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Abstract 

Background Short-term environmental exposures, including green space, air pollution, and noise, have been 
suggested to affect health. However, the evidence is limited to aggregated exposure estimates which do not allow 
the capture of daily spatiotemporal exposure sequences. We aimed to (1) determine individuals’ sequential exposure 
patterns along their daily mobility paths and (2) examine whether and to what extent these exposure patterns were 
associated with anxiety symptoms.

Methods We cross-sectionally tracked 141 participants aged 18–65 using their global positioning system (GPS) 
enabled smartphones for up to 7 days in the Netherlands. We estimated their location-dependent exposures 
for green space, fine particulate matter, and noise along their moving trajectories at 10-min intervals. The resulting 
time-resolved exposure sequences were then partitioned using multivariate time series clustering with dynamic time 
warping as the similarity measure. Respondents’ anxiety symptoms were assessed with the Generalized Anxiety Dis-
orders-7 questionnaire. We fitted linear regressions to assess the associations between sequential exposure patterns 
and anxiety symptoms.

Results We found four distinctive daily sequential exposure patterns across the participants. Exposure patterns dif-
fered in terms of exposure levels and daily variations. Regression results revealed that participants with a “moderately 
health-threatening” exposure pattern were significantly associated with fewer anxiety symptoms than participants 
with a “strongly health-threatening” exposure pattern.

Conclusions Our findings support that environmental exposures’ daily sequence and short-term magnitudes may be 
associated with mental health. We urge more time-resolved mobility-based assessments in future analyses of environ-
mental health effects in daily life.

Keywords Exposure sequences, Green space, Air pollution, Noise, Daily mobility, Global positioning system, Time 
series

Background
Evidence steadily consolidates that accounting for 
dynamic environmental exposures is likely more accu-
rate than residence-based approaches, not factoring in 
exposures incurred during people’s day-to-day mobility 
[1, 2]. Only a few studies have relied on global position-
ing system (GPS)-enabled sensing technologies to meas-
ure people’s exposures at out-of-home activity locations 
and along their mobility paths [3–6]. Given the high 
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spatiotemporal granularity of tracking data, location-
dependent exposure sequences can be derived [7]. How-
ever, to date, no studies have appeared to have done so.

State-of-the-art mobility-based exposure assessments 
focus primarily on the health effects of aggregated expo-
sures (e.g., daily or weekly exposure averages per per-
son) [8–12]. However, such aggregation might average 
out short-term spatiotemporal variabilities in exposures, 
which likely have different health effects than expo-
sure averages [13]. A US study supports this speculation 
showing that asthma symptoms could be associated with 
1-h maximum exposure to ambient particulate mat-
ter  (PM10); however, null associations were found using 
24-h average  PM10 exposures [14]. Another study also 
observed a similar phenomenon in which the daily mean 
 PM2.5 concentrations were thought to underestimate the 
cardiovascular mortality burden due to hourly  PM2.5 var-
iations being ignored [15]. Therefore, solely using mean 
values of spatiotemporal exposures along individuals’ 
daily mobility paths to characterize their exposures is 
possibly an oversimplified approach that overlooks tem-
poral variations.

Based on GPS tracking data, the measurement of short-
term daily exposure sequences allows to consider both 
magnitude and temporal fluctuations of exposures [2]. 
Further, exposures captured at different daily time points 
may have differential impacts on health [16–18]. Thus, 
there is a significant need for dynamic exposure concep-
tualizations that incorporate spatiotemporal exposure 
sequences along people’s daily mobility paths [19].

Our exploratory study had two aims for bridging this 
research gap. First, to characterize individuals’ daily 
sequential exposure patterns of green space, noise, and 
 PM2.5 along their mobility paths based on time series 
clustering. Second, using anxiety symptoms as an exam-
ple, we aim to examine how different daily sequential 
exposure patterns were associated mental health.

Methods
Mobile phone‑based GPS data collection
We acquired GPS data from the NEEDS (‘Dynamic 
Urban Environmental Exposures on Depression and Sui-
cide’) study collected between September and November 
2018 in the Netherlands [20]. Survey respondents aged 
18 to 65 (N = 11,505) who agreed to be re-contacted were 
invited via email to download our Android “Your Liv-
ing Environment” mobile phone application to collect 
movement data. We sent 8869 invitation emails within 
2 days of survey completion. To increase participation 
in the mobile phone-based GPS data collection, we raf-
fled off 400 gift vouchers valued at €22 each. In total, 821 
participants downloaded the app (i.e., 7.1% of the survey 
respondents), and 629 permitted tracking and recording.

The locational information was recorded every 
20  s for subjects in motion. The recording frequency 
decreased to 1  min if the mobile phone showed no 
movement (i.e., displacement of the phone < 20 m) after 
30  min. If the mobile phone was stationary for over 1 
h, the location was recorded every 2  min to conserve 
battery power. After a cumulative total of 7 days of data 
collection, the app stopped recording. Data, initially 
stored locally, were then uploaded daily to a secure 
server at Utrecht University.

Preprocessing of the GPS data
The GPS data were cleaned following established prac-
tice [3, 4]. Data cleaning entailed the removal of inac-
curate GPS points and participants whose records 
were not representative of a typical week (e.g., leaving 
the country) (Additional file 1: Table S1). This cleaning 
process preserved 419 participants with 685,971 GPS 
points provided.

Recording a sufficient quantity of GPS locations was 
necessary to derive meaningful tracks capturing peo-
ple’s daily movement and their related spatiotemporal 
environmental exposures. However, locational sam-
pling coverage was likely to be sparse due to technolog-
ical constraints (e.g., signal loss in urban areas), battery 
depletion, or phones temporarily being turned off. To 
evaluate the quality of the daily GPS data, for each 
participant, we enumerated how many daytime hours 
(6:00 am to 10:00 pm, 16  h in total) included at least 
one recorded location (Additional file 1: Table S2). We 
assumed people remained home for 8 nighttime hours, 
from 10:00 pm to 6:00 am. According to Additional 
file  1: Table  S2, only a limited number of participants 
had complete GPS records for all 7 days (i.e., every 
day included GPS-based data points for all 16 daytime 
hours).

Given the limited number of complete GPS records, 
our study defined days with 4 h or less of missing GPS 
data (i.e., a minimum of 12 daytime hours with GPS 
records) as valid days providing sufficient daily loca-
tional data. Those with at least 4 valid days were eli-
gible for inclusion to represent participants’ typical 
weekly mobility. Considering the possibility of different 
travel behaviors on weekends versus weekdays [21], we 
included participants with a minimum of 3 valid week-
days and 1 valid weekend day. In cases in which partici-
pants had more valid weekdays or weekend days than 
the minimum required, we randomly selected 3 week-
days and 1 weekend day to ensure each participant had 
the same number of days of data included. Our final 
sample included 141 participants.
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Environmental exposure data
Green space
We used the Normalized Difference Vegetation Index 
(NDVI) as our green space metric [22]. The NDVI was 
derived from Landsat 8 imagery with a cloud cover of 
< 40% for 2018 obtained through Google Earth Engine 
[23]. Scenes had a resolution of 30  m × 30  m. We only 
included atmospherically corrected images collected 
between May and September, when vegetation is at its 
greenest. We removed pixels with a cloud score of > 25 
before determining the median NDVI per pixel. Nega-
tive NDVI values were masked to avoid distortion. 
Higher positive NDVI values represented higher levels of 
vegetation.

Noise
Average day–night–evening (Lden [dB]) noise levels were 
calculated according to the Standard Model Instrumen-
tation for Noise Assessments (STAMINA). This model 
considered noise sources from roads, rails, air traffic, 
industry, and wind turbines for 2016 [24]. The noise data 
resolution varied depending on the distance between the 
noise source and the observation point, with resolution 
values increasing from 10 to 80  m based on increasing 
distance [25].

Air pollution
We acquired yearly averaged concentrations of fine 
(≤ 2.5 µm) particulate matter  (PM2.5) (µgm−3) from a 
nationwide land-use regression model [26]. The model 
regressed monitored  PM2.5 concentrations on land use, 
traffic infrastructure, traffic intensity, and population 
density for 2009. The calibrated model was then used to 
predict  PM2.5 concentrations at unsampled locations. We 
resampled the data from 5 to 25  m to reduce program 
run time. The air pollution data set we used showed that 
air pollution values had remained stable for nearly a dec-
ade prior to our survey and were, thus, applicable for use 
in our analysis [27].

Determining space‑time exposure series
Following a previous GPS study [28], environmental 
exposures were assessed every 10 min along a respond-
ent’s moving trajectory, resulting in 144 daily 10-min seg-
ments (Fig. 1a). We created line-based buffers of 100 m 
for each trajectory segment (Fig.  1b), a typical buffer 
width used elsewhere [3, 4, 29]. Mean NDVI, noise, and 
 PM2.5 exposure estimates were determined per seg-
ment within a buffer (Fig.  1c). The 48 nighttime expo-
sure segments (10:00 pm to 6:00 am, 8 h) were assessed 
using home-based buffers (i.e., 100  m) (Fig.  1d). Home 

Fig. 1 Assessment of exposure time series based on the GPS tracking data
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addresses were geocoded by matching the population 
register with the cadaster. For some of the daytime seg-
ments without GPS records (Fig.  1e), interpolation was 
conducted by copying the exposures from the previous 
segment (Fig.  1f ), assuming people were static during 
this period of missing data. Consequently, for each par-
ticipant, we received three (i.e., NDVI, noise, and  PM2.5) 
time series of environmental exposures with a length 
of 576 short-term exposure assessments (144 × 4 days) 
(Fig. 1g). All participants’ exposures for their 3 weekdays 
were placed before their weekend exposures to ensure 
consistent weekday-weekend ordering of data. For our 
sensitivity analyses, we repeated the procedure using 
50 m buffers and 30-min time windows (48 segments per 
day). The latter resulted in exposure series with a length 
of 192 exposure assessments (48 × 4 days).

Multivariate time series clustering
Based on the space-time exposure series obtained from 
“Determining space-time exposure series” section, we 
employed multivariate time series clustering with con-
strained dynamic time warping as a distance metric to 
determine environmental exposure patterns [30]. Due 
to differences in exposure units, we normalized each 
exposure time series using z-scores. To achieve cluster-
ing results with optimal performance, we tested a vary-
ing number of clusters (k) from 2 to 8 (Additional file 1: 
Fig. S1) and the window size of constraints (i.e., the maxi-
mum amount of warping) from 0.5 to 2.5 h (Additional 
file 1: Fig. S2). For each combination of the two param-
eters, we repeated the clustering procedure 100 times as 
the algorithm required a random starting value, which 
could potentially affect the partition results [31]. We used 
the Davies–Bouldin index to identify an optimal num-
ber of clusters (k) and the window size of constraints 
[32]. Smaller index values indicate better clustering per-
formance [33]. The results with the smallest DB value 
were used. Separate time series clustering runs were 
conducted for different buffer sizes (50 and 100 m) and 
time windows (10 and 30 min). We visualized the diurnal 
multi-exposure patterns of each cluster using hourly line 
charts, where the exposure values of each hour referred 
to the averages of the corresponding hour over 4-day 
spans.

Statistical analyses
We developed regression models to test the associations 
between anxiety symptoms and sequential exposure pat-
terns as a pilot study. Anxiety symptoms over the last 2 
weeks were measured during the survey using the Gen-
eralized Anxiety Disorder-7 (GAD-7) questionnaire [34]. 
Participants reported on seven questions, such as “feeling 
nervous, anxious or on edge” or “not being able to stop 

or control worrying.“ Response options to each question 
ranged from 0 (“Not at all”) to 3 (“Nearly every day”). We 
summed the individual item scores resulting in GAD-7 
scores ranging from 0 to 21. A higher overall score indi-
cated more severe anxiety symptoms. The Cronbach’s 
alpha was 0.90 between individual items.

Models were adjusted for age, sex, income (quintiles 
treated continuously), employment status (employed, 
unemployed), marital status (married, unmarried), and 
educational background. Educational background was 
scored as high (undergraduate or graduate university 
education), medium (upper secondary education), and 
low (up to lower secondary education). We fitted sepa-
rate models for different buffer sizes (50 and 100 m) and 
time windows (10 and 30  min) for sensitivity tests. All 
analyses were conducted using R software, version 4.1.3 
[35].

Results
Descriptive statistics
Table  1 shows the descriptive statistics for our sam-
ple. The average GAD-7 score was 4.10, with a standard 
deviation (SD) of ± 4.34. The mean age of the participants 
was 43.66, and the majority were employed (72.3%). The 
gender and marital status divisions were approximately 
equal. Most respondents were middle or highly educated 
with high or very high incomes. The demographic and 
socioeconomic characteristics of the analytical sample 
closely mirrored those before the preprocessing of the 
GPS data (Additional file 1: Table S3).

Sequential environmental exposure patterns
The Davies–Bouldin index suggested that four clusters 
were optimal for the multivariate time series clustering 

Table 1 Summary statistics of the sample

Variables Category Analytical 
sample 
(N = 141)

GAD-7 score Mean (SD) 4.099 (4.341)

Age Mean (SD) 43.660 (14.047)

Sex Male [N (%)] 73 (51.8%)

Female [N (%)] 68 (48.2%)

Employment Employed [N (%)] 102 (72.3%)

Unemployed [N (%)] 39 (27.7%)

Income Mean (SD) 3.574 (1.321)

Marital status Married [N (%)] 78 (55.3%)

Unmarried [N (%)] 63 (44.7%)

Education Low [N (%)] 14 (9.9%)

Mid [N (%)] 61 (43.3%)

High [N (%)] 66 (46.8%)
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(Additional file 1: Fig. S1). Figure 2 shows each cluster’s 
sequential environmental exposure patterns using buff-
ers of 100  m and time windows of 10  min. Participants 
in each cluster were exposed to different ambient envi-
ronments, which revealed distinctive daily exposure 
variations. Based on the exposure characteristics, we 
labeled the clusters as “strongly health-threatening,” 
“moderately health-threatening,” “moderately health-
supportive,” and “strongly health-supportive.” Those in 

the “strongly health-threatening” cluster (N = 38) were 
constantly exposed to high noise and high  PM2.5 concen-
trations in conjunction with lesser green space exposure. 
Participants in the “moderately health-threatening” clus-
ter (N = 23) constantly experienced lesser green space 
exposure and relatively low noise at night but striking 
noise increases during the daytime, with  PM2.5 exposure 
being relatively high at night and increasing further dur-
ing the day. Participants allocated to the “moderately 

Fig. 2 Sequential environmental exposure patterns of the four clusters based on 100 m buffers and 10-min time windows. Exposure means 
and related SDs are shown for each exposure in each cluster. The data partition was based on multivariate time series clustering with constrained 
dynamic time warping
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health-supportive” cluster (N = 40) were exposed to rel-
atively high amounts of green space with a decrease in 
green space exposure during the daytime and moderately 
high noise and  PM2.5 levels with a slight increase dur-
ing the daytime. The “strongly health-supportive” cluster 
(N = 40) included participants exposed to high amounts 
of green space but with a decrease during the daytime, 
along with low noise and  PM2.5 exposures at nighttime 
but which increased during the day.

Associations between anxiety symptoms and exposure 
patterns
Figure  3 illustrates the regression results between 
anxiety symptoms and the exposure patterns for the 
100 m buffers and 10-min time windows. The signs of 
the coefficients indicated that, on average, participants 
in the “moderately health-threatening,“ “moderately 
health-supportive,“ and “strongly health-supportive” 
clusters tended to be associated with lower GAD-7 
scores than participants in the reference cluster (i.e., 
“strongly health-threatening”). However, only the 
“moderately health-threatening” cluster reached sta-
tistical significance (p < 0.05); the negative coefficient 
of the “moderately health-supportive” cluster was 
marginally significant (Additional file  1: Table  S4). 
Unexpectedly, the negative coefficient of the “strongly 
health-supportive” cluster was insignificant.

Sensitivity analyses
Our sensitivity analyses revealed that the sequential 
environmental exposure patterns of the 50  m buffers 
(Additional file 1: Fig. S3) and the 30-min time windows 
(Additional file 1: Figs. S4 and S5) resulted in four clus-
ters largely congruent with our main results. Only minor 
differences were noticeable. For example, for the 50  m 
buffers (Additional file 1: Fig. S3), the “moderately health-
supportive” cluster had lower overall  PM2.5 exposure, and 
the “moderately health-threatening” cluster had higher 
nighttime noise exposure compared with the 100 m buff-
ers (Fig. 2).

The regression results were broadly consistent across 
the 50 and 100  m buffers (Additional file  1: Fig. S6). In 
the model with 50  m buffers, the “moderately health-
supportive” cluster was statistically significant (p < 0.05) 
instead of the “moderately health-threatening” cluster. 
Sensitivity tests with the 30-min time windows resulted 
in similar negative, but non-significant, coefficients of 
the three clusters (i.e., “moderately health-threatening,“ 
“moderately health-supportive,“ and “strongly health-
supportive”) compared to the “strongly health-threaten-
ing” cluster (Additional file 1: Fig. S6).

Discussion
Main findings
The few available mobility-based studies on environ-
mental-health associations typically have assessed 
aggregated exposures over time (e.g., daily or weekly). 
Our study broke new ground by proposing a novel 

Fig. 3 Regression coefficients and 95% CIs for the associations between the GAD-7 scores and the exposure patterns. Cluster 1 (“strongly 
health-threatening”) served as the reference category. The model was adjusted for age, sex, income, employment status, marital status, 
and educational background. Exposures were based on 100 m buffers and 10 min time windows
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methodology to determine temporally disaggregated 
sequential exposure patterns along individuals’ GPS-
tracked mobility paths. We identified four sequential 
exposure patterns among our participants based on 
the magnitude of the experienced environmental expo-
sures (i.e., green space, noise, and  PM2.5) along the 
daily moving trajectories. Participants in different clus-
ters differed in their overall exposure levels and daily 
exposure variation, which traditional exposure aver-
ages have difficulty capturing. The regression results 
of our pilot study revealed that the varying sequential 
exposure patterns were differently associated with anxi-
ety symptoms. Particularly, those participants with a 
“moderately health-threatening” exposure pattern were 
associated with significantly fewer anxiety symptoms 
than participants with a “strongly health-threatening” 
exposure pattern. However, the associations between 
anxiety symptoms and the sequential exposure patterns 
did not pass all sensitivity tests, especially when using 
30-min exposure time windows.

Characterizing sequential exposure patterns using time 
series clustering approach
Our study demonstrated the usefulness of time series 
clustering to determine individuals’ sequential spatiotem-
poral exposure patterns. This dynamic exposure concep-
tualization considers the co-occurrence of disaggregated 
exposures over space-time. Characterizing exposures in 
this manner will likely provide exposure summarizations 
that differ from past studies’ aggregated exposure assess-
ments [36]. Unlike traditional sequence analysis, con-
strained to categorical data [37, 38], time series clustering 
enables continuous exposure metrics, which are more 
desirable because they require neither exposure catego-
rization nor arbitrarily defined distance metrics between 
different categories [28].

The temporal granularity (i.e., the time interval of the 
exposure windows) is an important parameter that could 
affect the clustering results [39]. A too-fine temporal res-
olution may introduce much, probably less meaningful, 
fluctuation, while a too-coarse temporal resolution may 
average the exposure variations [40]. We observed sig-
nificant anxiety-related associations using 10-min expo-
sure windows, but these results were not replicated when 
using 30-min time windows. Our study uncovered gran-
ularity-related temporal uncertainties that parallel other 
well-established issues with defining health-influencing 
geographic contexts [41]. Future studies are encouraged 
to carefully specify both the temporal and spatial expo-
sure windows, which may depend on whether the anal-
yses rely on short-term exposures along people’s daily 
mobility or long-term over their life course.

Sequential exposure patterns and anxiety symptoms
Since our pilot study is the first we are aware of that 
deals with daily sequential exposure patterns, we 
embed our findings in the broader debate over the 
impact of the environment on mental health [42–44]. 
Our regression results suggested that participants 
exposed to a severely compromised ambient envi-
ronment (i.e., “strongly health-threatening” cluster) 
tended to be associated with more anxiety symptoms. 
This finding is in line with previous studies that had 
reported positive associations between anxiety and 
exposure to noise [45, 46] and  PM2.5 [8, 45], especially 
when the exposure levels were high [3, 47]. Moreover, 
we also found that participants with a “moderately 
health-threatening” exposure pattern were associated 
with significantly fewer anxiety symptoms than those 
with a “strongly health-threatening” exposure pattern. 
The most apparent difference between the two clusters 
was that participants in the “moderately health-threat-
ening” cluster had significantly less nighttime noise 
exposure. This lesser exposure may have significantly 
contributed to their relative paucity of anxiety symp-
toms, as nighttime noise has been recognized as a more 
pronounced risk factor than daytime noise [18, 48].

Participants in the “moderately health-supportive” 
and “strongly health-supportive” clusters had moder-
ate or high green space exposure. However, their nega-
tive coefficients did not reach statistical significance, 
implying that participants exposed to more green space 
did not necessarily to be associated with significantly 
fewer anxiety symptoms. A possible explanation is that, 
despite high overall green space exposures, these par-
ticipants tended to experience significantly less green 
space during the daytime when they were most active. 
Another possible explanation is that individuals with 
more anxiety symptoms may spend more time in green 
and quiet places for self-regulation purposes. The insig-
nificant result differs from previous studies reporting 
significant negative associations between green space 
exposure and anxiety [49–52]. However, in line with 
our results, others have also reported null associations 
[53–55].

Our study indicated that the exposure magnitude 
and daily variations of multiple exposures might jointly 
affect anxiety symptoms, although rarely previously 
recognized. We speculate that individuals’ daily mood 
fluctuations are influenced by their biological clocks 
[56, 57] and their daily dynamic exposures [58]. Sup-
ported by prior studies [59, 60], these fluctuations in 
immediate moods can shape individuals’ mental well-
being over time. This rationale may explain why daily 
sequential exposure patterns could be related to peo-
ple’s mental health status.
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Strengths and limitations
This mobility-based study went beyond exposure aver-
ages to daily sequential exposure patterns. Such sequen-
tial exposure patterns consider both the magnitude and 
variation of exposures, which is impossible with tradi-
tional aggregation-based approaches. Additional file  1: 
Figures S7 and S8 show the distinction between our time-
series approach and the aggregation-based approach 
when preprocessing mobility-based exposure data. The 
multivariate time series clustering enabled us to simulta-
neously include multiple exposures over space and time. 
This dynamic exposure assessment took advantage of the 
spatiotemporal exposure measures obtained from GPS 
tracking and has the potential to contribute new insights 
into exposure-health associations. Finally, while many 
previous GPS-based studies had study domains limited 
to a single city [9, 61–63], we tested our approach based 
on a nationwide sample from the Netherlands, providing 
data from diverse environmental settings.

The study also had several limitations. First, the 
PM2.5 and noise data, derived for 2009 and 2016, may 
not entirely reflect the air pollution and noise levels 
in 2018 when the GPS data were collected. Second, 
the exposure assessment was based on exposure maps 
representing annual averages, which neglect temporal 
exposure fluctuations and, in turn, may lead to some 
exposure misclassification, especially for air pollution, 
which faces diurnal variations [64]. To realize the full 
advantage of our time series approach, spatiotempo-
rally resolved exposure maps (e.g., on an hourly level) 
should be incorporated in the future to explore the full 
potential of our approach. Third, our pilot study only 
measured anxiety symptoms at baseline. Our analysis 
was conducted under the assumption that individu-
als’ anxiety symptoms and their daily sequential expo-
sure patterns remained stable throughout our tracking 
period of 1 week. It was reported that most people with 
high GAD-7 scores have chronic symptoms for a month 
or more [34]. Elsewhere, it was also shown that individ-
uals’ day-to-day mobility patterns are relatively stable 
[65]. Our cross-sectional design limited our ability to 
establish causal relationships. We advice future studies 
to record mental health responses repeatedly using geo-
graphically-explicit ecological momentary assessments 
[66]. Fourth, as with most GPS-based studies [11, 61], 
we cannot rule out individuals’ selective daily mobility 
bias [67, 68]. Fifth, our sample was not representative 
of the Dutch population. Most included participants 
were highly educated with relatively higher incomes, 
which would challenge the generalization of the results, 
but this study introduced a methodological innovation. 
Finally, obtaining enough hourly GPS tracks for each 
participant was challenging and resulted in a relatively 

small final sample. We also cannot guarantee that our 
sample has represented all possible exposure patterns 
and using a different sample could yield slightly differ-
ent sequential exposure patterns. Thus, future studies 
with more extensive, high-quality samples are needed 
to examine how exposure sequences are possibly asso-
ciated with health outcomes.

Conclusions
We proposed a novel GPS-based methodology to deter-
mine individuals’ sequential environmental exposure 
patterns along their daily mobility. Our findings sup-
port the previously neglected notion that people’s 
daily sequential exposure patterns may play a role in 
mental health. Our data on GPS-tracked Dutch adults 
showed four distinctive daily sequential exposure pat-
terns based on people’s daily mobility paths. Each 
pattern was composed of multiple exposures, which 
differed in magnitudes and daily exposure variations. 
The regression analyses provided suggestive evidence 
that some daily exposure patterns were associated with 
anxiety symptoms. We advise future studies using more 
extensive tracking data to replicate our approach using 
time-resolved exposure assessments to uncover spati-
otemporally based environmental impacts on mental 
health.
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with multivariate time series clustering and constrained dynamic time 
warping. Figure S6. Regression coefficients for the associations between 
the GAD-7 scores and the exposure patterns across different buffers (50 
m and 100 m) and time windows (10 min and 30 min). Cluster 1 (“strongly 
health-threatening”) served as the reference category. The model was 
adjusted for age, sex, income, employment status, marital status, and edu-
cational background. Figure S7. Preprocessing of mobility-based expo-
sure data using aggregation-based approach. Figure S8. Preprocessing of 

https://doi.org/10.1186/s12942-023-00348-1
https://doi.org/10.1186/s12942-023-00348-1
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mobility-based exposure data in our study using the time-series approach. 
Individuals of the same color were assigned in the same cluster.
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