a model’s under-
standing of the concept of playability can be difficult 
[11]. This paper describes a method for extracting and 
processing active outdoor play environment features 
from large number of images for any area where Street-
View data are available. While our current application for 
this process was to develop models for the measuring of 
environment features that predict of children’s outdoor 
active play behaviour, once the data are extracted and 
processed, they can be used to assist in the development 
of prediction models for any health outcome—such as 
asthma, obesity, mental health, or high blood pressure 

[12–14]—that is potentially influenced by the physical 
or social environment. Building an understanding of the 
relationship between our physical and social environ-
ment and these health outcomes can inform planning 
decisions to improve health outcomes across cities and 
neighbourhoods.

Materials and methods
Overview
This study is part of a larger project which aims to 
develop a national index of playability which can be used 
to predict the outdoor active play behaviour of children 
in neighbourhoods across Canada. The output of this 
process will be used across Canada as part of the calcula-
tion of playability. As this project’s outcome was meas-
ured at the level of the 6-digit postal code, all metrics 
from the models developed in this paper are also calcu-
lated at the level of the postal code and are made avail-
able at https:// www. github. com/ rdboy es/ stree tview. The 
method could be easily adapted to calculate metrics at 
different levels if required.

The process described below can be broken up into dis-
tinct stages. First, a set of points are chosen which cover 
the geographic area in question (i.e., the area covered 
by the postal code). Second, the available images from 
these points are queried from the Google StreetView 
image API. Third, a convolutional neural network is used 
to label the objects in the images. Fourth, the presence 
or absence of objects in the image is decided based on 
these labels using statistical models. Finally, data from all 
images obtained in the postal code area are aggregated to 
the level of the postal code for use as input in future pre-
diction models.

Populations and data sources
This study uses training data from Kingston, a small 
city of 150,000 people in Ontario, Canada and tests the 
resulting models using data from Vancouver a large 
city in British Colombia, Canada with a metropolitan 
area population of approximately 2.5 million. These cit-
ies were chosen due to proximity to study authors, their 
heterogeneous nature to ensure a fair out of sample test, 
and their availability of municipal data for use as ground 
truth when assessing the accuracy of the models. This 
ground truth data was obtained from open data portals 
and through direct requests to the cities.

The image data for comparison comes from Google’s 
StreetView image database via the static StreetView API 
using the R package googleway [15]. The static streetview 
API allows requests that include a latitude, longitude, 
and orientation (i.e. the direction the image is facing) and 
returns an image at the street level for the closest point 
available. Google StreetView images are not captured at 

https://github.com/rdboyes/streetview
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a specific consistent distance apart; the distance between 
images depends on a few factors, including the equip-
ment used, traffic at the time, and the location of the 
street. A typical pair of image capture locations would 
be approximately 25  m apart on a city street. Attempt-
ing to use all available images would not be feasible, both 
because of the extremely high number of images that 
would be required and because such a sampling strat-
egy would result in many objects appearing in multiple 
images. Examination of a sampling of StreetView images 
suggested that the typical distance at which objects 
were still large enough to detect was approximately 75 
to 100 m. Based on this, images were obtained at points 
every 150  m along every street in the study areas to 
obtain unique visual information on as many points as 
possible in each of the targeted postal code areas. For 
streets shorter than 150 m in length, a single point was 
queried at the midpoint of the street. At each point cho-
sen by the sampling strategy, 4 images were obtained 
from the StreetView API corresponding to the cardinal 
directions. In cities, streets which do not have images 
are very uncommon, but if images were not available, the 
points were excluded from the analysis.

Image processing
Our image processing strategy was designed to be able 
to classify each pixel in a StreetView image using cat-
egories which would be commonly seen in street-level 
images. These categories were taken from the labelling 
of the cityscapes dataset and include person, rider, side-
walk, road, vegetation, terrain, sky, pole, traffic light, traf-
fic sign, car, truck, bus, motorcycle, and bicycle [16]. This 
gives information on the amount and location of each of 
these features visible in each of the images obtained from 
StreetView. Some of these categories were compared 
directly with available data, including traffic lights, traffic 
signs, trees, sidewalks, and people; others were collapsed, 
with bicycle and rider becoming “cyclists” and road, cars, 
trucks, and motorcycles being combined into “vehicles”; 
one was excluded because of its rarity in the data and lack 
of available comparison data (“bus”); and, finally, some 
were not examined as they had no direct comparison or 
were deemed unimportant for measurement of the play-
ability environment (“terrain”, “sky”, and “pole”).

To accomplish pixel-level segmentation, we used a 
deep neural network architecture originally proposed 
by DeepLab and implemented in tensorflow to analyze 
neighbourhood images [16]. The network consists of an 
encoder based on Xception [17] and a decoder which 
translates the features extracted by the encoder into 
pixel-level class predictions. The cityscapes datasets 
provide a small, finely annotated set consisting of 5,000 
street-level images and a larger, coarsely annotated set 

consisting of 20,000 street-level images. Each of these 
datasets has pixel-level annotations for 19 classes of 
objects, including vegetation, vehicles, road, sidewalk, 
people, traffic signs, and traffic lights, anad others [18]. 
Using these datasets, neural networks previously opti-
mized for detection of generic objects in the imagenet or 
other large datasets can be retrained to categorize com-
mon objects found on the street. The resulting model 
retains the lower-level layers which allow the recognition 
of features such as edges, colours, and textures, but inter-
pret these features differently due to retraining of the 
later layers and the decoder. Our analysis uses a model 
checkpoint set by DeepLab. For the complete code used 
to implement all models and algorithms described in 
this paper, please refer to the github repository, found at 
github.com/rdboyes/streetview/. An example StreetView 
image segmentation is shown in Fig. 1.

Units of analysis
For each feature we measured, we attempted to quantify 
the accuracy of the method as it would be used in the 
assessment of a neighbourhood. Where data were avail-
able and appropriate, we calculated a 500-m Manhattan-
style buffer around each postal code centroid in the study 
area, and compared the assessment of each neighbour-
hood feature from image and from the standard data 
source. For measures of traffic density that were meas-
ured through a single point, buffers were sized in the 
training data based on the highest correlation with the 
ground truth data and tested in the test data for accuracy. 
In urban areas in Canada, six-digit postal code regions 
can be very small. The use of these buffers standardizes 
the amount of space covered to more accurately rep-
resent the walkable area in the immediate vicinity of a 
home in those postal codes.

Geographic measurement
Trees
Vancouver and Kingston open data [19, 20] both provide 
the location of every tree visible from the street in the 
study area. The target measure for both cities was defined 
as the number of trees inside of each postal code man-
hattan buffer, which was predicted using the “vegetation” 
measure from the StreetView images in the same area.

Sidewalks
Kingston’s open data provides the locations of all town-
maintained sidewalks maintained by the city. Each road 
segment in Kingston was classified using these data 
as either having a sidewalk or not. If sidewalks were 
detected in images on a road segment, then the road 
segment was considered to have a sidewalk according 
to the StreetView measure. Classification sensitivity and 
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specificity were calculated for the StreetView measure 
using the municipal data as ground truth. For each postal 
code area, the target metric was the meters of road length 
with sidewalks, which was predicted based on aggre-
gating the predictions at the segment level. Equivalent 
ground truth data were not available in Vancouver. This 
outcome was predicted using the “sidewalks” measure 
from the StreetView images.

Density of pedestrians, cyclists, and vehicles
Data for traffic counts through intersections were 
obtained via direct request from the city of Kingston and 

from the Vancouver Open Data portal. Traffic counts 
for Vancouver were available in some cases for multiple 
years, and in these cases, the most recent year’s data was 
used. Kingston’s measures were an annualized expected 
traffic count for pedestrians, cyclists, and vehicle traf-
fic. Vancouver’s reported numbers were the total count 
of traffic first and last 2-h block of the day, representing 
rush-hour traffic. While these counts of traffic are meas-
ured at the level of an intersection, they require Street-
View data from a larger area to measure correctly. Forty 
different buffer sizes were tested in Kingston, ranging 
from 50 to 2000 m around each of the 576 intersections 

Fig. 1 Example of pixel-level image segmentation of a representative Google StreetView image
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for which data was available, were tested to determine 
the range required to obtain the best measure of traffic 
through intersections available from StreetView data; 
optimal buffer sizes were selected considering the trade-
off between size and model accuracy, and these same 
buffer sizes and models were tested in Vancouver. These 
outcomes were predicted using the “road”, “car”, “truck”, 
and “person” measures from the StreetView images.

Traffic lights and traffic signs
Ground truth traffic light and traffic sign data were 
obtained from the city of Kingston directly and from the 
Vancouver Open Data portal. The models developed with 
the Kingston data using the “pole”, “traffic sign”, and “traf-
fic light” pixels in the StreetView images, and were then 
tested in the Vancouver data. The model in both King-
ston and Vancouver targeted the number of traffic signs 
and traffic lights per postal code area.

Statistical analysis
This study uses three different model architectures—a 
support vector machine, an XGBoost model, and a lin-
ear model—to test the viability of the StreetView point 
measure in assessing measures of the built environment 
for use in prediction models. The models use standard-
ized inputs and outputs to increase the likelihood that 
the models will be transferable to different cities and con-
texts. Each model is evaluated using three metrics: root 
mean squared error (RMSE),  R2, and mean absolute error 
(MAE).

Error statistics in both the training and test sets are 
provided. In the training set, error statistics are calcu-
lated using fivefold cross validation, while test set error 
statistics are simply calculated using the full test set. 
Data analysis was conducted in R version 4.2.1 using 
the tidyverse suite of packages for data processing and 
cleaning and the simple features package for handling 
geographic data [21–23]. The caret package was used for 

model fitting and evaluation [24]. Python was used for 
the neural network implementation, with the reticulate 
R package being used to communicate between the two 
languages when required [25].

Results
The overall accuracy of the method using the best of the 
three models is summarized in Table  1. Model perfor-
mance was highest in prediction of vegetation and side-
walks, moderate in traffic signs and lights, and lowest 
(especially out of sample) for pedestrians, bicycles, and 
vehicle traffic.

Training data (Kingston, ON)
Kingston’s sample consisted of 4,270 points. The section 
of Kingston from which points were obtained ranged 
from longitude 76.625W to 76.478W and from latitude 
44.21N to 44.265N, which was chosen to capture the sec-
tion of the city with high population density and a high 
concentration of residential streets (Fig. 2).

Vegetation, sidewalks, and traffic lights and signs
The vegetation measure corresponds well to the number 
of trees present in each postal code zone in Kingston, 
with a RMSE of 0.63, an  R2 of 0.60, and a MAE of 0.38. 
There is little geographic variation in the accuracy of the 
prediction. Linear and XGBoost-based models show sim-
ilar performance. A comparison between the StreetView 
measure and the ground truth data is displayed in Fig. 3.

Per metre of road, sidewalks were measured with sen-
sitivity of 0.90 and specificity of 0.65. Further accuracy 
metrics and a confusion matrix are presented in Table 2. 
Graphical examination of the sidewalk’s classification 
accuracy shows marked differences in accuracy across 
geographical areas (Fig. 4). On residential roads, overall 
accuracy is good, with many segments being correctly 
classified as true positives. Within, some segments are 
missed, as the sidewalk is obscured from view, most 

Table 1 Error statistics for the seven outcomes in each of the two cities (best model)

Outcome Target Train (Kingston) Test (Vancouver)

RMSE R2 MAE RMSE R2 MAE

Vegetation Standardized Number of Trees (Postal 
Code (PC))

0.63 0.60 0.38 0.53 0.74 0.40

Sidewalks Sidewalk Length (PC) 824 0.96 473 – – –

Pedestrians Standardized Count (Intersection) 0.81 0.28 0.29 1.08 0.03 0.67

Bicycles Standardized Count (Intersection) 0.83 0.27 0.44 1.77 0.00 1.08

Vehicles Standardized Count (Intersection) 0.91 0.21 0.28 2.02 0.16 1.48

Traffic Lights Standardized Count (PC) 0.51 0.74 0.29 1.29 0.27 0.97

Traffic Signs Standardized Count (PC) 0.50 0.75 0.33 – – –
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commonly by parked vehicles. Most false positives are on 
rural roads with high speed limits or highways, where the 
paved shoulder is mistaken for sidewalk.

The standardized number of intersections with traffic 
signs and traffic lights correlated well with the model’s 
predictions in the training data (Table 2). Error rates were 
comparable across model types, with XGBoost mod-
els performing best for prediction for both types. Visual 
comparisons of the locations of highest pixel counts 
of traffic lights and signs compared to the locations of 

intersections with traffic lights and traffic signs are pre-
sented in Figs. 5 and 6.

Vehicles, bicycles, and pedestrians
Training data from Kingston were annualized rates of 
traffic through any given intersection for 502 intersec-
tions within the study area of interest. The size of buffer 
used to capture image data for vehicles, bicycles, and 
pedestrians was allowed to vary. The vehicle measure 
is most highly correlated with true traffic counts when 

Fig. 2 Points in Kingston, ON which were measured using Google’s StreetView API

Fig. 3 Comparison between vegetation pixel counts and true count of trees in the study area



Page 7 of 12Boyes et al. International Journal of Health Geographics           (2023) 22:26  

measured in a small area around the intersection in ques-
tion; a 500-m buffer with an XGBoost model was found 
to be optimal in our sample. Contrary to expectations, 
when examining the variable importance in the model 
and the raw correlations, the observed number of vehi-
cles in images is surprisingly inversely related to the traf-
fic in an area (Fig. 7). We expect that this relationship is 
observed due to the high prevalence of vehicles parked 
on the side of the road in images, and lower traffic in 
areas where this is the case. However, traffic can still be 
measured using the inverse of the amount of visible road 
present in images rather than vehicles, as more visible 
road necessarily means fewer driving vehicles.

Bicycles and pedestrians are less common in images 
than vehicles, and as such, increased buffer sizes resulted 
in better measurements of pedestrian and cyclist traffic. 
Buffer sizes of 1000 m were found to be ideal in the train-
ing data for both pedestrians and cyclists, with XGBoost 
performing better for bicycles and SVM performing bet-
ter for pedestrians. The accuracy metrics for each of these 
variables are presented in Table  3. Pixel count data are 
compared with intersection traffic data in Figs. 8 and 9.

Test data (Vancouver, BC)
The testing data for the models trained in the Kingston 
data come from a section of Vancouver between 123.15W 
and 123.02W, and 49.23N and 49.30N. A total of 14,858 
points were queried in this area (Fig. 10). Ground truth 
data for the presence or absence of sidewalks and signed 
intersections was not available for Vancouver, but the 
remaining outcomes were available.

Predictions of the standardized number of trees 
inside Vancouver postal code areas were made using 
the StreetView points queried in Vancouver and the 
predictions model trained on Kingston data. The best 
performer on the training set, which was the SVM 
model, performed well on the new data, with a RMSE 
on the standardized scale of 0.48, an  R2 value of 0.78, 
and a MAE of 0.37. The model was well calibrated, with 
the difference between the average predicted score and 
average observed score equal to 0.026. Model accu-
racy for traffic lights was lower in Vancouver than in 
the training set, with RMSE increasing to 1.57, MAE 
increasing to 1.05, and  R2 decreasing to 0.23. Model 

Table 2 Error statistics for each model type for outcomes with 
constant buffer sizes

Target Method RMSE R2 MAE

Vegetation Linear model 0.65 0.58 0.39

XGBoost 0.65 0.58 0.39

SVM 0.63 0.60 0.38

Sidewalks Linear model 814 0.95 474

XGBoost 1863 0.80 529

SVM 824 0.96 473

Traffic lights Linear model 0.61 0.63 0.38

XGBoost 0.51 0.74 0.29

SVM 0.66 0.62 0.37

Signed intersections Linear model 0.56 0.68 0.40

XGBoost 0.50 0.75 0.33

SVM 0.57 0.68 0.40

Fig. 4 Classification accuracy for sidewalks in the study area
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accuracy decreased significantly for the measures of 
bicycle, car, and pedestrian traffic between the King-
ston data and the Vancouver data, with nearly all pre-
dictive utility being lost in the test set. Full accuracy 
metrics are presented in Table 4.

Discussion
This study demonstrates the potential for the augmen-
tation of existing methods for measurement of features 
of the physical environment that predict outdoor play 
using Street View image data. This method could be 
particularly useful when other sources of data are not 

Fig. 5 Top decile of pixel count for traffic lights compared with true locations of traffic lights in the study area

Fig. 6 Top decile of pixel counts for traffic signs compared to locations of traffic signs at intersections in the study area

Fig. 7 Pixel counts of car and road compared to vehicle traffic count in the study area



Page 9 of 12Boyes et al. International Journal of Health Geographics           (2023) 22:26  

available for the desired environmental measure. These 
methods are particularly helpful for features with less 
variability over time, such as the presence or absence of 
sidewalks, the amount of trees near the road, and traffic 
lights or signs. Images can still provide measures of time 
varying features, but they should be used with caution as 
they may be less representative of the true values for a 
neighbourhood.

The methods and data used in this study have poten-
tial for use in prediction models and indices of any health 
outcome that is influenced by the physical environment, 
which could allow these indices to expand their geo-
graphic areas more easily or have access to predictor 
variables that they would otherwise not have available. 
Indices for measuring the appropriateness of space for 
running such as the runnability index [26] could incor-
porate information on the presence or absence of side-
walks. A measure of the presence of trees could inform 
a predictive model for mental health outcomes [27]. Air 
quality measures, which have numerous health impacts, 
could incorporate traffic data from images [28]. This 
data source also provides the ability to test, supplement, 
and/or automate data collection for established indices 
of walkability or cyclability to determine the degree to 
which people are the degree to which people are actu-
alizing the affordances in the environment for physical 

Table 3 Error statistics for each model type for outcomes with 
varying buffer sizes

Target Best method Best buffer RMSE R2 MAE

Bicycles XGBoost 1000 m 0.83 0.27 0.44

Vehicles XGBoost 500 m 0.91 0.21 0.69

Pedestrians SVM 1000 m 0.81 0.28 0.29

Fig. 8 Quartile of person pixel count compared to quartile of pedestrian traffic in the study area

Fig. 9 Quartile of bicycle pixel count compared to quartile of bicycle intersection traffic in the study area
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activity [29–31]. These measures are imperfect but pro-
vide a meaningful improvement over not having any 
measure at all.

This study provides an alternative measure for some 
important features of children’s physical environment. 
By using Google’s API as the primary data source, 
this method provides relatively current data with cov-
erage of as much as 99% of the world. However, the 
nature of this data means that the measures taken 

of a neighbourhood are taken at a single time point, 
usually on a summer afternoon. These data cannot 
provide information about seasonal variability or vari-
ability throughout the day. The rate at which StreetView 
images are updated is not uniform across countries 
and is slower in rural areas than in urban centres. This 
could create bias if this method was used to compare 
across countries or to compare urban and rural areas, 
as some images would be more out of date than oth-
ers. Getting the most accurate measurements possible 
is computationally expensive. The small sections we 
have examined here took approximately 24 h per 10,000 
points using a Windows PC with a  8th generation intel 
i5 at 2.8  GHz and a NVIDIA 1080 GPU to query the 
StreetView API and run the neural networks for seg-
mentation. With a small city such as Kingston, this may 
not be an issue, as only 5,000 points were needed, but 
the part of Vancouver which was examined consisted 
of 15,000 points; far more would be needed for the 
whole city or if one wished to compare multiple cit-
ies. In addition, API queries at this scale can become 

Fig. 10 Points in Vancouver where StreetView image data were obtained from the StreetView API

Table 4 Test error statistics for the best performing model in the 
training data

Target Best method Best buffer RMSE R2 MAE

Vegetation SVM - 0.48 0.78 0.37

Traffic lights XGBoost - 1.57 0.23 1.05

Bicycles XGBoost 1000 m 1.77 0.00 1.08

Vehicles XGBoost 500 m 2.02 0.16 1.48

Pedestrians SVM 1000 m 1.08 0.03 0.67
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expensive. Google’s StreetView API currently charges 7 
USD per 1,000 queries.

Reductions in point density using grid-based approaches 
were attempted and the effect on accuracy was observed. 
These tests restricted the number of points sampled by 
covering the bounding box of the area in question with 
a hexagonal grid of varying cell size from 50 m across to 
500 m across, then taking at most one point from each cell 
in the grid. This method allowed reductions in sampled 
points ranging from minor (~ 10%) to significant (~ 75%). 
Even at the lowest levels of point reduction, this method 
resulted in large decreases in accuracy of measurement 
which far outweighed the computational savings. We 
therefore recommend that for this method to be used, a 
density of images at least as high as the density used in the 
baseline case is likely necessary.

While this study demonstrates the correlation between 
measures derived from StreetView images and more tra-
ditional measures, it remains to be demonstrated if these 
features are useful for the prediction of children’s out-
door active play. Ideally, these features capture a differ-
ent aspect of the neighbourhood features in question and 
improve the accuracy of prediction models built using 
both the traditional data sources and these image-derived 
data. Future work can implement prediction models for 
additional outcomes based on these techniques and eval-
uate their usefulness for prediction of diverse questions.

Conclusions
The use of machine learning methods to make non-tradi-
tional data sources available for epidemiological research 
remains relatively unexplored. This study demonstrates 
the potential usefulness of automatically processed 
images as supplemental data for geographic prediction 
models for public health outcomes.
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