
Moon et al. 
International Journal of Health Geographics           (2023) 22:30  
https://doi.org/10.1186/s12942-023-00353-4

METHODOLOGY Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

International Journal of 
Health Geographics

Optimizing the maximum reported cluster 
size for the multinomial-based spatial scan 
statistic
Jisu Moon1, Minseok Kim1 and Inkyung Jung1* 

Abstract 

Background Correctly identifying spatial disease cluster is a fundamental concern in public health and epidemiol-
ogy. The spatial scan statistic is widely used for detecting spatial disease clusters in spatial epidemiology and disease 
surveillance. Many studies default to a maximum reported cluster size (MRCS) set at 50% of the total population 
when searching for spatial clusters. However, this default setting can sometimes report clusters larger than true 
clusters, which include less relevant regions. For the Poisson, Bernoulli, ordinal, normal, and exponential models, a Gini 
coefficient has been developed to optimize the MRCS. Yet, no measure is available for the multinomial model.

Results We propose two versions of a spatial cluster information criterion (SCIC) for selecting the optimal MRCS 
value for the multinomial-based spatial scan statistic. Our simulation study suggests that SCIC improves the accuracy 
of reporting true clusters. Analysis of the Korea Community Health Survey (KCHS) data further demonstrates that our 
method identifies more meaningful small clusters compared to the default setting.

Conclusions Our method focuses on improving the performance of the spatial scan statistic by optimizing the MRCS 
value when using the multinomial model. In public health and disease surveillance, the proposed method can 
be used to provide more accurate and meaningful spatial cluster detection for multinomial data, such as disease 
subtypes.

Keywords Information criterion, Gini coefficient, Maximum scanning window size, SaTScan, Spatial cluster detection

Introduction
In public health and disease surveillance, the spatial scan 
statistic is a widely used method for identifying spa-
tial clusters with significantly high or low risk of disease 
outcomes. This method is based on the likelihood ratio 
test statistic for each scanning window to compare its 
inside and outside. The scanning window that maximizes 
the test statistic is identified as the most likely cluster. 

Secondary clusters with high values of the test statistics 
are also identified. The statistical significance of the most 
likely cluster and secondary clusters is determined using 
the Monte Carlo hypothesis testing. The spatial scan sta-
tistic has been developed for various probability models 
such as Poisson [1], Bernoulli [1], exponential [2], ordi-
nal [3], normal [4, 5], and multinomial [6]. SaTScan™ 
software is freely available for conducting spatial cluster 
detection analysis using various models of the spatial 
scan statistic.

The spatial scan statistic differs from spatial clustering 
methods such as ADCN [7] and STICC [8] in that the 
method is designed for identifying clusters rather than 
dividing spatial data into distinct subgroups. A cluster 
is defined as geographically and/or temporally bounded 
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group of occurrences of sufficient size and concentra-
tion to be unlikely to have occurred by chance [9]. The 
clusters are characterized by the statistical distribution of 
outcome, not just by distance between geographic objects 
as in density-based clustering. Spatial clustering methods 
are commonly used in geodata mining [10–12], while the 
spatial scan statistic is widely utilized for detecting geo-
graphic disease clusters [13–15].

In SaTScan™, researchers are required to specify the 
scanning window shape and the maximum scanning win-
dow size (MSWS). In many studies, the MSWS value is 
set to the default setting, which is 50% of the total pop-
ulation. A simulation study by Ribeiro and Costa [16] 
revealed that spatial cluster detection results can vary 
depending on the MSWS value. Nevertheless, their find-
ings do not suggest running the analysis multiple times 
with different MSWS values to find the best results, as 
it may lead to a multiple testing problem, as argued by 
Han et  al. [17]. They proposed an alternative approach, 
suggesting that the analysis should be rerun with a 
fixed large MSWS value while adjusting the maximum 
reported cluster size (MRCS) values. Setting the MRCS 
value to the default 50% may result in the reporting of 
clusters larger than the true clusters, encompassing less 
meaningful regions. Therefore, it is advisable to carefully 
select an optimal MRCS value.

Several studies have recently developed criteria to 
select the optimal value of the MRCS. Han et al. [17] pro-
posed an optimization criterion using the Gini coefficient 
[18] specifically for the Poisson-based spatial scan sta-
tistic. Their simulation study showed that the proposed 
Gini coefficient effectively identified the correct clusters. 
However, it is important to note that the Gini coefficient 
needs to be defined differently for different probability 
models. Kim and Jung [19], Yoo and Jung [20], and Lee 
et al. [21] developed the Gini coefficient for the ordinal-, 
normal-, and exponential-based spatial scan statistics, 
respectively. Yet, no Gini coefficient has been devel-
oped for the multinomial-based spatial scan statistic. 
The difficulty in defining a clear Gini coefficient for the 
multinomial-based spatial scan statistic arises from its 
inapplicability to nominal values.

Other studies [22–24] have proposed alternative crite-
ria for selecting the optimal MRCS or MSWS. However, 
these studies only evaluated the performance of their 
methods for the Poisson-based spatial scan statistic. 
Because the methods are likelihood-based optimization 
criteria, they can potentially be extended to other proba-
bility models. Nevertheless, it remains crucial to carefully 
evaluate the effectiveness of these methods when applied 
to probability models other than the Poisson model.

In this study, we propose a spatial cluster information 
criterion (SCIC) inspired by the formulation of the Bayes 

Information Criterion (BIC) [25] to choose the optimal 
MRCS value for the multinomial-based spatial scan sta-
tistic. The SCIC can be defined for the spatial scan statis-
tic irrespective of the underlying probability model, as its 
approach is rooted in the likelihood ratio test statistic. To 
assess the performance of our proposed method, we con-
ducted a simulation study for both the multinomial-based 
and ordinal-based spatial scan statistics. We compared the 
performance of our proposed method with that of existing 
approaches. To exemplify the methodology, we utilized the 
Korea Community Health Survey (KCHS) data collected by 
the Korea Centers for Disease Control and Prevention.

Methods
Spatial scan statistic for multinomial data
The multinomial-based spatial scan statistic [6] is used to 
detect disease clusters with statistically different disease-
type distributions. Let pk and qk denote the probabilities 
of category k inside and outside the scanning window z , 
respectively. If we want to identify regions with different 
disease-type distributions, the null and alternative hypoth-
eses are stated as

where Z denotes the set of all scanning windows and 
K  denotes the total number of categories. The likeli-
hood ratio test statistic, given the scanning window z, is 
denoted as

where cik is the number of cases belonging to category 
k inside the region i , Ck is the total number of cases 
belonging to category k in the whole study area and C is 
the total number of cases in the whole study area.

Spatial cluster information criterion (SCIC)
Now we propose an optimization criterion called the spa-
tial cluster information criterion (SCIC) for selecting the 
optimal MRCS value. Our criterion draws inspiration from 
the formulation of the Bayes information criterion (BIC) 
[25], which is a widely used criterion in statistical modeling 
for model selection. The BIC for a candidate model Mu is 
defined as

where y is observed data, L
(
θu|y

)
 is the likelihood of 

y given the model Mu , θ̂u is the maximum likelihood 
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+ u · log(v),
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estimation (MLE) of θu that maximizes the L
(
θu|y

)
 , u is 

the number of parameters in the model Mu , and v is the 
total number of observations. The BIC equation includes 
a penalty term as the second component, which penalizes 
models with additional parameters. The model exhibiting 
the minimum BIC value is considered the most appropri-
ate selection [26].

We define the SCIC as the sum of the LLR test statistic 
for all significant clusters, along with a penalty term. In the 
multinomial-based spatial scan statistic, the LLR test statis-
tic for each scanning window is used to measure the degree 
of heterogeneity in the spatial distribution of the categories. 
A higher LLR test statistic indicates a greater degree of het-
erogeneity within the scanning window compared to the 
surrounding area. However, as the scanning window size 
increases, there is a tendency for the LLR test statistic to 
rise due to the growing number of cases included within 
the window.

The spatial scan statistic has faced criticism for its ten-
dency to identify clusters that are considerably larger than 
the actual clusters, often incorporating neighboring regions 
with no elevated risk of disease occurrence [27–29]. This 
tendency is mainly noticeable when the default settings of 
MSWS and MRCS, both set at 50%, are used with circu-
lar scanning windows. Optimizing the MRCS improves 
the spatial scan statistic’s ability to identify clusters with 
greater precision [17, 19–21]. To utilize the sum of the LRT 
statistics as an optimizing criterion, we need to offset the 
inflation of the test statistic due to a large number of obser-
vations within the window.

The penalty term in the SCIC is defined in two versions. 
In the first version, the penalty term is calculated by mul-
tiplying the logarithm of the number of cases within the 
significant clusters by the product of the number of catego-
ries and the number of significant clusters. In the second 
version, we substitute the number of regions inside the sig-
nificant clusters for the number of cases. This is based on 
the understanding that the number of cases within a cluster 
tends to increase as the number of regions inside the clus-
ter increases. Both versions serve as optimization criteria 
with similar implications. For the multinomial model, the 
algorithm for computing the SCIC is as follows:

(Step 1) For a given MRCS m % ( m=1, …, 50), denote 
Jm significant clusters reported using the multinomial-
based spatial scan statistic by Z(m)

1 , · · · ,Z
(m)
Jm

.
(Step 2) For each m , calculate the SCIC for all signifi-
cant clusters as follows:

(Version 1)

SCIC1(m) = −2

Jm∑

j=1

log

(
�
Z
(m)
j

)
+ K · Jm · log

(
τ (m)

)

 

where �
Z
(m)
j

 denotes the LRT statistic for the multino-

mial-based spatial statistic given the jth significant 
cluster Z(m)

j  , K  is the total number of categories, and 
τ (m) and δ(m) denote the sum of the number of total 
cases and the sum of the number of regions inside all 
significant clusters, respectively.
(Step 3) Choose the MRCS which minimizes the 
SCIC as the optimal MRCS.

Figure  1 illustrates the flowchart of the proposed 
method.

Elbow method, MCS‑P, and MCHS‑P
For the Poisson-based spatial scan statistic, optimization 
criteria such as the elbow method [22], the maximum 

(Version 2)

SCIC2(m) = −2

Jm∑

j=1

log

(
�
Z
(m)
j

)
+ K · Jm · log

(
δ(m)

)

Fig. 1 The flowchart of the proposed method
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clustering set–proportion (MCS-P) [23], and the maxi-
mum clustering heterogeneous set-proportion (MCHS-
P) [24] have been proposed to determine the optimal 
value of MRCS or MSWS. Since these methods are likeli-
hood-based optimization criteria, we have adapted them 
to the multinomial model in order to evaluate and com-
pare their performance with our proposed approaches. 
The logical order is the same as the SCICs, with the only 
difference being the measure being calculated. It’s impor-
tant to emphasize that we should consider optimizing 
MRCS, not MSWS, to avoid the multiple testing prob-
lem, as noted by Han et al. [17].

The elbow method [30] is commonly employed in 
unsupervised learning to determine the optimal number 
of clusters by identifying the elbow point. In the context 
of selecting the optimal MRCS value, Meysami et al. [22] 
proposed an optimization criterion for the Poisson model 
by adopting the method for finding the optimal elbow 
point as suggested by Delgado et al. [31]. We employ the 
method for the multinomial model by calculating the 
negative sum of the likelihood ratio test (LRT) statistic 
values over all Jm significant clusters for each m as

where �
Z
(m)
j

 denotes the LRT statistics value for the jth 

significant cluster Z(m)
j  ( j = 1, …, Jm ). If no significant 

cluster is present, use the maximum LRT statistic. The 
elbow plot is constructed by connecting the points 
( m,−LRT (m) ) for m = 1, …, 50. For each m , we calculate 
the orthogonal distance between each point 
( m,−LRT (m) ) and the line connecting the first and last 
points. The optimal MRCS is the one that maximizes this 
orthogonal distance.

Ma et  al. [23] proposed the maximum clustering set–
proportion (MCS-P) as an optimization criterion to 
determine the optimal value of the MSWS for the Pois-
son-based spatial scan statistic. This criterion assumes 
that all identified significant clusters are homogeneous 
clusters with the same relative risks. However, consider-
ing the issue of multiple testing, analyzing the data mul-
tiple times with different MSWS values to select the best 
result might not be appropriate. In our study, we adapt 
the MCS-P criterion to the multinomial model and uti-
lize it to select the optimal MRCS, while keeping the 
MSWS value fixed at 50%. To apply the MCS-P to the 
multinomial model, we first define the union cluster set 
Z
(m)
A  by merging all Jm clusters for each m as

−LRT (m) = −

Jm∑

j=1

�
Z
(m)
j

Z
(m)
A =

⋃Jm

j=1
Z
(m)
j

where Z(m)
j  is the jth detected significant cluster ( j = 1, …, 

Jm ). Then, we calculate the union log-likelihood ratio 
(LLR) test statistic log�

Z
(m)
A

 given the union cluster set 
Z
(m)
A  as

where cik , Ck , and C were as defined previously and ci is 
the number of cases inside the region i . The optimal 
MRCS is the one that maximizes the union LLR test sta-
tistic log�

Z
(m)
A

.
Considering the possibility of detected significant 

clusters being heterogeneous with varying relative risks, 
Wang et al. [24] introduced the maximum clustering het-
erogeneous set-proportion (MCHS-P) as an optimization 
criterion to determine the optimal value of the MSWS. 
As previously discussed, we employ the MCS-P crite-
rion in the multinomial model and utilize it to select the 
optimal MRCS, while maintaining a fixed MSWS value 
of 50%. For each m , we define the heterogeneous cluster 
set Z(m)

B  by merging Jm detected significant clusters into 
Wm(Wm ≤ Jm) merged clusters according to their spatial 
contiguity.

Then we calculate the union LLR test statistic log�
Z
(m)
B

 
given the heterogeneous cluster set Z(m)

B  as

The optimal MRCS is the one that maximizes the union 
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Simulation study
We conducted a simulation study to evaluate the per-
formance of the proposed method for the multinomial 
model in comparison to other existing methods. The 
study region comprised Seoul and Gyeonggi Province in 
South Korea, consisting of 69 districts. For the simula-
tion, we considered five different true cluster models as 
depicted in Fig. 2. True cluster models (A) and (B) repre-
sented one circular-shaped and one elliptical-shaped true 
cluster, respectively, each consisting of 5 districts, which 
accounted for 8% of the entire study region. True clus-
ter model (C) depicted one irregular-shaped true cluster 
with 10 districts, representing 15% of the entire study 
region. True cluster models (D) and (E) assumed two 

circular-shaped and two elliptical-shaped true clusters, 
respectively, each consisting of 5 districts.

For each true cluster model, we considered various 
scenarios of the alternative hypothesis, assuming four 
categories. The parameter setting for the alternative 
hypothesis was adopted from a previous study [6]. The 
null hypothesis was set to equal probabilities of 0.25 for 
each of four categories. In the previous study [6], several 
different alternative hypotheses were used to evaluate the 
multinomial-based spatial scan statistic and successfully 
showed that the multinomial-based spatial scan statistic 
worked well under those hypotheses. In this study, we 
aimed to assess a method for optimizing the MRCS for 
the multinomial-based spatial scan statistic and believe 
that it would be good to evaluate its performance under 
the same hypotheses. Furthermore, because the alterna-
tive hypotheses satisfy the likelihood ratio ordering, we 
were also able to evaluate the performance of the ordi-
nal model [3]. For the true cluster models with two clus-
ters, we included heterogeneous settings where different 
alternative hypotheses were assigned to each cluster, as 
well as homogeneous settings where the same alternative 
hypotheses were applied to both clusters. This allowed us 
to examine the performance of the proposed method in 
more plausible heterogeneous settings, where the relative 
risks of each category differ between the two clusters. We 
considered four alternative hypotheses for the true clus-
ter models with one cluster and two homogeneous clus-
ters, as well as three alternative hypotheses for the true 
cluster models with two heterogeneous clusters. This 
resulted in a total of 26 scenarios considered in combi-
nation. Table 1 presents the simulation scenarios for the 
true cluster model along with their respective alternative 
hypotheses.

Under each scenario, we generated 1000 datasets, each 
containing 1000 cases distributed among four catego-
ries. For each data set, we repeatedly identified clusters 
by varying the MRCS values. In SaTScan™, the MRCS 
value was set to 1%, 2%, 3%, 4%, 5%, 6%, 8%, 10%, 12%, 
15%, 20%, 25%, 30%, 35%, 40%, 45%, and 50%. As SaTS-
can™ provides Gini coefficient values for these 17 candi-
date MRCS values in the Bernoulli and Poisson models, 
we computed the SCICs, Gini coefficient (for the ordinal 
model), Elbow method, MCS-P and MCHS-P values for 
these 17 candidate MRCS values for consistency. Then, 
we compared the clusters reported by each method 
using the optimal MRCS selected, with the true clusters. 
Regarding the scanning window shape, we presented 
the simulation results obtained when using the elliptical 
windows as the main results because Kulldorff et al. [32] 
found that the spatial scan statistic with elliptic windows 
exhibited good performance in terms of the power when 
the shape of the true cluster is elliptical or circular.Fig. 2 True cluster models in the simulation study
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Over 1000 randomly generated datasets, we recorded 
the frequency at which each candidate MRCS value 
was selected as the optimal MRCS for each method. To 
compare the performance of the proposed method with 
other existing methods and default setting (MRCS value 
of 50%), we used sensitivity, positive predicted value 
(PPV) and misclassification as the performance meas-
ures, as per a previous study [33]. Sensitivity represents 
the proportion of correctly identified districts within the 
true cluster, while PPV represents the proportion of cor-
rectly identified districts within the detected cluster. A 
method with higher values of these measures indicates 
greater precision in identifying the true cluster. A lower 
sensitivity means that the method failed to identify some 
districts that belong to the true cluster. A lower PPV 
means that the method identified some districts that do 
not belong to the true cluster. Misclassification indicates 
the proportion of incorrectly identified districts within 
the true or detected cluster. Higher sensitivity and PPV 
values, along with lower misclassification values, indicate 
better performance in accurately identifying clusters. 
We calculated the average sensitivity, PPV, and misclas-
sification over 1000 simulated datasets for two sets of 
MRCS values: (1) those selected by  SCIC1,  SCIC2, Gini 
coefficient (only for the ordinal model), Elbow method, 
MCS-P, and MCHS-P, and (2) the default value of 50%. 
The simulation was conducted using SaTScan™ version 
10.0 and R software version 4.0.2, employing the ‘rsats-
can’ package [34].

Results
Simulation study results
Tables 2, 3, 4, 5 present the simulation results for cluster 
model (B). The other results are provided in Additional 
file  1. For cluster models (A), (B), (D), and (E), all five 
methods most often selected the optimal MRCS value 

equal to the size of the true cluster from the 17 candidate 
MRCS values, regardless of the alternative hypothesis 
scenario. For cluster model (C) of irregular-shaped clus-
ter, all five methods most often chose an optimal MRCS 
value of 12%, which is smaller than the size of the true 
cluster (30%), irrespective of the alternative hypothesis 
scenario. When using the optimal MRCS value instead of 
the default setting, the methods tend to report multiple 
informative smaller clusters instead of reporting a single 
larger cluster that contains the true irregular cluster.

The proposed methods consistently exhibited higher 
sensitivity and positive predictive value (PPV) at the most 
frequently selected MRCS value than the default set-
ting. Additionally, the rate of misclassification was much 
lower. The overall sensitivity of the proposed methods 
was slightly lower than that of the default setting. How-
ever, the overall PPV was higher than that of the default 
setting. Across all scenarios, it appears that all five meth-
ods yielded similar overall detection accuracy in terms of 
sensitivity, PPV, and misclassification. The overall sensi-
tivity of  SCIC1 was comparable to  SCIC2, while the over-
all PPV of  SCIC1 was slightly higher than that of  SCIC2.

The simulation results for the ordinal model are pro-
vided in Additional file  2: Tables A23–A48). The pro-
posed methods and the other three methods for the 
ordinal model have similar trends in simulation results 
for the multinomial model. The sensitivity and PPV of 
 SCIC1 and  SCIC2 at the most often selected MRCS value 
were higher than those of the default setting. The over-
all PPV of the proposed methods was higher than that of 
the default setting, while the sensitivity was comparable. 
Additionally, the misclassification rate was consistently 
lower. We noticed that the overall sensitivity of the  SCIC2 
was slightly higher than that of the  SCIC1 in cluster mod-
els (D) and (E), which involve two clusters. The Gini coef-
ficient exhibited higher sensitivity and PPV, and lower 

Table 1 Simulation scenarios for the true cluster model and alternative hypothesis

a p(1) is for cluster 1 and  p(2) is for cluster 2;  p(0) = (0.25, 0.25, 0.25, 0.25) was assumed for the remaining areas

Setting True cluster model Alternative  hypothesisa

Single cluster (A) One circular-shaped cluster (8%)
(B) One elliptic-shaped cluster (8%)
(C) One irregular-shaped cluster (15%)

(1)  p(1) = (0.05, 0.15, 0.35, 0.45)

(2)  p(1) = (0.05, 0.25, 0.25, 0.45)

(3)  p(1) = (0.10, 0.10, 0.40, 0.40)

(4)  p(1) = (0.15, 0.15, 0.15, 0.55)

Two homogeneous clusters (D) Two circular-shaped clusters (8% each)
(E) Two elliptic-shaped clusters (8% each)

(1)  p(1) =  p(2) = (0.05, 0.15, 0.35, 0.45)

(2)  p(1) =  p(2) = (0.05, 0.25, 0.25, 0.45)

(3)  p(1) =  p(2) = (0.10, 0.10, 0.40, 0.40)

(4)  p(1) =  p(2) = (0.15, 0.15, 0.15, 0.55)

Two heterogeneous clusters (D) Two circular-shaped clusters (8% each)
(E) Two elliptic-shaped clusters (8% each)

(5)  p(1) = (0.05, 0.15, 0.35, 0.45),  p(2) = (0.05, 0.25, 0.25, 0.45)

(6)  p(1) = (0.05, 0.15, 0.35, 0.45),  p(2) = (0.10, 0.10, 0.40, 0.40)

(7)  p(1)= (0.05, 0.15, 0.35, 0.45),  p(2) = (0.15, 0.15, 0.15, 0.55)
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misclassification at the most often chosen MRCS value, 
but its overall performance was quite similar to that of 
the default setting.

Application to Korea Community Health Survey data
We used the Korea Community Health Survey (KCHS) 
data to illustrate the usefulness of the proposed method. 
The KCHS is an annual survey conducted by the Korea 
Disease Control and Prevention Agency since 2008 to 
gather community-based health statistics. This survey 
was carried out across 253 community health centers, 
covering various aspects such as health behaviors, self-
reported health indicators, and demographic character-
istics. For our analysis, we used the ‘reason for starting to 

drink’ as the nominal categorical variable from the 2019 
KCHS data. Subjects who had never consumed alcohol 
were excluded. The ‘reason for starting to drink’ was cat-
egorized into four groups: (1) recommended by people, 
(2) out of curiosity, (3) to promote friendship, and (4) 
other reasons. It would be valuable to examine the spatial 
autocorrelation to assess whether this outcome variable 
exhibits inherent spatial dependency. However, based 
on the literature search conducted thus far, it seems 
that there is no established method for calculating spa-
tial autocorrelation in the context of multinomial data. 
The results of the spatial cluster detection analysis might 
provide insights into spatial autocorrelation. Using the 
multinomial-based spatial scan statistic with elliptical 

Fig. 3 A map of the significant spatial clusters identified using the multinomial-based spatial scan statistic with elliptical windows at the MRCS 
suggested by (1) default setting, (2)  SCIC1, (3)  SCIC2, (4) elbow method, (5) MCS-P, and (6) MCHS-P
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windows, we searched for regions in Seoul and Gyeonggi 
province that exhibited distinct distributions of the ‘rea-
son for starting to drink’ among males in their 20 and 30 
s.

The reported clusters differed depending on the 
method used to optimize the MRCS value. Figure  3 
shows a map of the significant spatial clusters reported by 
each method. A summary of those clusters is presented 
in Table  6. The  SCIC1 and  SCIC2 methods selected an 
optimal MRCS of 10%, which is smaller than the default 
setting. When using the default setting, three large clus-
ters were reported. In contrast, the proposed methods 
identified six smaller clusters that seem to carry more 
meaningful information. Cluster 1 reported using the 
SCICs belongs to cluster 1 reported using the default set-
ting. Similarly, cluster 2 reported using SCICs belongs 
to cluster 2 reported using the default setting. Clusters 
3, 4, and 5 reported using the SCICs belong to cluster 3 

reported using the default setting. The proposed methods 
seemed to reveal more meaningful smaller clusters that 
were not identified by the default setting. It is worth not-
ing that cluster 4 reported using the SCICs was a hidden 
smaller cluster with the highest relative risk (RR) in cat-
egory 3, rather than in category 1 as cluster 3 identified in 
the default setting. Additionally, the proposed methods 
reported another regions as cluster 6, which went unno-
ticed by the default setting.

The Elbow method selected 4% as the optimal MRCS, 
while the MCS-P and MCHS-P selected 2% as optimal. 
These three methods identified clusters that either con-
sisted of smaller clusters within the clusters detected by 
the default setting, smaller clusters partially overlapping 
with the default clusters, or smaller clusters in entirely 
new regions without any overlap with the default clus-
ters. Those clusters could provide more informative and 
interpretable results compared to those identified using 

Table 6 A summary of the significant spatial clusters identified using the multinomial-based spatial scan statistic with elliptical 
windows at the MRCS suggested by (1) default setting, (2)  SCIC1, (3)  SCIC2, (4) elbow method, (5) MCS-P, and (6) MCHS-P

a Districts: number of districts
b LLR: log-likelihood ratio
c Obs: number of observations
d RR: relative risk

MRCS Cluster Districtsa LLRb p‑value Obsc RRd of each category

Default 50 1 7 48.655 < 0.001 933 (0.68, 1.24, 1.45, 1.16)

2 10 38.363 < 0.001 1200 (0.98, 1.60, 0.71, 0.91)

3 25 40.119 < 0.001 3096 (1.19, 0.70, 0.87, 1.10)

SCIC1,  SCIC2 10 1 4 50.148 < 0.001 501 (0.57, 1.24, 1.59, 1.47)

2 6 37.323 < 0.001 798 (0.91, 1.76, 0.72, 0.96)

3 5 28.589 < 0.001 694 (1.30, 0.77, 0.67, 0.75)

4 1 19.396 < 0.001 126 (0.87, 0.27, 1.83, 0.43)

5 2 19.119 < 0.001 237 (1.40, 0.69, 0.55, 0.61)

6 3 17.032 0.015 385 (0.76, 1.00, 1.50, 0.80)

Elbow 4 1 2 26.842 < 0.001 240 (0.55, 1.25, 1.67, 1.07)

2 3 22.751 < 0.001 274 (0.83, 2.01, 0.72, 0.87)

3 1 19.396 < 0.001 126 (0.87, 0.27, 1.83, 0.43)

4 2 23.128 < 0.001 318 (1.38, 0.80, 0.53, 0.63)

5 2 19.119 < 0.001 237 (1.40, 0.69, 0.55, 0.61)

6 2 17.539 0.002 269 (0.75, 0.72, 1.57, 1.46)

7 3 15.558 0.016 322 (1.28, 0.98, 0.63, 0.45)

8 2 13.309 0.017 220 (1.12, 1.45, 0.49, 1.09)

9 1 12.712 0.025 108 (0.65, 0.69, 1.82, 1.19)

10 2 12.000 0.046 299 (0.72, 1.44, 1.20, 1.18)

MCS-P, MCHS-P 2 1 1 19.396 < 0.001 126 (0.87, 0.27, 1.83, 0.43)

2 1 19.383 < 0.001 130 (0.51, 1.15, 1.83, 0.99)

3 1 19.061 < 0.001 116 (0.48, 1.04, 1.73, 2.09)

4 1 14.115 0.011 139 (0.67, 2.05, 0.92, 1.06)

5 2 12.870 0.022 135 (1.00, 1.89, 0.51, 0.68)

6 1 12.712 0.025 108 (0.65, 0.69, 1.82, 1.19)

7 1 11.991 0.039 109 (0.73, 1.32, 1.49, 0.00)
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the default setting. However, the clusters obtained using 
these methods are primarily composed of very small 
clusters consisting of only one or two regions. Particu-
larly when using the MCHS-P method, it might be dif-
ficult to consider them as clusters since some reported 
clusters consisting of one region are remote and not adja-
cent to other clusters.

Discussion and conclusion
To select the optimal MRCS value when using the spa-
tial scan statistics, several optimization criteria have 
been developed such as the Gini coefficient [17, 19–21], 
MCS-P [23], MCHS-P [24], and Elbow method [22]. 
However, the Gini coefficient for the multinomial model 
has not been developed. The other optimization criteria 
(i.e., MCS-P, MCHS-P and Elbow method) have been 
developed and evaluated only for the Poisson model. 
Thus, we have proposed the SCIC to choose the opti-
mal MRCS value for the multinomial-based spatial scan 
statistic.

We have evaluated the performance of the proposed 
methods through an extensive simulation study. Par-
ticularly, in the scenarios with the two heterogeneous 
clusters, we observed consistent and robust results for 
both the multinomial and ordinal models: (1) the SCICs 
mostly selected the MRCS value that matched the size of 
the true cluster as the optimal MRCS, and (2) the detec-
tion accuracy achieved at the optimal MRCS using SCICs 
outperformed the results obtained with the default set-
ting. We have also evaluated the performance of the 
existing methods by appropriately applying to the mul-
tinomial model. The overall detection accuracy obtained 
using the proposed methods was comparable to that of 
other existing methods. This might be because these 
methods are all defined based on the likelihood. While 
the sensitivity of the proposed methods at the selected 
optimal MRCS value was higher than the default setting, 
the overall sensitivity was slightly lower. This could be 
considered a limitation of our method, as it suggests the 
potential for missing certain regions of true clusters in 
some situations. However, this trend was observed across 
all evaluated methods.

Despite delivering comparable performance, the exist-
ing methods have certain limitations. The Gini coeffi-
cient cannot be applied to the multinomial model. The 
Elbow method assumes that the sum of the LRT statis-
tic for significant clusters monotonically increases as the 
MRCS values increase. However, in certain cases, multi-
ple significant clusters may be reported at small MRCS 
values, causing the sum of the LRT statistic to initially 

increase and then decrease. As a result, identifying the 
proper elbow point becomes challenging. The MCS-P 
and MCHS-P methods require distinct definitions of the 
union log-likelihood ratio test statistic for each prob-
ability model. Additionally, the MCHS-P method suffers 
from a lengthy computation time due to the necessity of 
calculating the spatial contiguity matrix.

We have introduced the SCICs for the multinomial 
model, which can be easily extended to all probability 
models based on likelihood. These criteria offer compu-
tational efficiency as they directly calculate the criteria 
without requiring any modification of the test statistics. 
Consequently, we propose that utilizing the SCICs when 
selecting the optimal MRCS for the multinomial- and 
ordinal-based spatial scan statistics would be beneficial. 
By employing the SCICs, we anticipate identifying more 
meaningful and interpretable clusters compared to using 
the default setting.

Between the two versions of the SCICs, we find that the 
 SCIC1 appears more appropriate as it includes informa-
tion of the number of cases in addition to the regional 
information. Through simulation results of the multino-
mial model, we observed that the  SCIC1 outperformed 
the  SCIC2 in terms of PPV. However, in the simulation 
results of the ordinal model, both the overall sensitivity 
and PPV were comparable between the  SCIC1 and  SCIC2 
in the single cluster setting. In the two clusters setting, 
the overall sensitivity of  SCIC2 was slightly higher than 
that of  SCIC1. Nevertheless, the differences in overall 
sensitivity between the  SCIC1 and  SCIC2 were minimal 
and not deemed significant.

In summary, we propose a novel approach to optimiz-
ing the MRCS value for the multinomial-based spatial 
scan statistic. Compared to the default setting, our SCIC 
measures improve the accuracy of reported clusters. 
Also, the SCIC measures have the advantages of eas-
ily extending to other probability models over the exist-
ing measures. In public health and disease surveillance, 
our approach has the potential to enhance spatial cluster 
detection by providing greater accuracy and meaningful 
insights.
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