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Abstract 

Background Cancer is a significant health issue globally and it is well known that cancer risk varies geographically. 
However in many countries there are no small area-level data on cancer risk factors with high resolution and com-
plete reach, which hinders the development of targeted prevention strategies.

Methods Using Australia as a case study, the 2017–2018 National Health Survey was used to generate prevalence 
estimates for 2221 small areas across Australia for eight cancer risk factor measures covering smoking, alcohol, 
physical activity, diet and weight. Utilising a recently developed Bayesian two-stage small area estimation method-
ology, the model incorporated survey-only covariates, spatial smoothing and hierarchical modelling techniques, 
along with a vast array of small area-level auxiliary data, including census, remoteness, and socioeconomic data. The 
models borrowed strength from previously published cancer risk estimates provided by the Social Health Atlases 
of Australia. Estimates were internally and externally validated.

Results We illustrated that in 2017–2018 health behaviours across Australia exhibited more spatial disparities 
than previously realised by improving the reach and resolution of formerly published cancer risk factors. The derived 
estimates revealed higher prevalence of unhealthy behaviours in more remote areas, and areas of lower socioeco-
nomic status; a trend that aligned well with previous work.

Conclusions Our study addresses the gaps in small area level cancer risk factor estimates in Australia. The new 
estimates provide improved spatial resolution and reach and will enable more targeted cancer prevention strategies 
at the small area level. Furthermore, by including the results in the next release of the Australian Cancer Atlas, which 
currently provides small area level estimates of cancer incidence and relative survival, this work will help to provide 
a more comprehensive picture of cancer in Australia by supporting policy makers, researchers, and the general public 
in understanding the spatial distribution of cancer risk factors. The methodology applied in this work is generalisable 
to other small area estimation applications and has been shown to perform well when the survey data are sparse.

Keywords Small area analysis, Cancer prevention, Disease mapping, Bayesian statistics

Background
In 2020, an estimated 19.3 million people were diagnosed 
with cancer worldwide [1], causing a huge health burden. 
Moreover, incidence of cancer has been shown to exhibit 
strong spatial disparities, which due to improved models 
and better data accessibility are now communicated to 
the public via interactive Atlas platforms. In Australia, 
a notable Atlas is the Australian Cancer Atlas (ACA) 
[2], which provides interactive maps of small area level 
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estimates of incidence and relative survival rates for a 
wide range of cancer types.

Whiteman et  al. [3] suggest that at least one in every 
three cancers in Australia can be attributed to modifiable 
risk factors such as tobacco smoking, obesity, poor diet, 
insufficient physical activity, excessive sun exposure and 
alcohol consumption. Understanding the prevalence of 
cancer risk factors is pivotal to cancer prevention.

To better assess how cancer risk factors vary by loca-
tion and target interventions, many countries have gener-
ated small area estimates for their prevalence including 
Australia [4], the US [5], Canada [6], Iran [7], and Luxem-
bourg [8]. When generating small area estimates, prac-
titioners must consider the reach and resolution of their 
results. Reach refers to the proportion of the small areas 
for which estimates are available, while resolution per-
tains to the small area population and geographical sizes. 
While the need for high resolution relates to minimizing 
outcome heterogeneity in larger areas and populations, 
the need for complete coverage (or high reach) ensures 
policy makers have complete spatial information. If small 
area estimates suffer from low reach or resolution the 
effectiveness of targeted interventions could be affected.

In Australia, the Social Health Atlases of Australia 
(SHAA) [4] is the major platform providing nationwide 
estimates for cancer risk factors at a small area level. The 
estimates were derived from the 2017–2018 National 
Health Survey (NHS). However the reach and resolution 
of the SHAA estimates could be improved. The larger 
areal units used in the SHAA combine heterogeneous 
sub-populations, resulting in estimates that are aver-
ages over different populations. The limitation regard-
ing reach meant that no estimates are provided for very 
remote areas. Given that health disparities tend to widen 
with increasing remoteness [9–11], generating estimates 
for these areas is important for targeted public health ini-
tiatives in Australia. The modelled estimates provided by 
the SHAA use the best data source available, so the prob-
lem cannot be solved by using a different dataset or col-
lecting better data; the solution is to use new methods of 
small area estimation (SAE) [12].

SAE is a well-established survey method that leverages 
auxiliary data, such as census data, to estimate param-
eters of interest for small geographic areas with limited 
or no survey data. Model-based SAE methods, which 
borrow strength across areas [13], can be applied at 
either the area [14] or individual level [15], with the latter 
requiring access to survey and census microdata.

Proportion area-level models are commonly used [16–
19]; however, they become unsuitable when some of the 
input data (area-level proportion estimates) are unsta-
ble, i.e. exactly zero or one [20]. Sparse survey data and 
modelling rare or common population characteristics 

exacerbate this instability [21]. Solutions to instability 
include perturbing direct estimates prior to modelling 
[22] or excluding unstable areas [17]. Alternatively, mod-
elling at the individual level, such as through multilevel 
regression and poststratification (MrP) [23], can be pur-
sued. However, the use of individual level SAE models 
to derive proportion estimates are limited by the need 
for census microdata [24], which restricts the choice of 
covariates. Note that the modelling for the SHAA was 
conducted by the Australian Bureau of Statistics (ABS). 
Unfortunately, given that the published details of the ABS 
approach are modest [25], we can only infer the use of a 
individual level model.

While individual and area level models have limita-
tions, recent work supports the utility of two-stage SAE 
approaches, which involve separate modelling at both 
levels [21, 26–28]. Two-stage approaches have many ben-
efits that are particularly relevant for this application as 
they can alleviate unstable direct estimates by smoothing 
individual level outcomes, accommodate even severely 
sparse survey data thanks to multi-stage smoothing, and 
utilize more auxiliary data (e.g. survey-only covariates), 
permitting more flexible models and better predictions.

In this work, we generate small area level prevalence 
estimates for eight cancer risk factor measures using the 
Bayesian two-stage small area estimation methodology 
we developed for sparse survey data [21]. Our method 
considers a variety of data sources, including individual 
level survey data and area level auxiliary data such as 
census, remoteness and socioeconomic data. To assess 
the quality of our estimates, we used a dual validation 
approach whereby most SA2s are benchmarked to the 
sub-state level using fully Bayesian benchmarking [29], 
with the remaining SA2s (predominantly very remote 
areas) undergoing external validation. The results of this 
work will complement the current small area level esti-
mates of cancer incidence and relative survival already 
available in the ACA [2].

Data
Geographical areas
Geographical location was defined according to the 2016 
Australia Statistical Geography Standard (ASGS) [30]. 
We generated prevalence estimates at the statistical area 
level 2 (SA2) level, which is the lowest level of the ASGS 
hierarchy for which detailed census population charac-
teristics are publicly available. SA2s are recognized as 
achieving the optimal balance between privacy and reso-
lution [31]. Note that the SHAA provides estimates at a 
lower resolution, using population health areas (PHAs) 
which are constructed from single or multiple SA2s (40% 
and 39% of PHAs are constructed from one and two 
SA2s, respectively). In 2016 Australia had 1165 PHAs 
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and 2310 SA2s [32] with median population sizes of 7500 
and 15000 for SA2s and PHAs, respectively.

Throughout this analysis, we also used statistical area 
level 3 (SA3) and statistical area level 4 (SA4). By virtue 
of the hierarchical nature of the ASGS, SA2s are nested 
within SA3s, and SA3s are nested within SA4s. There is 
a median of 6 and 22 SA2s nested within each SA3 (n = 
333) and SA4 (n = 88), respectively.

Of the 2310 SA2s covering Australia, SA2s with no 
physical location (comprising “Migratory-Offshore-
Shipping” and “No usual address” codes for each State 
and Territory) (n = 18), very remote island SA2s (Christ-
mas Island, Cocos Island, Norfolk Island and Lord Howe 
Island) (n = 4), and SA2s with annual average population 
≤ 10 (n = 67) were excluded. This left 2221 SA2s to use in 
the modelling. The remaining SA2s had a median (inter-
quartile range (IQR)) population of 7859 (4483, 12753). 
Note that although Jervis Bay is classified as an “Other 
Territory” by the ABS, we included it as part of the state 
New South Wales.

Data sources
Survey data
The individual level survey data and sampling weights 
were obtained from the 2017–18 National Health Sur-
vey (NHS), which is an Australia-wide population-level 
health survey conducted every 3–4 years by the ABS 
[33, 34]. This survey excluded very remote areas of Aus-
tralia ( ≈ 0.8 % of 2016 population), discrete Aboriginal 
and Torres Strait Islander communities ( ≈ 0.5 % of 2006 
population as per the ABS Community Housing and 
Infrastructure Needs Survey conducted only in 1999, 
2001, and 2006 [35]), and non-private dwellings ( ≈ 2 % 
of 2016 population [36]). Non-private dwellings include 
hotels and motels, hostels, boarding schools and board-
ing houses, hospitals, nursing and convalescent homes, 
prisons, reformatories and single quarters of military 
establishments and short-stay caravan parks. The ABS 
highlights that these exclusions should only have a minor 
effect on aggregate estimates for the states and territories 
of Australia.

The 2017–18 NHS data consist of 17248 sampled per-
sons 15 years and older, with 878 persons under the age 
of 18. The data cover 1694 (76%) of the 2221 SA2s across 
Australia (see Fig.  1) and provide a median (IQR) SA2 
level sample size of 8 (5, 13). The median SA3 and SA4 
level sample sizes were 42 (25, 65) and 154 (101, 226), 
respectively. The NHS was also used to obtain daily 
smoking rates at the SA4 level [37]. Other sources of 
Australian health data are described in Section A of the 
Additional File 1.

Population data
Estimated Resident Population data stratified by 5-year 
age groups (15 years and above), sex and SA2, were 
obtained from the ABS for both 2017 and 2018 [38]. In 
this study the SA2 level population counts were derived 
by averaging across the two years. One of the risk fac-
tors (risky waist circumference) is only appropriate for 
ages 18+ and so modelling excluded persons under 18. 
Assuming that the single-year age distribution in this 
age group was uniform, we estimated that the popula-
tion of 18–19-year olds was 40% of the 15–19-year old 
population.

For the SA2 level auxiliary data, we used data from the 
2016 Australian census, represented as proportions (for 
categorical data) or averages (for continuous data) of 
individuals in each SA2. Census data for age, sex, non-
school level education (higher education), highschool 
completion status, occupation, labour force status, per-
sonal weekly income, religious affiliation, registered 
marital status, First Nations Australian status, and house-
hold composition were obtained from the ABS [39]. 
These census factors made up 84 separate variables. Like 
Chidumwa et  al. [40], to reduce the dimension of these 
socioeconomic and demographic data we used Principal 
Components (PC) Analysis, where we retained the first 
six principal components as they accounted for approxi-
mately 62% of the variation (see Section C.2 of the Addi-
tional File 1 for more details).

Other data
Australian research suggests that cancer burden [31, 41], 
and the prevalence of cancer risk factors varies strongly 
by remoteness and socioeconomic status (SES) [9, 42]. 
Data on SA1 level remoteness were provided by ABS and 
based on the Accessibility and Remoteness Index of Aus-
tralia (ARIA+) [43], and converted to SA2 using popula-
tion proportions. Remoteness is divided into five groups 
- major cities, inner regional, outer regional, remote, and 
very remote - based on a measure of relative geographic 
access to services. Given that very remote areas of Aus-
tralia were intentionally excluded during data collection 
for the 2017–18 NHS, we followed the approach of Das 
et al. [37], and collapsed the outer regional, remote and 
very remote categories to a single remoteness group. Of 
the SA2s with sample data, 69% were major cities. The 
SA2 sample sizes tended to be larger for outer regional to 
very remote areas (median of 11 and IQR of 6 to 21) than 
for major city areas (median of 8 and IQR of 4 to 12).

SA2 level SES was sourced from the ABS Socio-Eco-
nomic Indexes for Areas product [44]. Like other Aus-
tralian health studies [37, 42, 45], we used the Index of 
Relative Socio-Economic Disadvantage (IRSD). The IRSD 
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is a general SES index constructed using principal com-
ponents analysis that summarises the economic and 
social conditions of individuals and households within a 
given area in order to determine the area’s overall relative 
disadvantage. A low IRSD score indicates a large propor-
tion of relatively disadvantaged individuals in a given SA2 
[45].

In this work, we used IRSD national deciles as a cat-
egorical variable with 10 groups, where 1 represents the 
most disadvantaged or lowest SES group and was used as 
the reference group. Although the IRSD can be used as 
a continuous variable, it is recommended to use deciles 
[44], and this also gave superior model performance. 
There were 44 of the 2221 SA2s without an IRSD value 
provided, so these had the closest IRSD decile assigned 
according to their corresponding PC1 (principal compo-
nent 1) values.

We also obtained prevalence estimates and meas-
ures of uncertainty for risky alcohol consumption (more 
than 2 standard drinks a day on average), adequate fruit 
intake, obesity, overweight, current smokers and inade-
quate physical activity from the SHAA [4] at the Primary 
Health Network (PHN) and PHA level for adults. These 

data were downloaded as age-standardised rates per 100 
people with 95% confidence intervals. Definitions and 
details are available in Section C and D of the Additional 
File 1 and the online SHAA platform [4].

Risk factors
Broad risk factor groups were selected by consulting 
three sources: a wide range of experts in the fields of 
public health, epidemiology and oncology; literature, 
specifically evidence for casual associations [46] with, 
and population attributable fractions [3, 41, 47] for, can-
cer incidence; and the availability of data in the 2017–18 
NHS. In this work we selected the following five broad 
risk factor groups: tobacco smoking, alcohol, diet, weight 
and physical activity. According to the 2015 Australian 
Burden of Disease study [41] these were attributable to 
22.1%, 4.5%, 4.2%, 7.8% and 2.9% of the total cancer bur-
den, respectively.

We explored a variety of possible measures and corre-
sponding definitions for each of the five broad risk factor 
groups, placing priority on the definitions and recom-
mendations used in the SHAA [4], the work by White-
man et  al. [3], Cancer Council Australia [48] and those 

Fig. 1 Map of 2221 SA2s in Australia with gray indicating an area with data from the 2017–2018 National Health Survey
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provided by Australian government agencies such as 
Cancer Australia [45], the National Health and Medical 
Research Council (NHMRC), the Australian Institute 
of Health and Welfare (AIHW) [49] and the Australian 
Department of Health and Aged Care (DOH).

Table  1 summarizes the five broad risk factor groups 
and the eight corresponding measures and definitions. 
Table  2 gives direct estimates for these measures strati-
fied by the eight states and territories of Australia. The 
risk factor measures proposed are designed to be cross-
sectional and strike a natural balance between being spe-
cific to cancer while maintaining applicability to a variety 
of other health conditions [41]. Note that some risk fac-
tor groups, for example weight, required several differing 
measures.

We defined the risk factor measures as binary where 
a survey individual received a value of one if they did 
not meet guidelines, or were in the unhealthy category. 
Unlike the SHAA which provides age-standardised rates 
by PHAs [4], we used proportions (prevalence) due to 
their common use in both the literature [12, 16, 53] and 
other digital Atlases [5]. Furthermore, deriving age-
standardised rates requires prevalence estimates by area 
and age. This level of disaggregation is possible at the 
PHA level, but not feasible at the SA2 level.

We provide further details and the motivation for the 
selected risk factor measure definitions in Section B of 
the Additional File 1.

Statistical models
Bayesian model
Given the sparse nature of the available data for this SAE 
analysis, we used the Bayesian two-stage logistic nor-
mal (TSLN) approach we proposed recently [21]. Our 
previous study showed that the TSLN approach could 
outperform commonly used area [17, 18, 54] and indi-
vidual level [55] models both in a simulation study focus-
ing on sparse survey data and an application using the 
2017–18 NHS data. The two-stage structure of the TSLN 
approach includes an individual level stage 1 model, fol-
lowed by an area level stage 2 model.

The same TSLN approach, with very similar com-
ponents, was chosen to be applied to all eight risk fac-
tor measures. The selection of fixed and random effect 
structures for the two models was guided by the goal of 
achieving a balance between parsimony across risk factor 
measures and predictive performance. We followed the 
advice by Goldstein [56] and initially used frequentist algo-
rithms to select fixed and random effects, with fully Bayes-
ian inference via Markov chain Monte Carlo (MCMC) 
for final model checking. Further details regarding model 
selection are given in Section E of the Additional File 1.

Let yij ∈ {0, 1} be the binary value from the NHS for 
sampled individual j = 1, . . . , ni in SA2 i = 1, . . . ,m , 
where ni is the sample size in SA2 i. Further, let m = 1694 
and M = 2221 be the number of sampled and total num-
ber of SA2s, respectively. The goal of this analysis is to 

Table 1 Descriptions and definitions of the five cancer risk factor groups and the measures within each. More details are given in 
Section B of the Additional File 1

Group Measure Measure definition

Smoking Current smoking Those who reported to be current smokers (including daily, weekly or less than weekly), and had 
smoked at least 100 cigarettes in their life.

Alcohol Risky alcohol consumption Those who exceeded the revised 2020 National Health and Medical Research Council (NHMRC) guide-
lines [50] of up to 10 standard drinks/week and no more than 4 standard drinks in any day. Compliance 
with the guidelines were assessed using self-reported alcohol consumption during the last three drink-
ing days from the proceeding seven days.

Diet Inadequate diet Based on self-reported diet, those who did not meet both the fruit (2 serves/day) and vegetable (5 
serves/day) 2013 NHMRC Australian Dietary guidelines [51].

Weight Obese Those with a measured BMI greater or equal to 30.

Overweight/ obese Those with a measured BMI greater or equal to 25.

Risky waist circumference Those with a measured waist circumference of ≥94cm (men) and ≥80cm (women). These cutoffs are 
only appropriate for adults, so we limited the survey dataset to all persons 18 years and older [4].

Physical activity Inadequate activity (leisure) Based on self-reported leisure physical activity, those who did not meet the 2014 Department of Health 
(DOH) Physical Activity guidelines [52], i.e. that each week adults (those between the ages of 18 
and 64) should either do 2 1/2 to 5 hours of moderate-intensity physical activity or 1 1/4 to 2 1/2 hours 
of vigorous-intensity physical activity or an equivalent combination of both, plus muscle-strengthening 
activities at least 2 days each week. The DOH guidelines also provide specific recommendations for chil-
dren (5 to 17 years), older persons (65 years and older) and pregnant women. In this work, the physical 
activity measures were derived from the ABS created variables that accommodated the guidelines 
across age groups.

Inadequate activity (all) Although similar to inadequate activity (leisure), this measures is based on workplace and leisure self-
reported physical activity.
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generate estimates of the true proportions of each risk 
factor measure, µ = (µ1, . . . ,µM).

In this analysis, we used two versions of the survey 
weights, wraw

ij  , provided by the ABS [55, 57] to correct for 
sampling bias and promote design-consistency. The first, wij , 
was used for direct estimation and the second, w̃ij , was used 
in the stage 1 model (see Section C.1 in the Additional File 
1). Using the survey weights, small area proportion estimates 
can be computed using the Hajek [58] direct estimator,

with an approximate sampling variance of [54, 59],

Direct estimators, such as Eqs. (1) and (2), have low vari-
ance and are design-unbiased for µi when ni is large, but 
have high variance when ni is small [13].

(1)µ̂D
i =

∑ni
j=1 wijyij

ni
,

(2)

ψD
i = v̂

(
µ̂D
i

)
=

1

ni

(
1−

ni

Ni

)(
1

ni − 1

)

ni∑

j=1

(
w2
ij

(
yij − µ̂D

i

)2)
.

Stage 1: Individual level model
The stage 1 model is a Bayesian pseudo-likelihood logis-
tic mixed model. Let πij be the probability of yij = 1 for 
sampled individual j in SA2 i. Following the notation of 
Parker et al. [55], we represent the pseudo-likelihood for 
a probability density, p(.), as p

(
yij
)w̃ij . Pseudo-likelihood 

is used to ensure the predictions from the logistic model 
are approximately unbiased under the sample design [60, 
61]. Thus, the stage 1 model likelihood is given by,

where logit
(
πij

)
 is modelled using a generic linear pre-

dictor that is application-specific. In this work, we used 
several unique components summarised in Fig.  2. The 
linear predictor included eight individual level categori-
cal covariates and seven area level covariates as fixed 
effects. Unstructured individual and SA2 level random 
effects were also applied. In addition to these, borrow-
ing ideas from MrP [62], we included two hierarchical 
random effects based on categorical covariates that were 
themselves derived from the interaction of numerous 
individual level demographic and health covariates. A 
discussion of the priors used is given on the subsequent 
page. More details can be found in Section C of the Addi-
tional File 1.

(3)yij ∼ Bernoulli
(
πij

)w̃ij ,

Table 2 Direct prevalence estimates for Australia and the eight states and territories for all eight cancer risk factor measures

Each cell of the table gives the direct prevalence estimate and corresponding 95% confidence interval as percentages

Current smoking Risky alcohol consumption Inadequate diet Obese

Australia 15.1 (14.5, 15.7) 28.5 (27.8, 29.3) 46.9 (46.1, 47.7) 30.6 (29.9, 31.4)

New South Wales 14.4 (13.1, 15.7) 27.2 (25.5, 28.8) 45.4 (43.5, 47.2) 30.7 (29.0, 32.4)

Victoria 15.1 (13.6, 16.6) 26.0 (24.2, 27.8) 45.3 (43.3, 47.4) 30.9 (29.0, 32.8)

Queensland 15.8 (14.6, 17.1) 28.8 (27.2, 30.4) 47.0 (45.1, 48.8) 32.0 (30.4, 33.7)

South Australia 14.1 (12.3, 16.0) 28.0 (25.6, 30.3) 49.3 (46.8, 51.9) 31.6 (29.2, 33.9)

Western Australia 13.7 (11.9, 15.4) 31.3 (28.9, 33.7) 46.0 (43.4, 48.6) 28.0 (25.7, 30.3)

Tasmania 16.8 (14.9, 18.7) 29.2 (26.9, 31.6) 47.7 (45.1, 50.4) 33.7 (31.3, 36.2)

Northern Territory 20.5 (18.0, 23.0) 33.4 (30.4, 36.4) 48.4 (45.2, 51.5) 28.8 (26.0, 31.6)

Australian Capital Territory 11.2 (9.2, 13.2) 28.2 (25.3, 31.1) 49.6 (46.4, 52.7) 25.6 (22.9, 28.2)

Overweight/obese Risky waist circumference Inadequate activity 
(leisure)

Inadequate activity (all)

Australia 65.7 (64.9, 66.4) 63.6 (62.8, 64.4) 85.2 (84.7, 85.8) 83.5 (82.9, 84.1)

New South Wales 64.9 (63.1, 66.6) 62.8 (61.0, 64.7) 84.8 (83.4, 86.1) 82.9 (81.5, 84.4)

Victoria 66.5 (64.6, 68.5) 64.1 (62.0, 66.1) 85.3 (83.8, 86.7) 83.4 (81.8, 84.9)

Queensland 65.0 (63.3, 66.7) 63.9 (62.1, 65.7) 87.0 (85.8, 88.3) 85.3 (84.1, 86.6)

South Australia 68.6 (66.1, 71.0) 66.0 (63.4, 68.6) 85.7 (83.8, 87.5) 84.3 (82.4, 86.2)

Western Australia 65.1 (62.6, 67.6) 62.0 (59.4, 64.7) 84.1 (82.2, 86.0) 82.2 (80.2, 84.2)

Tasmania 68.8 (66.4, 71.3) 68.5 (65.9, 71.0) 84.6 (82.6, 86.5) 83.1 (81.1, 85.1)

Northern Territory 63.1 (60.1, 66.2) 58.2 (55.0, 61.5) 86.2 (84.1, 88.4) 84.8 (82.5, 87.1)

Australian Capital Territory 62.5 (59.5, 65.6) 60.6 (57.4, 63.8) 82.1 (79.7, 84.6) 79.9 (77.4, 82.5)
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Stage 2: Area level model
After fitting the stage 1 model, the individual level predic-
tions are aggregated to the area level, producing stage 1 
(S1) proportion estimates µ̂S1,(t)

i  using Eq. (1), and sampling 
variances, ψS1,(t)

i = v̂
(
µ̂D
i

)
+ v̂

(
B̂
(t)
i

)
 , for all posterior 

MCMC draws, t = 1, . . . ,T  [21], where the function to 
compute the sampling variance, v̂(.) , is given in Eq. (2) and 
B̂
(t)
i = n−1

i

(∑ni
j=1 wij

(
π
(t)
ij − yij

))
 quantifies the level of 

smoothing achieved by using πij instead of yij.
Using the common logistic transformation [18, 54], let

(4)θ̂
S1,(t)
i =logit

(
µ̂
S1,(t)
i

)

(5)τ
S1,(t)
i =ψ

S1,(t)
i

[
µ̂
S1,(t)
i

(
1− µ̂

S1,(t)
i

)]−2
,

thereby permitting the use of a Gaussian likelihood in the 
second stage model. Let τ̄ S1i  be the empirical posterior 
mean of τ S1i  and v̂

(
θ̂S1i

)
 be the empirical posterior vari-

ance of θ̂S1i  . Finally, by selecting a random subset of the 
posterior draws, say T̃  , let θ̂

S1

i =
(
θ̂
S1,(1)
i , . . . , θ̂

S1,(T̃ )
i

)
.

The stage 2 model is a Bayesian spatial Fay-Herriot [14] 
model. Unlike previous two-stage approaches [26, 27], we 
accommodate some of the uncertainty inherent in fitting 
the stage 1 model by using the vector θ̂

S1

i  as input to the 
stage 2 model. The stage 2 model likelihood for the poste-
rior draws from the stage 1 model is,

where θi is modelled using a generic linear predictor that 
is problem specific. The final proportion/prevalence esti-
mate for the ith SA2, denoted µi , is given by the poste-
rior distribution of logit−1

(θi) . To ensure that posterior 
uncertainty remains unaffected by the choice of T̃  , we 
downscale the likelihood contribution by 1/T̃ .

In this work, we used several unique components 
for the linear predictor of θi which are summarised 
in Fig. 3. The linear predictor included the SES index 
deciles and remoteness as standard fixed effects. In 
addition, PC1 to PC6 were used as fixed effects with 
coefficients varying according to remoteness. The 
linear predictor also included an external latent field 
constructed from the SHAA’s estimates and a BYM2 
spatial random effect [63] at the SA2 level. Given 
we did not include SA3 level census covariates, an 
unstructured random effect at the SA3 level was 
employed. To smooth unstable variances we used the 
generalized variance function [12, 64, 65] described in 
Section C.4.6 of the Additional File 1. More details can 
be found in Section C of the Additional File 1.

Priors
The Bayesian models described above are completed by 
the specification of priors. Given the complexity of the 
two models, in this work generic weakly informative 
priors were adopted based on preliminary analysis of 
the data [66]. In both models, all fixed effect coefficients 
were given N

(
0, 22

)
 priors with intercepts given a stu-

dent-t
(
0, 22, df = 3

)
 . We used N+

(
0, 12

)
 and N+

(
0, 22

)
 

priors for all standard deviation terms in the stage 1 and 
stage 2 models, respectively. The mixing parameter in the 
BYM2 [63] random effect was given a Uniform(0, 1) prior 
(see Section C of the Additional File 1).

We conducted sensitivity analysis by using more, 
N
(
0, 12

)
 , and less, N

(
0, 1002

)
 , informative priors for the 

(6)θ̂
S1

i ∼ N
(
θi, τ̄

S1
i + v̂

(
θ̂S1i

))

Fig. 2 Schematic describing the components of the linear predictor 
for logit

(
πij

)
 in the stage 1 model. *The non-outcome risk factor 

categorical covariate was derived from the interaction of the binary 
risk factor outcomes not directly associated with the risk factor being 
modelled. For more details see Section C of the Additional File 1. SA2 
Statistical area level 2
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fixed effects in both models. We also experimented with 
using exponential priors with rates of 0.5 and 1 for stand-
ard deviation terms. Finally, we examined model fit when 
using an informative Beta prior for the mixing parameter. 
We found that the model fit and prevalence estimates 
were unaffected by these prior changes. The chosen pri-
ors gave superior sampling efficiency and convergence.

Validation
For validation of the small area estimates, we adopted a 
dual approach, using both internal and external methods. 
See Section C.5 in the Additional File 1 for details.

Internal benchmarking
Internal validation involved a fully Bayesian benchmark-
ing procedure [29] that adjusts the results obtained in the 
stage 2 model by penalizing discrepancies between mod-
elled and direct estimates. Unlike previous benchmarking 

approaches that adjust the point estimates only [13, 67], 
Bayesian benchmarking adjusts the entire posterior — 
automatically accounting for benchmarking-induced 
uncertainty.

In this work we simultaneously enforced two bench-
marks referred to as “state” and “major-by-state”. The 
state benchmark had seven groups which were com-
posed of the states and territories of Australia (except the 
Northern Territory, which was not benchmarked due to 
ABS instruction [57]).

The major-by-state benchmark had 12 groups, com-
posed of the interaction of the states and territories of 
Australia (except the Northern Territory) and dichoto-
mous remoteness (major city vs non-major city). Thus, 
for each state, apart from Tasmania (where all areas 
were non-major city), and the Australian Capital Terri-
tory (where 96% of areas were major city), each SA2 was 
benchmarked differently depending on whether the area 
was in a major city or not.

External validation
External validation was performed by comparing the 
estimates to those from the SHAA at the PHA level and 
the overall trends observed in the modelled results with 
the general findings from other Australian health sur-
veys conducted on specific sub-populations, such as 
states [68] or First Nations Australians [69]. Although 
this validation affirmed the validity and reliability of our 
estimates in general, it was particularly helpful in assess-
ing the credibility of estimates for areas that could not be 
benchmarked.

Computation
We used fully Bayesian inference using MCMC via the R 
package rstan Version 2.26.11 [70]. Where possible we 
used the non-mean centered parameterization for ran-
dom effects and the QR decomposition for fixed effects 
[71]. The stan code for the stage 1 and stage 2 models 
can be found on GitHub [72].

For the stage 1 model we used 1000 warmup and 1000 
post-warmup draws for each of the four chains, feeding 
a random subset of 500 posterior draws from the stage 1 
to the stage 2 model. For the stage 2 model we used 3000 
warmup and 3000 post-warmup draws for each of four 
chains. For storage reasons we thinned the final posterior 
draws from the stage 2 model by 2, resulting in 6000 use-
able posterior draws.

Convergence of the models was assessed using trace 
and autocorrelation plots, effective sample size and R̂ 
[73]. While convergence ranged slightly between risk fac-
tors, all the proportion parameters, µ = (µ1, . . . ,µM) , 

Fig. 3 Schematic describing the components of the linear 
predictor for θi in the stage 2 model. For more details see Section C 
of the Additional File 1. SA2: Statistical area level 2; SA3: Statistical area 
level 3; SHAA: Social Health Atlases of Australia
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had R̂ < 1.03 , with 96% having effective sample sizes 
> 1000 and 99% having R̂ < 1.01.

Summaries and visualisation
Estimates from the benchmarked stage 2 model were 
reported in a variety of forms, including absolute, relative 
and classification measures. For point estimates we used 
posterior medians and for uncertainty intervals we used 
95% highest posterior density intervals (HPDIs). We used 
the modelled proportions as the absolute indicator and 
odds ratios (ORs) as the relative indicator. The ORs for 
the tth posterior draw were derived as,

with µ̂D being the national prevalence estimate for the 
risk factor measure. An OR above one indicates that the 
SA2 has a prevalence higher than the national average.

In addition to using point estimates and credible inter-
vals to summarize the ORs, we also used the exceedence 
probability (EP) [31, 53, 74].

(7)OR
(t)
i

=
µ
(t)
i
/(1− µ

(t)
i
)

µ̂D/(1− µ̂D)

(8)EPi =
1

T

∑

t

I

(
OR

(t)
i > 1

)

Generally an EP above 0.8 (or below 0.2) is considered to 
provide evidence that the proportion in the correspond-
ing SA2 was substantially higher (or lower) than the 
national average, respectively [75]. Note that the exceed-
ance probabilities calculated using either ORs or preva-
lence are identical.

To facilitate decision-making, we classified SA2s by 
assessing whether their individual and neighbor values 
(i.e. clusters [76, 77]) were significantly different to the 
national average. In this work, these classifications were 
called evidence classifications. Any area classified as HC, 
H, L, or LC has an exceedance probability suggesting that 
the modelled prevalence is significantly different to the 
national average; HC or H denotes higher, while L or LC 
denotes lower. The difference between HC and H (or LC 
and L) is that the former provides an indication of clus-
tering of areas, while the later only indicates significance 
of the area itself. If an area is not classified according to 
the criteria above (defined as None (“N”)) the modelled 
estimate is not sufficiently different to the national aver-
age. See details in Section D.3 of the Additional File 1.

Code to produce subsequent plots is available on 
GitHub [72].

Fig. 4 Violin plots describing the distribution of the posterior medians of the proportion estimates for each of the eight cancer risk factor measures. 
The width of each curve corresponds to the approximate frequency of the posterior medians similar to a density plot. The three vertical lines 
within the violins denotes the 25th, 50th and 75th quantiles of the posterior medians. The tails of each violin extend to the minimum and maximum 
values. The blue dots represent the nationwide direct estimates
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Results
Prevalence
Large spatial variation in the proportion of cancer 
risk factors across Australia can be clearly observed in 
Figs. 4,5,6 and Section H of the Additional File 1. Slightly 
more heterogeneity of the point estimates was observed 
within major cities as a result of the much greater socio-
economic variation within these areas. For example, the 
range of principal component 1 (a proxy for SES that is 
unique to the SES index) was largest in major cities and 
inner regional areas, but 50% the size in remote and very 
remote areas.

Stratifying by risk factor, the results highlight interest-
ing patterns and trends. A more thorough discussion of 
the result is given in Section F of the Additional File 1.

• Current smoking (Section H.2 in the Additional File 
1): Spatial patterns show lower prevalence in major 
cities and less disadvantaged areas. Although very 
high prevalence estimates are observed in the very 
remote regions in the middle of the country, these 
estimates come with substantial uncertainty.

• Risky alcohol consumption (Section H.3 in the Addi-
tional File 1): The spatial patterns were inconsistent 
with the other factors, particularly in terms of the 
relationship between (higher) socioeconomic status 
and healthy behaviours. The results suggest that less 
disadvantaged areas have higher prevalence, which 
generally manifests in higher prevalence in major cit-
ies. Unlike other risk factors where prevalence esti-
mates exhibit relative homogeneity within the SES 
index deciles and remoteness groups (see Section G 
of the Additional File 1), for risky alcohol consump-
tion the estimates exhibit far greater heterogeneity 
for more disadvantaged areas in major cities.

• Inadequate diet (Section H.4 in the Additional File 1): 
The spatial patterns suggest less dependence on the 
SES index and remoteness than the other risk factors. 
Inadequate diet exhibits the lowest heterogeneity of 
the risk factors considered in this work.

• Body weight (Sections H.5 to H.7 in the Additional 
File 1): Similar spatial patterns are observed for the 
three measures. The prevalence was very strongly 
tied to remoteness with substantially lower preva-

lence almost exclusively occurring in major cities. 
Furthermore, the most notable differences in pat-
terns between the estimates for obese and over-
weight/obese are found in major cities.

• Physical activity (Sections H.8 to H.9 in the Addi-
tional File 1): Similar spatial patterns are observed for 
the two measures. Lower prevalence of inadequate 
activity is observed in major cities and less disadvan-
taged areas.

The estimates demonstrate reliability, as around 97% of 
them possess coefficients of variation (CV) below 25% 
— a widely accepted threshold for reliability [25]. Fur-
thermore, the modelled estimates show considerable sta-
bility improvements over the SA2 direct estimates with a 
reduction in variability (measured by standard deviation) 
across Australia by an average factor of 3.3. The estimate 
uncertainty varied by risk factor, with current smoking 
having the highest median CV (17.4) and inadequate 
activity (leisure) having the lowest (2.6). The distribu-
tion of CV also varied by remoteness; the median CV for 
major cities (62% of the survey data) was, on average, 1.8 
to 3.1 times smaller than that for very remote areas.

To investigate the impact of the finer resolution, we 
derived PHA level CVs by taking the population weighted 
mean of the SA2 level estimates. The CVs of point esti-
mates at the SA2 level range from 5% to 34% larger than 
point estimates at the PHA level across the risk factors. 
Similarly, by calculating and summarising the heteroge-
neity of SA2s within each PHA, we find that across the 
risk factors, the median PHA CV is between 1.5% to 
9.1%. Of the PHAs composed of multiple SA2s, 10% 
have CVs > 15 %. The large CVs indicate that the corre-
sponding PHAs were highly heterogeneous, highlighting 
the benefits of using higher resolution estimates. Given 
the similar definitions for the obese risk factor measure, 
Fig. 7 compares the estimates used in this work and that 
of the SHAA, indicating strong agreement.

Section G of the Additional File 1 provides more plots 
describing the modelled results, including how they vary 
by the SES index and remoteness. An interactive explo-
ration of the modelled results will be made available in 
the Australian Cancer Atlas 2.0 [2], planned for release in 
early 2024.

Fig. 5 Choropleth maps displaying the results for risky alcohol consumption (see Table 1) for 2221 SA2s across Australia. The top plot gives 
the posterior median of the odds ratios (OR). ORs above 1 indicate that the prevalence is higher than the national average. The bottom plot gives 
the exceedance probabilities (EPs) for the ORs. The map includes insets for the eight capital cities for each state and territory, with black boxes 
on the main map indicating the location of the inset. Note that some values are lower (or higher) than the range of color scales shown; for these 
values, the lowest (or highest) color is shown. Grey areas were excluded from estimation due to the exclusion criteria. Black lines represent 
the boundaries of the eight states and territories of Australia

(See figure on next page.)
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Fig. 5 (See legend on previous page.)
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Fig. 6 Choropleth maps displaying the results for inadequate physical activity (all) (see Table 1). For more details see the caption for Fig. 5
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Evidence classifications
Table  3 summarises the number of evidence classifica-
tions for each risk factor measure. Figure 8 stratifies these 
by remoteness. A similar stratified plot for the SES index 
is found in Section G of the Additional File 1.

Across most risk factors many more HC areas are iden-
tified than LC areas. For example, for risky waist circum-
ference, around 783 SA2s are classed as HC, while only 
around 397 are classed as LC. We observed that HC or 
H evidence classifications are generally found in the most 
disadvantaged areas, while L or LC areas are more likely 
in the least disadvantaged areas in major cities.

The evidence classifications revealed several interest-
ing trends. For the physical activity risk factor measures, 
a larger proportion of the areas in major cities were clas-
sified as HC or H as opposed to LC or L. For inadequate 
physical activity, the HC classifications favour the most 
disadvantaged areas. The weight risk factor measures 
exhibited different trends with a relatively even distribu-
tion of evidence classifications in major cities. Further-
more, almost all areas classified as LC or L occurred in 
less disadvantaged areas. As mirrored in the maps, the 
evidence classifications for smoking suggest a very strong 
correlation with remoteness and SES; almost all the LC 
or L classifications occur in major cities and less disad-
vantaged areas. Inadequate diet has the smallest number 
of evidence classifications (1155 out of 2221), with the 
largest proportion of them being LC areas in major cities 
and less disadvantaged areas. The results for risky alcohol 
consumption suggest that less disadvantaged areas have 
higher proportions of risky alcohol consumption; a trend 
unique to this risk factor measure.

Discussion
This work improves the spatial resolution and reach 
of previously published cancer risk factor estimates in 
Australia. While the estimates highlight broadly similar 
findings as those from the SHAA, they provide greater 
resolution and reach allowing for more granular explora-
tion of the spatial disparities (see Fig. 7). This is particu-
larly pertinent due to the heterogeneity of the component 
SA2s within each PHA in terms of population size, socio-
economic status and remoteness.

By improving the reach of the previously published 
cancer risk factor estimates, the estimates in this work 

uniquely enable the exploration of spatial disparities in 
very remote areas of Australia. As expected, the very 
remote areas have far greater uncertainty than those in 
major cities (CVs greater than 3 times higher). Never-
theless, by utilising the estimates and their uncertainty 
measures policy makers will have the capability to more 
effectively allocate health interventions and resources to 
these disadvantaged areas and triage areas where more 
data should be collected in the future to improve the 
quality of small area estimates.

The cancer risk factor estimates generated in this 
work reveal substantial spatial disparities in cancer risk 
behaviours across Australia, with higher prevalence of 
high risk behaviours generally occurring in more remote 
areas. While the prevalence of most cancer risk factors is 
higher in areas of lower SES, the spatial patterns for risky 
alcohol consumption demonstrated the opposite effect. 
Point estimates for risky alcohol consumption and cur-
rent smoking exhibited the most heterogeneity across 
Australia, while those from the physical activity meas-
ures exhibit the least. The distribution of the point esti-
mates are mostly consistent across states and territories 
of Australia.

Although generating prevalence estimates and their 
uncertainty intervals are useful in a variety of applica-
tions, using them to visualize which areas are substan-
tially different to the national average can be difficult as 
the two components must be considered jointly. By fur-
ther classifying the estimates according to their posterior 
probabilities, we were able to streamline this process. 
Classifications, such as those used in this work, are piv-
otal in developing targeted interventions as they enable 
policymakers to quickly identify areas, or groups of areas, 
with substantially higher (or lower) prevalence.

Our Bayesian methodology, along with its associated 
exceedance probabilities and evidence classifications, 
provides insights that cannot easily be attained via the 
estimates from the SHAA. Although the spatial patterns 
of the evidence classifications vary by risk factor, a con-
sistent pattern was that areas with lower than average 
prevalence of risk factors (classified as LC or L) were 
almost exclusively located in major cities. Although there 
were areas with higher than average prevalence (HC or 
H) in major cities these were often less common, except 

Fig. 7 Choropleth maps of obesity prevalence at the (top) SA2 level from this work and (bottom) PHA level from the SHAA platform [4]. The 
maps include insets for the eight capital cities in each state and territory, with black boxes indicating their location. Note that some values are 
lower (or higher) than the range of color scales shown; for these values, the lowest (or highest) color is shown. Grey areas represent no estimates, 
and black lines denote state and territory boundaries. Our estimates and SHAA’s use similar but not identical definitions, with our values reported 
as proportions and SHAA’s as age-standardized rates converted to proportions for comparison

(See figure on next page.)
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Fig. 7 (See legend on previous page.)
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for the physical activity risk factors where about half were 
higher and lower than the national prevalence.

Although this applied work represents a significant 
step in the ongoing improvements in cancer prevention 
in Australia, it has some limitations. Firstly and most 
critically, like previous research [47, 78], most of the 
risk factor measures used were based on data derived 
from self-reports which are highly susceptible to various 
biases [79]. Furthermore, some 2017–18 NHS questions 
focused on behaviour from the previous week (e.g. alco-
hol, physical activity), while others on a usual week (e.g. 
fruit and vegetables consumption, smoking).

Table 3 Distribution of evidence classifications by risk factor 
measure (excluding “N” category)

The values in the table are population weighted counts

Total HC H L LC

Current smoking 1469 442 154 408 466

Risky alcohol consumption 1482 603 137 523 219

Inadequate diet 1155 194 221 155 586

Obese 1663 745 89 487 342

Overweight/obese 1539 718 94 267 460

Risky waist circumference 1523 783 76 267 397

Inadequate activity (leisure) 1458 724 148 262 324

Inadequate activity (all) 1411 637 177 278 318

Fig. 8 Distribution of the evidence classifications (HC, H, N, LC, and L) by remoteness and risk factor. The x-axis is the weighted number of SA2s 
using the 2017–2018 ERP as weights
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Given the nature of the survey questions, caution must 
be exercised in using the risk factor measures presented 
herein. While the estimates provide insights into the spa-
tial variation, due to the ecological fallacy [80] and the 
often varying lag time between exposure (to a risk factor) 
and a cancer diagnosis [3], the estimates here cannot be 
used to establish individual-level associations between 
risk factors and cancer incidence. Moreover, as these esti-
mates are derived from cross-sectional data, they do not 
enable inference into lifetime risky behaviour or causal 
relationships with cancer.

The second limitation, relevant to any spatial analysis of 
lattice data, is the modifiable areal unit problem (MAUP) 
[81]. The MAUP refers to the sensitivity of estimates to the 
specified definition of a small area (e.g. choice of partition-
ing and resolution). While we have presented our estimates 
for SA2s, which offers wide applicability, we acknowledge 
that this particular partitioning of Australia represents 
just one of countless possible configurations, each yielding 
unique results. Thus, the conclusions drawn from our esti-
mates are inherently entwined with the choice of partition-
ing and resolution of the small areas we employed [82].

Thirdly, the accuracy of our estimates are conditional 
on the 2017–18 NHS exclusions (very remote areas, dis-
crete Aboriginal and Torres Strait Islander communities 
and non-private dwellings [57]). Without data for these 
sub-populations, there is currently no way to assess the 
impact of these exclusions on modelled estimates from 
this survey.

Next, while the SHAA provides estimates by sex [4], 
our study, constrained by the sparsity of the survey data 
at the SA2 level, did not allow for a similar disaggrega-
tion. Given the evidence that health behaviours can 
depend on sex, the non sex-specific estimates gener-
ated in this work may suffer from inadvertent smoothing 
toward the mean.

The final limitation is that the quality, in terms of both 
bias and variance, of small area estimates can always be 
improved by using larger surveys. Although we used the 
best survey data available, in the future, linkage of mul-
tiple surveys could provide much larger sample sizes 
across Australia, enabling the production of higher reso-
lution estimates.

In terms of future research directions, one approach 
could involve developing distinct models for each of the 
eight risk factor measures. That is the linear predictor 
for each risk factor measure could have different sets of 
covariates, random effect structures or even include non-
linear relationships via splines. Alternatively, future work 
could model the numerous risk factors jointly by leverag-
ing univariate stage 1 models, followed by a multivariate 
spatial stage 2 model [83].

Conclusions
Using a Bayesian two-stage small area estimation model 
we have, for the first time, generated and validated point 
estimates of the prevalence of eight cancer risk factors, 
and measures of their uncertainty, at the SA2 level across 
Australia. By aggregating the estimates, we have shown 
that they are very similar to those given by the SHAA [4], 
external surveys [84–89] and previous research on how 
area level socioeconomic status and remoteness relate 
to healthy behaviours [42]. The new estimates provide 
improved spatial resolution and reach and will enable 
more targeted cancer prevention strategies at the small 
area level. Furthermore, by including the results in the 
next release of the Australian Cancer Atlas [2], this work 
promises to provide a more comprehensive picture of 
cancer in Australia. Since the health factors used in this 
study are also common risk factors for other diseases, 
the prevalence estimates generated here may be useful 
in other disease modelling applications both in Australia 
and internationally.
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